CAPACITORS / ENERGY STORED BY CAPACITORS / CHARGING AND DISCHARGING

Similar documents
CLASS X- ELECTRICITY

REVISED HIGHER PHYSICS REVISION BOOKLET ELECTRONS AND ENERGY

Lab 10: DC RC circuits

Summary Notes ALTERNATING CURRENT AND VOLTAGE

Coulomb s constant k = 9x10 9 N m 2 /C 2

Capacitance, Resistance, DC Circuits

Chapter 6. Answers to examination-style questions. Answers Marks Examiner s tips

Chapter 8. Capacitors. Charging a capacitor

1) Two lightbulbs, one rated 30 W at 120 V and another rated 40 W at 120 V, are arranged in two different circuits.

What happens when things change. Transient current and voltage relationships in a simple resistive circuit.

HIGHER PHYSICS ELECTRICITY

Direct Current (DC) Circuits

Physics Module Form 5 Chapter 2- Electricity GCKL 2011 CHARGE AND ELECTRIC CURRENT

Chapter 19 Lecture Notes

Circuits Capacitance of a parallel-plate capacitor : C = κ ε o A / d. (ρ = resistivity, L = length, A = cross-sectional area) Resistance : R = ρ L / A

Capacitance. A capacitor consists of two conductors that are close but not touching. A capacitor has the ability to store electric charge.

Solutions to these tests are available online in some places (but not all explanations are good)...

What does it mean for an object to be charged? What are charges? What is an atom?

Electron Theory of Charge. Electricity. 1. Matter is made of atoms. Refers to the generation of or the possession of electric charge.

Revision checklist SP10. SP10 Electricity and Circuits. SP10a Electric circuits. SP10b Current and potential difference

Fig. 1 Fig. 2. Calculate the total capacitance of the capacitors. (i) when connected as in Fig. 1. capacitance =... µf

[1] (b) Fig. 1.1 shows a circuit consisting of a resistor and a capacitor of capacitance 4.5 μf. Fig. 1.1

Review. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Test Review Electricity

Chapter 2: Capacitor And Dielectrics

Higher Physics. Electricity. Summary Notes. Monitoring and measuring a.c. Current, potential difference, power and resistance

Al-Saudia Virtual Academy Pakistan Online Tuition Online Tutor Pakistan Electricity

Chapter 2: Capacitors And Dielectrics

Lab 5 - Capacitors and RC Circuits

Class 6. Capacitance and Capacitors. Physics 106. Winter Press CTRL-L to view as a slide show. Class 6. Physics 106.

UNIT G485 Module Capacitors PRACTICE QUESTIONS (4)

Capacitance. A different kind of capacitor: Work must be done to charge a capacitor. Capacitors in circuits. Capacitor connected to a battery

IMPORTANT Read these directions carefully:

PHY222 - Lab 7 RC Circuits: Charge Changing in Time Observing the way capacitors in RC circuits charge and discharge.

PHYSICS ASSIGNMENT ES/CE/MAG. Class XII

Electricity Worksheet (p.1) All questions should be answered on your own paper.

AP Physics C. Electric Circuits III.C

Dynamic Electricity. All you need to be an inventor is a good imagination and a pile of junk. -Thomas Edison

ENERGY AND TIME CONSTANTS IN RC CIRCUITS By: Iwana Loveu Student No Lab Section: 0003 Date: February 8, 2004

Objects usually are charged up through the transfer of electrons from one object to the other.

Chapter 16 Electrical Energy Capacitance. HW: 1, 2, 3, 5, 7, 12, 13, 17, 21, 25, 27 33, 35, 37a, 43, 45, 49, 51

Electricity. Prepared by Juan Blázquez, Alissa Gildemann. Electric charge is a property of all objects. It is responsible for electrical phenomena.

Insulators Non-metals are very good insulators; their electrons are very tightly bonded and cannot move.

Tactics Box 23.1 Using Kirchhoff's Loop Law

Electrical Forces arise from particles in atoms.

Energy Stored in Capacitors

Capacitors. Example 1

Science Olympiad Circuit Lab

Electricity Review completed.notebook. June 13, 2013

Capacitor investigations

Pretest ELEA1831 Module 11 Units 1& 2 Inductance & Capacitance

News. Charge and Potential. Charge Density. Charge and Potential Quiz #2: Monday, 3/14, 10AM Same procedure as for quiz R +

Chapter 33 - Electric Fields and Potential. Chapter 34 - Electric Current

Physics 2135 Exam 2 October 20, 2015

Physics 6B. Practice Final Solutions

PHYSICS FORM 5 ELECTRICAL QUANTITES

Mansfield Independent School District AP Physics C: Electricity and Magnetism Year at a Glance

CAPACITANCE. Capacitor. Because of the effect of capacitance, an electrical circuit can store energy, even after being de-energized.

