Keisuke Suzuki. Baran lab Group Meeting 6/11/16. Shigenobu Umemiya. Akira Suzuki. Takanori Suzuki (Hokkaido University)

Similar documents
TMSCl imidazole DMF. Ph Ph OTMS. Michael reaction. Michael reaction Ph R 3. epoxidation O R

Additions to Metal-Alkene and -Alkyne Complexes

A Tandem Semipinacol Rearrangement/Alkylation of a-epoxy Alcohols: An Efficient and Stereoselective Approach to Multifunctional 1,3-Diols

Highlights of Schmidt Reaction in the Last Ten Years

Chiral Bronsted Acids as Catalysts

James D. White. A very productive professor 64 students graduated from his lab 94 postdocs have worked in his lab. Education Experience

Chiral Brønsted Acid Catalysis

Electrophilic Carbenes

Catalytic Asymmetric Pauson-Khand Reaction. Won-jin Chung 02/25/2003

Short Literature Presentation 10/4/2010 Erika A. Crane

Asymmetric Catalysis by Lewis Acids and Amines

VI. Metal alkyls from oxidative addition / insertion

Direct, Catalytic Hydroaminoalkylation of Unactivated Olefins with N-Alkyl Arylamines

Chiral Proton Catalysis in Organic Synthesis. Samantha M. Frawley Organic Seminar September 14 th, 2005

Carbonyl Ylide Cycloadditions

Zr-Catalyzed Carbometallation

Total Synthesis of Oxazolomycin A

Use of Cp 2 TiCl in Synthesis

Lecture 6: Transition-Metal Catalysed C-C Bond Formation

Strategies for Catalytic Asymmetric Electrophilic a Halogenation of Carbonyl Compounds

A New Strategy for Efficient Synthesis of Medium and Large Ring Lactones without High Dilution or Slow Addition

Total Synthesis of ( )-Virginiamycin M2

Total Synthesis of Gracilioether F: Development and Application of Lewis Acid Promoted Ketene-Alkene [2+2] Cycloadditions and Late Stage C-H Oxidation

Asymmetric Nucleophilic Catalysis

Catalytic Asymmetric [4+1] Annulation of Sulfur Ylides with Copper Allenylidene Intermediates. Reporter: Jie Wang Checker: Shubo Hu Date: 2016/08/02

CH 3 TMG, DMF N H 3 CO 2 S. (PPh 3 ) 2 Pd 0

Total synthesis of Spongistatin

Rhodium Catalyzed Alkyl C-H Insertion Reactions

a-aminoallylation of Aldehydes with Ammonia: Stereoselective Synthesis of Homoallylic Primary Amines

Total Syntheses of Minfiensine

o-palladated cat. [Chem. Comm (1999)] [Org. Lett. 2, 1826 (2000)] [Org. Lett. 2, 2881 (2000)] [JACS 41, 9550 (1999)]

Asymmetric Lewis Base Strategies for Heterocycle Synthesis

Catalytic Reactions in Organic Synthesis

The aldol reaction with metal enolates proceeds by a chair-like, pericyclic process: favored. disfavored. favored. disfavored

Scandium-Catalyzed Asymmetric Reactions

R 2 R 4 Ln catalyst. This manuscript describes the methods for the synthesis and application of group 4 metallocene bis(trimethylsilyl)acetylene

CEM 852 Final Exam. May 6, 2010

Shi Asymmetric Epoxidation

Disulfonimide-Catalyzed Asymmetric Vinylogous and Bisvinylogous Mukaiyama Aldol Reactions

Total Synthesis of (+/-)-Goniomitine via a Formal Nitrile/Donor-Acceptor Cyclopropane [3 + 2] Cyclization

Convergent Route to ent-kaurane Diterpenoids: Total Synthesis of Lungshengenin D and 1α6α- Diacetoxy-ent-kaura-9(11),16-dien- 12,15-dione

Regioselective Reductive Cross-Coupling Reaction

Copper-Catalyzed Reaction of Alkyl Halides with Cyclopentadienylmagnesium Reagent

