Resonance and fractal geometry

Similar documents
Resonance and fractal geometry

DRIVEN and COUPLED OSCILLATORS. I Parametric forcing The pendulum in 1:2 resonance Santiago de Compostela

Secular and oscillatory motions in dynamical systems. Henk Broer Johann Bernoulli Instituut voor Wiskunde en Informatica Rijksuniversiteit Groningen

Geometry of Resonance Tongues

Resonance and Fractal Geometry

Resonance and Fractal Geometry

Multiperiodic dynamics overview and some recent results

Mathematical Foundations of Neuroscience - Lecture 7. Bifurcations II.

On Parametrized KAM Theory

Low-frequency climate variability: a dynamical systems a approach

BIFURCATION PHENOMENA Lecture 4: Bifurcations in n-dimensional ODEs

Survey of strong normal-internal k : l resonances in quasi-periodically driven oscillators for l = 1, 2, 3.

Introduction to Applied Nonlinear Dynamical Systems and Chaos

B5.6 Nonlinear Systems

Bifurcations of normally parabolic tori in Hamiltonian systems

Hopf saddle-node bifurcation for fixed points of 3D-diffeomorphisms: Analysis of a resonance bubble

Chapter 23. Predicting Chaos The Shift Map and Symbolic Dynamics

Elements of Applied Bifurcation Theory

Recent new examples of hidden attractors

Chaotic transport through the solar system

Schilder, F. (2005). Algorithms for Arnol'd tongues and quasi-periodic tori : a case study.

Torus Maps from Weak Coupling of Strong Resonances

KAM Theory: quasi-periodicity in dynamical systems

Citation for published version (APA): Holtman, S-J. (2009). Dynamics and geometry near resonant bifurcations Groningen: s.n.

University of Groningen. Dynamics amidst folding and twisting in 2-dimensional maps Garst, Swier

Elements of Applied Bifurcation Theory

Chapitre 4. Transition to chaos. 4.1 One-dimensional maps

Hamiltonian Dynamics

Chapter 4. Transition towards chaos. 4.1 One-dimensional maps

Analysis of torus breakdown into chaos in a constraint Duffing. van der Pol oscillator

Global theory of one-frequency Schrödinger operators

Invariant manifolds in dissipative dynamical systems

CHALMERS, GÖTEBORGS UNIVERSITET. EXAM for DYNAMICAL SYSTEMS. COURSE CODES: TIF 155, FIM770GU, PhD

NBA Lecture 1. Simplest bifurcations in n-dimensional ODEs. Yu.A. Kuznetsov (Utrecht University, NL) March 14, 2011

A Novel Three Dimension Autonomous Chaotic System with a Quadratic Exponential Nonlinear Term

11 Chaos in Continuous Dynamical Systems.

COMPLEX DYNAMICS AND CHAOS CONTROL IN DUFFING-VAN DER POL EQUATION WITH TWO EXTERNAL PERIODIC FORCING TERMS

Bifurcations and strange attractors in the Lorenz-84 climate model with seasonal forcing

Hopf-saddle-node bifurcation for fixed points of 3D-diffeomorphisms: analysis of a resonance bubble

Numerical techniques: Deterministic Dynamical Systems

Control and synchronization of Julia sets of the complex dissipative standard system

Lesson 4: Non-fading Memory Nonlinearities

Nonlinear and Collective Effects in Mesoscopic Mechanical Oscillators

Solutions for B8b (Nonlinear Systems) Fake Past Exam (TT 10)

Difference Resonances in a controlled van der Pol-Duffing oscillator involving time. delay

Chaotic Vibrations. An Introduction for Applied Scientists and Engineers

Available online at ScienceDirect. Procedia IUTAM 19 (2016 ) IUTAM Symposium Analytical Methods in Nonlinear Dynamics

TWO DIMENSIONAL FLOWS. Lecture 5: Limit Cycles and Bifurcations

Global Analysis of Dynamical Systems Festschrift dedicated to Floris Takens for his 60th birthday

Lecture 3 ENSO s irregularity and phase locking

Example of a Blue Sky Catastrophe

University of Groningen. The Parametrically Forced Pendulum Broer, Hendrik; Hoveijn, I.; Noort, M. van; Simó, C.; Vegter, Geert

The influence of noise on two- and three-frequency quasi-periodicity in a simple model system

Collective and Stochastic Effects in Arrays of Submicron Oscillators

Towards a Global Theory of Singularly Perturbed Dynamical Systems John Guckenheimer Cornell University

April 13, We now extend the structure of the horseshoe to more general kinds of invariant. x (v) λ n v.