The Basic Capacitor. Dielectric. Conductors

Physics Module Form 5 Chapter 2- Electricity GCKL 2011 CHARGE AND ELECTRIC CURRENT

Lab 5 - Capacitors and RC Circuits

Chapter 18. Circuit Elements, Independent Voltage Sources, and Capacitors

CAPACITANCE. Figure 1(a). Figure 1(b).

Agenda for Today. Elements of Physics II. Capacitors Parallel-plate. Charging of capacitors

A Review of Circuitry

MEP 382: Design of Applied Measurement Systems Lecture 3: DC & AC Circuit Analysis

Physics 219 Question 1 January

SNC1DI Unit Review: Static & Current Electricity

ELECTRICITY. Chapter ELECTRIC CHARGE & FORCE

Lab 5 CAPACITORS & RC CIRCUITS

On the axes of Fig. 4.1, carefully sketch a graph to show how the potential difference V across the capacitor varies with time t. Label this graph L.

Name: Class: Date: 1. Friction can result in the transfer of protons from one object to another as the objects rub against each other.

University Physics (PHY 2326)

Electrical Engineering Fundamentals for Non-Electrical Engineers

Electric Charge. Electric Charge ( q ) unbalanced charges positive and negative charges. n Units Coulombs (C)

Review. Spring Semester /21/14. Physics for Scientists & Engineers 2 1

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

STEP-UP 2011 Lesson Plan: Capacitance Brian Heglund Etowah High School Advisor: Phil First

Electric Charge and Electric field

CHARGE AND ELECTRIC CURRENT:

4.2.1 Current, potential difference and resistance

Physics 2B Notes - Capacitors Spring 2018

EDEXCEL NATIONAL CERTIFICATE. UNIT 38 ELECTRICAL and ELECTRONIC PRINCIPLES OUTCOME 2

6. In a dry cell electrical energy is obtained due to the conversion of:

Version 001 CIRCUITS holland (1290) 1

CHAPTER 1 ELECTRICITY

Physics 201. Professor P. Q. Hung. 311B, Physics Building. Physics 201 p. 1/3

University of TN Chattanooga Physics 1040L 8/18/2012 PHYSICS 1040L LAB LAB 4: R.C. TIME CONSTANT LAB

AP Physics C. Electricity - Term 3

the electrical nature of matter is inherent in its atomic structure E & M atoms are made up of p+, n, and e- the nucleus has p+ and n

General Physics (PHY 2140)


Phys 2025, First Test. September 20, minutes Name:

Chapter 16. Electric Energy and Capacitance

(d) describe the action of a 555 monostable timer and then use the equation T = 1.1 RC, where T is the pulse duration

(3.5.1) V E x, E, (3.5.2)

RADIO AMATEUR EXAM GENERAL CLASS

Assessment Schedule 2016 Physics: Demonstrate understanding electrical systems (91526)

4.2.1 Current, potential difference and resistance Standard circuit diagram symbols. Content. Key opportunities for skills development WS 1.

Section 1 Electric Charge and Force

Transcription:

PHYSICS A2 UNIT 4 SECTION 3: CAPACITANCE CAPACITORS / ENERGY STORED BY CAPACITORS / CHARGING AND DISCHARGING # Question CAPACITORS 1 What is current? Current is the rate of flow of charge in a circuit Is equal to current x time 2 What is an electric current in a metal conductor? An electric current in a metallic conductor is a flow of free electrons due to a pd across the ends of the conductor 3 What is the potential difference between two points? The potential difference (p.d) between two points is the work done per unit charge to move a charged object from one point to another 4 What is the equation for power? P=IV=I 2 R 5 What is the equation for resistance? V/I 6 What do the symbols Q, I, t, V, P and R represent in electronics? Q = charge in Coulombs (C) I = current in Amperes (A) t = time in seconds (s) V = voltage / potential difference in Volts (V) P = power in Watts (W) R = resistance in Ohms (Ω) 7 For components in series, what is the total current? In series, the current in each component is the same 8 For components in series, what is the total p.d? The sum of the p.d.s across the components is equal to the total p.d. 9 For components in parallel, what is the total p.d? The p.d. is the same across each component 10 For components in parallel, what is the total current? The sum of the currents through the components is equal to the total current 11 What is the e.m.f of a source of p.d? The electrical energy per unit charge produced by the source 12 What is a capacitor designed to do? Designed to store charge 13 What are capacitors made up from? Two electrical conducting plates separated by an electric insulator 14 Where do the electrons flow in a capacitor? When the plates are connected to a battery, electrons from the negative terminal of the battery flow onto one of the plates An equal number of electrons leave the other plate and return to the battery via its positive terminal