Spiro Monophosphite and Monophosphoramidite Ligand Kit

Denmark Group Meeting. & Electrophilic rearrangement of amides

Strategies for Stereocontrolled Synthesis

Total Synthesis of (+)-Sieboldine A J. Am. Chem. Soc. 2010, 132,

Advanced Organic Chemistry

Molybdenum-Catalyzed Asymmetric Allylic Alkylation

Chapter 5 Three and Four-Membered Ring Systems

C-O C-O C-N A A. (KHMDS) C-N (scheme 1) C-O C-N (1)

"-Amino Acids: Function and Synthesis

Functionalization of C(sp 3 ) H Bonds Using a Transient Directing Group

Catalytic Asymmetric Acyl Halide-Aldehyde Cyclocondensation Reactions of Substituted Ketenes

OC 2 (FS 2013) Lecture 3 Prof. Bode. Redox Neutral Reactions and Rearrangements

SECTION 12. «POT-POURRI» in Organic Synthesis (2018)

Direct Organocatalytic Enantioselective Mannich Reactions of Ketimines: An Approach to Optically Active Quaternary α-amino Acid Derivatives

A Stereoselective Synthesis of (+)-Gonyautoxin 3

transmetallate displace ox. add. M + (insert) (β-elim.)

Catalytic alkylation of remote C H bonds enabled by proton-coupled electron transfer

O + k 2. H(D) Ar. MeO H(D) rate-determining. step?

Radical Reactions. Radical Stability!!! bond dissociation energies X Y X + Y. bond BDE (kcal/mol) bond BDE (kcal/mol) CH 3 CH 3 CH 2 95 O H R 2 C H

Asymmetric Synthesis of Medium-Sized Rings by Intramolecular Au(I)-Catalyzed Cyclopropanation

Discussion Addendum for: Trifluoromethylation at the -Position of, -Unsaturated Ketones: 4-Phenyl-3-Trifluoromethyl-2-Butanone

Strained Molecules in Organic Synthesis

Requirements for an Effective Chiral Auxiliary Enolate Alkylation

Synthetic Methodology. Using Tertiary Phosphines. as Nucleophilic Catalysts

Indolynes as Electrophilic Indole Surrogates: Fundamental Reactivity, Regioselectivity, and Synthetic Applications

I. Liu Lab. Ka<e Boknevitz 1

Isao Kuwajima. Supervised Work (Corey) Born Nov BS (Tokyo Institute of Technology) LiCuBu 2 C 7H15 OH

Synthesis of the Stenine Ring System from Pyrrole

Initials: 1. Chem 633: Advanced Organic Chemistry 2011 Final Exam

Chiral Diol Promoted Boronates Addi3on Reac3ons. Lu Yan Morken Group Boston College

s-buli (1.2 eq.), ( )-sparteine (1.2 eq.) Et 2 O, 78 ºC ; 1-2 (1.2 eq.), 78 ºC ; solvent switch to CHCl 3 *, reflux

Approaches to the Synthesis. of Tetrahydropyrans. (and closely related heterocycles)

Total Synthesis of Cyclosporine: Access to N-Methylated Peptides via Isonitrile Coupling Reactions

Nickel-Catalyzed Multicomponent Coupling of Alkynes. -Recent development in methodologies and applications. Zhenjie Lu. Department of Chemistry, MSU

Organic Cumulative Exam October 13, 2016

11-Step Enantioselective Synthesis of ( )-Lomaiviticin Aglycon

Synthesis of a- and/or c-benzoyloxy-a,b-enones from a-halo-a,b-enones

A 1,3 Strain and the Anomeric Effect. Michael Shaghafi Chem. Topics Feb. 6, 2012

Homogeneous Catalysis - B. List

JOC: 1985 Year in Review

Synthesis of Amphidinolide X and an Exploration of Key Reactions

Nine-Step Enantioselective Total Synthesis of (+)-Minfiensine

Suggested solutions for Chapter 41

CEM 852 Final Exam. May 5, 2011

Functionalization of terminal olefins via H migratory insertion /reductive elimination sequence Hydrogenation

Asymmetric Deprotonation

Prof. Ang Li. Literature Seminar Kosuke Minagawa (D2)

Recent Development in. Tandem Radical Reactions (TRR)

Intramolecular Ene Reactions Utilizing Oxazolones and Enol Ethers Fisk, J.S. and Tepe, J..J J. Am. Chem. Soc., 2007, 129,