CHALMERS, GÖTEBORGS UNIVERSITET. EXAM for DYNAMICAL SYSTEMS. COURSE CODES: TIF 155, FIM770GU, PhD

A short introduction with a view toward examples. Short presentation for the students of: Dynamical Systems and Complexity Summer School Volos, 2017

MATH 614 Dynamical Systems and Chaos Lecture 16: Rotation number. The standard family.

Internal and external synchronization of self-oscillating oscillators with non-identical control parameters

On the smoothness of the conjugacy between circle maps with a break

On low speed travelling waves of the Kuramoto-Sivashinsky equation.

JULIA SETS AND BIFURCATION DIAGRAMS FOR EXPONENTIAL MAPS

ZERO-HOPF BIFURCATION FOR A CLASS OF LORENZ-TYPE SYSTEMS

A Two-dimensional Mapping with a Strange Attractor

A Model of Evolutionary Dynamics with Quasiperiodic Forcing

The how and what. H.W. Broer Vakgroep Wiskunde en Informatica, Universiteit Groningen Postbus 800, 9700 AV Groningen

Quasipatterns in surface wave experiments

QUASIPERIODIC RESPONSE TO PARAMETRIC EXCITATIONS

Phase synchronization of an ensemble of weakly coupled oscillators: A paradigm of sensor fusion

Localization of Compact Invariant Sets of Nonlinear Systems

Survey on dissipative KAM theory including quasi-periodic bifurcation theory

Electronic Circuit Simulation of the Lorenz Model With General Circulation

In Arnold s Mathematical Methods of Classical Mechanics (1), it

On Universality of Transition to Chaos Scenario in Nonlinear Systems of Ordinary Differential Equations of Shilnikov s Type

STABLE OSCILLATIONS AND DEVIL S STAIRCASE IN THE VAN DER POL OSCILLATOR

The projects listed on the following pages are suitable for MSc/MSci or PhD students. An MSc/MSci project normally requires a review of the

A new four-dimensional chaotic system

DYNAMICAL SYSTEMS. I Clark: Robinson. Stability, Symbolic Dynamics, and Chaos. CRC Press Boca Raton Ann Arbor London Tokyo

A Cantor set of tori with monodromy near a focus focus singularity

WHAT IS A CHAOTIC ATTRACTOR?

Hamiltonian Chaos and the standard map

Invariant manifolds of the Bonhoeffer-van der Pol oscillator

Phase Desynchronization as a Mechanism for Transitions to High-Dimensional Chaos

Unicity of KAM tori Henk Broer 1 and Floris Takens 1

Nonlinear Dynamics and Chaos

Two models for the parametric forcing of a nonlinear oscillator

The Kuramoto Model. Gerald Cooray. U.U.D.M. Project Report 2008:23. Department of Mathematics Uppsala University

ECE 8803 Nonlinear Dynamics and Applications Spring Georgia Tech Lorraine

Siegel disk for complexified Hénon map

One dimensional Maps

On Global Bifurcations in Three-Dimensional Diffeomorphisms Leading to Wild Lorenz-Like Attractors

Dynamics of Modified Leslie-Gower Predator-Prey Model with Predator Harvesting

arxiv: v1 [nlin.cd] 20 Jul 2010

Topological Bifurcations of Knotted Tori in Quasiperiodically Driven Oscillators

On dynamical properties of multidimensional diffeomorphisms from Newhouse regions: I

Bifurcations of phase portraits of pendulum with vibrating suspension point

Dynamical Systems and Chaos

SIMPLE CHAOTIC FLOWS WITH ONE STABLE EQUILIBRIUM

Maslov indices and monodromy

Transcription:

Resonance and fractal geometry Henk Broer Johann Bernoulli Institute for Mathematics and Computer Science Rijksuniversiteit Groningen