Huang, C.; Gevorgyan, V. J. Am. Chem. Soc. 2009, 131, Daniel Tzvi Cohen Short Literature Feb. 23, MeO HO OH. COOH ( )-Plicatic Acid OH OH

C h a p t e r 1. Enantioselective LUMO-Lowering Organocatalysis. The presentation of the Nobel Prize in 2001 to William S. Knowles, Ryoji Noyori,

Enan$oselec$ve Total Synthesis of Amphidinolide F

JOC Year-in-Review, 1984

Stereoselective reactions of enolates: auxiliaries

Synthetic Developments Towards the Preparation of Erythromycin and Erythronolide Derivatives

Mechanism Problem. 1. NaH allyl bromide, THF N H

Kinetic Resolutions. Some definitions and examples Resolution: A process leading to the separation of enantiomers, or derivatives thereof.

Transcription:

197.D., Teruaki Mukaiyama, University of Tokyo 193 Assistant Professor, Keio University 197 Lecturer, Keio University 199 Assocate Professor, Keio University 1990 Visiting Professor, ET 1994 ull Professor, Keio University 1996 ull Professor, Tokyo nstitute of Technology Award (Selected) 196 The Chemical Society of Japan Award (for young chemist) 1999 agoya Silver dal Award 2003 The Society of Synthetic rganic Chemisty, Japan Award 200 umboldt Award (Germany) 200 The Chemical Society of Japan Award 20 dal with Purple ibbon 2014 Japan Academy Prize Akira Suzuki Baran lab Group eting 1 X 2 BY 2 Pd 0 (cat.), ligand, base Takanori Suzuki (okkaido University) 1 2 ACE, 2014, 3, 70. Eiichi akamura (University of Tokyo) Science, 2001, 291, 1944. Kouichi arasaka ab 4 2 B() Masahiro Murakami (Kyoto University) ' ' Tetrahedron, 194, 40, 2233. Shu Kobayashi (University of Tokyo) ligand Pr(Tf) 3 Masahiko Yamaguchi (Tohoku University) ' ' aq. JACS, 2003, 12, 299. samu Shiina (Tokyo University of Science) 2 uyou Mitsunobu 2 CL, 2002, 26. Yujiro ayashi (Tohoku University) ACE, 200, 44, 4212. ACE, 200, 47, 202. obuharu wasawa (Tokyo nstitute of Technology) C 2 ligand [h], [Al] Takahiko Akiyama (Gakushuin University) P C 2 JACS, 2011, 133, 121. cat. [h] [h] ature, 1994, 370, 40. 1 2 3 P 3 DEAD 3 1 2 BCSJ, 1967, 40, 93. ACE, 2004, 43, 166.

Baran lab Group eting Asymmetric pinacol-type rearrangement >99% ee 1 3%, >99% ee EE 2 2 2 Ms, 3, 0 o C 1 =aryl, vinyl 77%, >99% ee 3 steps 3 Al, -7 o C 7%, >99% ee 1 2 Tetrahedron Lett. 193, 24, 4997. B 3 T, -7 o C Ms, 3, 0 o C S Al 2 1 2 3 Al, -7 o C % DBAL- -7 o C 1) (C) 2, DMS 3, -7 o C Ms 2) C=CC 2 Cr 2, 0 o C 72% EE 2 2 then 2 S 4 EE 92% BM EE Ms 3 Al -7 o C to -20 o C % (3 steps) =BM 3 Al -7 o C 0% ' '= quant. '=Ms EE Total synthesis of protomycinolide V 6 1 4 1 14 1 (+)-eldanolide Tetrahedron Lett. 19, 26, 61. 4 6 14 1 EE 9 A A n-bu 9 hexane EE 0 o C EE 91% protomycinolide V J. Am. Chem. Soc. 196,, 221.

Epoxy silyl ether rearrangement substrate product 1 2 3 4 Ti 4, -7 o C % 3 Al -7 to -0 o C 7% 1) Co(C) 3 2) Tf, 3) CA, 1 2 3 4 Bn Co-complexed alkynyl group -an excellent migrator- Ms (C) 3 Co glycosyl donors Co(C) 3 Bn 6% 79% J. Am. Chem. Soc. 196,, 327. (C) 3 Co Co(C) 3 Co-complex >> 90%, 3 steps J. Am. Chem. Soc. 1996, 11, 949. Glycosylation -one of the oldest but unresolved problems- X X =,,,, S, S 2, P()() 2, Ac, Ms, Se, etc. eview, see; :Chem. ev. 1993, 93, 103. C :Tetrahedron 199, 4, 9913. C 3 Schmidt ACE, 190, 19, 731 S Mukaiyama CL, 2003, 32, 442. 2 Ac Ac Entry 1 2 3 tallocene Cp 2 Ti 2 Cp 2 Zr 2 Cp 2 f 2 Cp 2 M 2 Ag 4 = cyclohexamethanol Solvent t Bu Ac Conditions 0 o C, 2 h -20 o C, min -20 o C, 30 min Cp 2 Zr 2 Ag 4 solvent Conditions Ac -20 o C, 40 min Baran lab Group eting Cp 2 Zr 2 -Ag 4 -an efficient activator of glycosyl fluorides α Yield 90% 90% 6% t Bu α Yield 93% 20 o C, 30 min 9% Ac Ac β α : β 1 : 1. 1.2 : 1 1.7 : 1 β α : β 1.4 : 1 0 : 1 t Bu Caution : Ag 4 is potentially explosive. Tetrahedron Lett. 19, 29, 367. Modified condition : Cp 2 f 2, AgTf (less reactive but much safer) Angew. Chem. nt. Ed. 200, 44, 371. Total synthesis of mycinamicin V Ac Cp 2 Zr 2 Ag 4 21 =sugar, rt 6% Ac 21 Tetrahedron Lett. 19, 29, 37. mycinamicin V

earrangement of -Glycoside to C-Glycoside Step 1 0 mol% activaor Tf T, -7 o C min =, MM, Bn 74~2% Bn Bn T -7 o C % Bn Bn Ac Bn Bn Bn Bn Step 2 Cp 2 f 2 Ag 4 4ÅMS -7 o C to -20 o C 3 steps, -20 o C B 3 2 71% 14% Sn 4 67% 11% Cpf 2 -Ag 4-76% Tetrahedron Lett. 19, 29, 693. [2+4] cycloaddition -an efficient generation of aryne- Total synthesis of (+)-gilvocarcin M Tetrahedron Lett. 1991, 32, 673. Bn Bn Bn Bn 7%, α:β = :1 Tf (+)-gilvocarcin M J. Am. Chem. Soc. 1992, 114, 36. [2+2] cycloaddition of benzyne and ketene silyl acetal Bn Bn Si n Si3 3 Bu Entry 1 2 3 Tf Bn ' TBS TBS C C ' eductant Sm 2 Sm 2, MPA Ti 4, Zn Conditions 0 o C T, -7 o C Sm 2 -mediated pinacol cyclization Yield 99% 93% Baran lab Group eting trans/cis >99 : 1 >99 : 1 20 : 1 4 Ti 4, Mg(g) 94% 16 : 1 C 2 MM Sm 2 C C >99% ee 1) aq. 2) () 3 C PTSA 3) S 3 Py, 3 DMS T, 0 o C 64-90% =,, alkyl '=alkyl, Bn MM ' ' C 2 Synlett 199, 177. elv. Chim. Acta 2002,, 39. inductive effect C C Chiral Transmission Bn >99% ee Bn Angew. Chem. nt. Ed. 1999, 3, 1226. ' δ- δ+ '

Total synthesis of TA- TA- Bn from [2+2] cycloaddition Bn Bn Bn MM =MM Bn Sm 2 then Bz 6% MM (C) 2 DMS 3-7 to 2 o C Bn =TBDPS Bn t Bu 2 then Tf % 6 ' Bz Amine-promoted cyclocondensation -synthesis of isoxazoles- 1 CS 1 3 C 1 3 2 rt 2 rt 9~99% stable 71~7% CS pyridine 1 =, MM, Tetrahedron Lett. 2003, 44, 3. 1 2 =,, etc. previous work fast 3 decomp. 3 =,, 62~3% yields pinacol cyclization Bn Bn Bn MM Bn 6π cyclization Sm Sm ' Bn Bn Bn Bn =sugar Bn Bn Bz Bz MM C 2 Bn Bn 1:1 mixture Bn Baran lab Group eting Bn 1) CA, aq. C 2) 2, Pd/C, 3% (2 steps) Bz C 2 Bz C 2 Bz B 3 2 Ac including separation TA- Angew. Chem. nt. Ed. 2004, 43, 3167. 2 unstable achiral rg. Lett. 2003,, 391. chiral