Summary i. resonance in parametrized systems ii. two oscillators: torus- en circle dynamics iii. driven oscillators, examples: - Hopf-Neĭmark-Sacker bifurcation - parametric resonance - Hopf saddle-node bifurcation for maps iv. universal properties for parameter space - resonance open & dense or residual - quasi-periodicity nowhere dense or meagre a fractal set of positive measure - and chaos emerging

What is resonance? Resonance: interaction of oscillating subsystems, where rational ratio of frequencies and with compatible motion voorbeelden: 1 : 1 resonance: Huygens s clocks, Moon and Earth, Charon and Pluto 1 : 2 resonance: Botafumeiro (Santiago de Compostela) 2 : 3 resonance: Mercury

Christiaan Huygens (1629-1695) Christiaan Huygens and title page Horologium Oscillatorium 1673 cycloids and synchronisation

Huygens s clocks synchronous Chr. Huygens, Œuvres Complètes de Christiaan Huygens, publiées par la Société Hollandaise des Sciences 16, Martinus Nijhoff, The Hague 1929, Vol. 5, 241-262; Vol. 17, 156-189

Tidal resonance Moon caught by Earth in 1 : 1 resonance Pluto and Charon caught each other: als the ultimate fate of the Earth-Moon system... Mercury caught in 3 : 2 resonance A. Correia and J. Laskar, Mercury s capture into the 3/2 spin-orbit resonance as a result of its chaotic dynamics. Nature 429 (2004) 848-850

Botafumeiro Santiago de Compostela incense container brought into 1:2 resonance by pully: period exactly equals twice that of the forcing

Mathematical programme modelling in terms of dynamical systems depending on parameters emergence of several kinds of dynamics: periodic, quasi-periodic and chaotic bifurcations (fase transitions) in between applications from climate change to (biological) cell systems

Torus en circle dynamics simplest model: torus dynamics P(ϕ) ϕ Poincaré map: ϕ ϕ + 2πα + εf(ϕ) dynamics of the circle (by iteration) resonant periodic

Example: Arnol d family ϕ ϕ + 2πα + ε sinϕ 3 2.5 ε 2 1.5 1 0.5 0-1/2-4/9-3/7-2/5-3/8-1/3-2/7-1/4-2/9-1/5-1/6-1/7-1/8 α 0 1/8 1/7 1/6 1/5 2/9 1/4 2/7 1/3 3/8 2/5 3/7 4/9 1/2 resonance tongues in (α,ε)-vlak catalogue of circle and torus dynamics

Explanation torus dynamics within tongues: periodicity resonance phase-locking synchronisation within main tongue : 1 : 1 resonance entrainment outside tongues: quasi-periodicity each orbit densely fills torus / circle H.W. Broer and F. Takens, Dynamical Systems and Chaos. Epsilon-Uitgaven 64 (2009); Appl. Math. Sc. 172 Springer (2011) H.W. Broer, K. Efstathiou and E. Subramanian, Robustness of unstable attractors in arbitrarily sized pulse-coupled systems with delay. Nonlinearity 21(1) (2008) 13-49 H.W. Broer, K. Efstathiou and E. Subramanian, Heteroclinic cycles between unstable attractors. Nonlinearity 21 (2008) 1385-1410

Devil s staircase 0.6 0.4 0.2 0-0.2-0.4-0.6-0.4-0.2 0 0.2 0.4 α rotation number mean rotation as a function of α, for small ε > 0 fixed (α) continuous, non-decreasing and constant on plateaux for rational values of resonance rational H.W. Broer, C. Simó and J.C. Tatjer, Towards global models near homoclinic tangencies of dissipative diffeomorphisms. Nonlinearity 11 (1998) 667-770

Geometry in parameter space non-resonance fractal geometry nowhere dense set, topologically small positive Lebesgue measure fractal: Hausdorff dimension > topological dimension (= 0) quasi-periodic motion with irrational ; strongly irrational differentiable conjugation with rigid rotation V.I. Arnol d, Geometrical Methods in the Theory of Ordinary Differential Equations. Springer (1983) B.B. Mandelbrot, The Fractal Geometry of Nature. Freeman (1977) J. Oxtoby, Measure and Category, Springer (1971)