ntramolecular aldehyde-ketone benzoin reaction 20 mol% MM MM S DBU t Bu, 40 o C Total synthesis of BE-43472B Baran lab Group eting 90%, dr=>20:1 C 2 79%, dr=>20:1 BE-43472B J. Am. Chem. Soc. 2003, 12, 432. soxazole-directed pinacol rearrangement Bn T 9% ee 3M 2 S 4 T, 40 o C Bn Bn 99%, 9% ee B 3 2 20 mol% B 3 2, 0 o C Bn Bn, 9% ee no racemization C 2 MM C 2 94%, 60% ee Bn = 92% 9% ee 9% ee 92%, 0% ee 6% 71% ee Co Co (C) 3 (C) 3 2% ee Angew. Chem. nt. Ed. 2007, 46, 322. C 2 t Bu T, -7 o C quant. MM C 2 single isomer

Baran lab Group eting MM C 2 a 2 C 3, rt 3% (2 steps) Boc C Tf rt pinacol rearrangement C Boc, 0 o C S C C 2 Boc CSA reflux 9% Boc BE-43472B Angew. Chem. nt. Ed. 2013, 2, 66. egioselective C-glycosylation sugar (2 eq.) C: C : both Tf 2 : 27 : 21 Sc(Tf) 3 >9 : nd : nd T/DMPU -0 o C; Se then aq. 2 2 70% (2 steps) / 0 o C to rt Ac CC Bn 3 (1 eq.) Bn 3 94% Ac Sc(Tf) 3 (0 mol%) Drierite, -30 o C to - o C 9% % CA-Si 2 Lewis acid (30 mol%) Drierite -30 o C to - o C 77~2% sugar sugar Angew. Chem. nt. Ed. 2014, 3, 12.

Baran lab Group eting Total synthesis of saptomycin B 2 2 Bn Bn 3 saptomycin B Bn DCE, -30 to o C Ac Sc(Tf) 3 (0 mol%) Drierite DCE, -30 to 2 o C Bn 3 3 Bn 3 Ac Sc(Tf) 3 (30 mol%) Drierite Bn 3 3 Bn Bn Bn 3 3 3 Bn K 2 C 3 Ac Ac 2% saptomycin B Angew. Chem. nt. Ed. 2014, 3, 1262. Catalytic generation of arynes Tf Tf sp 3 sp Proposed mechanism Bn Tf Tf Tf t Bu 2 C fast sp 2 : favorable mol% Bn Tf slow sp 2 : unfavorable 77% Tf (catalytic) 30 mol% Tf Tf u Tf (1) u u (stoichiometric) Bn T -7 to -60 o C 2% (2) Angew. Chem. nt. Ed. 2012, 1, 336. C 2 t Bu pka ( 2 ) 24 20

Baran lab Group eting Total synthesis of (+)-Cinnamtannin B 1 Bn Bn =TBS Bn 93% Bn Bn Bn Bn TBS Bn not detected (less stabilized than A) Bn Bn (+)-cinnamtannin B 2 =Bn a possible precursor Model study unreactive TBS TBS DDQ (C 2 ) 2 Bn reflux 69-1% B 3 2-7 to -20 o C Bn their strategy Bn putative biogenesis TBS Bn intermediate A TBS BS - o C Bn Bn Bn Bn Bn Bn TBS 2, Ag 2, 4Å MS, -7 to -40 o C TBS SXy Bn (1.2 eq.) Bn Bn B 3 2 91% Xy=2,6-xylyl Bn Bn 1 Bn 1 Bn Bn Bn 2 1 1 SXy Bn Bn Bn =TBS 1 1 1 2 1 1 1 1 =Bn 2 =TBS (+)-cinnamtannin B 2 Angew. Chem. nt. Ed. 2014, 3, 129.