Conclusions Huygens s clocks torus / circle model weakly coupled oscillators as before almost identical oscillators 0 modulo 1 parameters (α,ε) in main tongue NB: mind the universal nature of this explanation. For more details on the phases of Huygens s clocks see the below references. Here the dynamics of the connecting beam has to play a role. M. Bennett, M.F. Schatz, H. Rockwood and K. Wiesenfeld, Huygens s clocks. Proc. R. Soc. Lond. A 458 (2002), 563-579 A. Pogromsky, D. Rijlaarsdam and H. Nijmeijer, Experimental Huygens synchronization of oscillators. In: M. Thiel, J. Kurths, M.C. Romano, A. Moura and G. Károlyi, Nonlinear Dynamics and Chaos: Advances and Perspectives. Springer Complexity 2010, 195-210

Hopf-Neĭmark-Sacker I more general: map P : R 2 R 2 fixed point P(0) = 0 eigenvalues derivative e 2π(α±iβ) with α 0 and β p/q example: P is Poincaré map of driven oscillator ẍ + ax + cẋ = εf(x,ẋ,t) with f(x,ẋ,t + 2π) f(x,ẋ,t) locally: geometry with universal singularities (saddle node / fold and other bifurcations) globally: quasi-periodicity and fractal geometry

Hopf-Neĭmark-Sacker II β α non-degenerate case q 5 F. Takens, Forced oscillations and bifurcations. In: Applications of Global Analysis I, Comm. of the Math. Inst. Rijksuniversiteit Utrecht (1974). In: H.W. Broer, B. Krauskopf and G. Vegter (eds.), Global Analysis of Dynamical Systems. IoP Publishing (2001) 1-62

Hopf-Neĭmark-Sacker III mildly-degenerate case q 7

Conclusions Arnol d tongues universal: fold, cusp, swallowtail and Whitney umbrella H.W. Broer, M. Golubitsky and G. Vegter, The geometry of resonance tongues: A Singularity Theory approach. Nonlinearity 16 (2003) 1511-1538 H.W. Broer, S.J. Holtman and G. Vegter, Recognition of the bifurcation type of resonance in mildly degenerate Hopf-Neĭmark-Sacker families. Nonlinearity 21 (2008) 2463-2482 H.W. Broer, S.J. Holtman, G. Vegter and R. Vitolo, Geometry and dynamics of mildly degenerate Hopf-Neĭmarck-Sacker families near resonance. Nonlinearity 22 (2009) 2161-2200 H.W. Broer, S.J. Holtman and G. Vegter, Recognition of resonance type in periodically forced oscillators. Physica-D 239(17) (2010) 1627-1636 H.W. Broer, S.J. Holtman, G. Vegter, and R. Vitolo, Dynamics and Geometry Near Resonant Bifurcations. Regular and Chaotic Dynamics 16(1-2) (2011) 39-50

Parametric resonance driven oscillator ẍ + (a + εf(t)) sin x = 0 (swing) with f(t + 2π) f(t) for example: f ε (t) = cost + ε cos(2t) f(t) = signum (cos t) loss of stability x 0 ẋ in discrete tongues emanating from (a,ε) = ( 1 4 k2, 0), k = 0, 1, 2,... subharmonic bifurcations covering spaces H.W. Broer and G. Vegter, Bifurcational aspects of parametric resonance. Dynamics Reported, New Series 1 (1992) 1-51 H.W. Broer and G. Vegter, Generic Hopf-Neĭmark-Sacker bifurcations in feed forward systems. Nonlinearity 21 (2008) 1547-1578

Resonance tongues swing 6 6 5 5 4 4 3 3 2 2 1 1 0-2 -1 0 1 2 3 4 5 6 0-2 -1 0 1 2 3 4 5 6 6 5 4 3 2 1 0-2 -1 0 1 2 3 4 5 6 H.W. Broer and M. Levi, Geometrical aspects of stability theory for Hill s equations. Archive Rat. Mech. An. 131 (1995) 225-240 H.W. Broer and C. Simó, Resonance tongues in Hill s equations: a geometric approach. Journal of Differential Equations 166 (2000) 290-327

Botafumeiro revisited Poincaré map swing in 1 : 2 resonance period doubling quasi-periodicity chaos...

From gaps to tongues universal geometry from gaps to tongues with ε extra parameter collapse theory of gaps with Singularity Theory A 2k 1 quasi-periodic analogue ẍ + (a + εf(t))x = 0 with f(t) = F(ω 1 t,ω 2 t,...,ω n t) where F : T n R geometry per tongue as before globally fractal geometry with infinite regress H.W. Broer, H. Hanßmann, Á. Jorba, J. Villanueva and F.O.O. Wagener, Normal-internal resonances in quasi-periodically forces oscillators: a conservative approach. Nonlinearity 16 (2003) 1751-1791

Quasi-periodic Schrödinger tongues gaps spectrum Schrödinger operator (H εq x) (t) = ẍ(t) εf(t)x(t) with potential εf, for x = x(t) L 2 (R) Cantor spectrum and... J. Moser and J. Pöschel, An extension of a result by Dinaburg and Sinai on quasi-periodic potentials. Comment. Math. Helvetici 59 (1984) 39-85 L.H. Eliasson, Floquet solutions for the one-dimensional quasi-periodic Schrödinger equation. Commun. Math. Phys. 146 (1992) 447-482 H.W. Broer, J. Puig and C. Simó, Resonance tongues and instability pockets in the quasi-periodic Hill-Schrödinger equation. Commun. Math. Phys. 241 (2003) 467-503

... devil s staircase revisited 0.8 0.75 0.7 0.65 0.6 0.55 0.5 0.38 0.4 0.42 0.44 0.46 0.48 0.5 0.52 rotation number (as before) as a function of a in example with n = 2, ω 1 = 1 and ω 2 = 1 2 ( 5 1)

Hopf saddle-node I map P : R 3 R 3, fixed point P(0) = 0 eigenvalues derivative 1 en e 2π(α±iβ) with α 0 and β p/q math more experimental inspired by climate models... H.W. Broer, C. Simó and R. Vitolo, Bifurcations and strange attractors in the Lorenz-84 climate model with seasonal forcing. Nonlinearity 15(4) (2002) 1205-1267 A.E. Sterk, R. Vitolo, H.W. Broer, C. Simó and H.A. Dijkstra, New nonlinear mechanisms of midlatitude atmospheric low-frequency variability. Physica D: Nonlinear Phenomena 239 (2010) 701-718 H.W. Broer, H.A. Dijkstra, C. Simó, A.E. Sterk and R. itolo, The dynamics of a low-order model for the Atlantic Multidecadal Oscillation, DCDS-B 16(1) (2011) 73-102

Hopf saddle-node II box H 0.1 d1 0.05 0-0.05-0.1 0.2 O 0.4 0.6 I 0.8 d2 1 1.2 1.4 H H.W. Broer, C. Simó and R. Vitolo, The Hopf-Saddle-Node bifurcation for fixed points of 3D-diffeomorphisms, analysis of a resonance bubble. Physica D 237 (2008) 1773-1799 H.W. Broer, C. Simó and R. Vitolo, The Hopf-Saddle-Node bifurcation for fixed points of 3D-diffeomorphisms, the Arnol d resonance web. Bull. Belgian Math. Soc. Simon Stevin 15 (2008) 769-787 H.W. Broer, C. Simó and R. Vitolo, Chaos and quasi-periodicity in diffeomorphisms of the solid torus. DCDS-B 14(3) (2010) 871-905

Hopf saddle-node III 1 n=0.46 C C1 1 0 0 y -1 z x x -1-1 0 1-1 0 1 1 n=0.4555 D D1 1 0 0 y -1 z x x -1-1 0 1-1 0 1 corresponding dynamics: quasi-periodicity and chaos...

Conclusions I co-existence periodicity (including resonance), quasi-periodicity and chaos in product state- and parameter space bifurcations (phase transitions): singularities non-resonances: Kolmogorov-Arnol d-moser theory H.W. Broer, KAM theory: the legacy of Kolmogorov s 1954 paper. Bull. AMS (New Series) 41(4) (2004) 507-521 H.W. Broer, H. Hanßmann and F.O.O. Wagener, Quasi-Periodic Bifurcation Theory, the geometry of KAM. (Monograph in preparation)

Conclusions II fractal geometry with infinite regress nowhere dense meagre modelling at larger scale D. Ruelle and F. Takens, On the nature of turbulence. Comm. Math. Phys. 20 (1971) 167-192; 23 (1971) 343-344 H.W. Broer, B. Hasselblatt and F. Takens (eds.): Handbook of Dynamical Systems. Volume 3 North-Holland (2010)