So each plate gains an equal and opposite charge 15 What is a dielectric? An electrical insulator 16 What is the circuit symbol for a capacitor? 17 Define capacitance The capacitance of an object is the amount of charge it is able to store per unit potential difference (p.d.) across it 18 What is the equation for capacitance? C =!! 19 What is the unit of capacitance? Farads Where 1 Farad is equal to 1 coulomb of charge per volt 20 How does a capacitor store charge? When a capacitor is connected to a direct current (d.c.) power course, charge builds up on its plate one plate becomes negatively charged and one becomes positively charged The plates are separated by a dielectric, so no charge can move between them This means that a potential difference builds up between the plates of the capacitor 20.1 What is the capacitance of a capacitor? The charge that the capacitor can store per unit potential difference across it 20.2 What is the voltage rating of a capacitor? The voltage rating of a capacitor is the maximum potential difference that can safely be put across it 21 Draw a test circuit to measure the capacitance of a capacitor. 22 How would you use a test circuit to measure the capacitance of a capacitor? Using a variable resistor, a switch, a micro-ammeter and a cell in series with the capacitor When the switch is closed, the variable resistor is continually adjusted to keep the microammeter reading constant At any given time, t, after the switch is closed, the charge, Q, on the capacitor can be calculated using Q=It where I is the current Read and record the p.d. of the capacitor at regular intervals until the capacitor has the same voltage as the cell had originally

23 Using current and time, how would you find the charge in a capacitor? Q=It therefore, multiplying the current and time taken for the capacitor to reach full charge, you have the value of that charge, Q 24 How would you use charge to find the capacitance of a capacitor? Q=CV Therefore plot a graph of Q (in micro coulombs) against p.d. (in volts) The gradient of this graph will be the capacitance, C, of the capacitor 25 What are typical values of capacitance for a capacitor? Typically in the region of micro (µ) Farads This is x10-6 26 How would you find the capacitance of a capacitor from a graph of Q against p.d? Q=CV therefore Q/V=C Hence, the gradient of a graph of Q against p.d. will give the capacitance 27 How would you find the capacitance of a capacitor from a graph of p.d against Q? Q=CV therefore V/Q=1/C Hence, the gradient of a graph of p.d. against Q will give 1/C and the reciprocal will equal the capacitance 28 What are the problems with using capacitors instead of batteries? Capacitors can only store small amounts of charge, therefore capacitors aren t used instead of batteries To store the same energy as an AA battery, you d need around 6000 farads The capacitor would be massive They also only provide power for a short time 29 What are the benefits of capacitors? They can store charge until its needed, and then discharge all of their charge in a fraction of a second, where as a battery would take several minutes For this reason, charged capacitors can be dangerous 30 What are 3 uses of capacitors? 1) Camera flash the camera battery charges the capacitor over a few seconds, and then the entire charge of the capacitor is dumped into the flash almost instantly This allows the camera flash to be very bright for a very short time 2) Ultra capacitors can be used in back-up power supplies to provide reliable power for short periods of time 3) To smooth our variations in d.c. voltage supplies a capacitor absorbs the peaks and fills the troughs ENERGY STORED BY CAPACITORS 31 What is the type of energy stored as in a capacitor? Electrical potential energy 32 How do capacitors store energy? When a capacitor charges, one plate becomes negatively charged while the other becomes positively charged Like charges repel, so when each plate of the capacitor becomes charged, the charges on that plate are being forced together against their will This requires energy which is supplied by the power source and stored as electric potential energy for as long as the charges are help When the charges are released, the electric potential energy is released 33 What graph can you use to find the energy stored by a capacitor? You can find the energy stored by a capacitor by using the graph of potential difference against charge for the capacitor The p.d. across a capacitor is directly proportional to the charge stored on it, so the graph is a

straight line through the origin 34 Why does a build-up of charge on a capacitor result in a build-up of energy? E = W = Q V So a build up of charge will result in a build up of energy Because energy is proportional to charge 35 What is the work done in a capacitor equal to? The electric potential energy stored is the work done to move the extra charge onto the plates against the potential difference across the plates, given by E = W = Q V Let the small charge being moved be q The average p.d. over that step is v So in that small step, the energy stored is E = qv The total energy stored by the capacitor is the sum of all of the energies stored in each small step increase in charge, until the capacitor is fully charged So it s the energy under the graph of p.d. against V 36 Hence, what is the equation for the energy stored by a capacitor? E =!! QV 37 How can you use the equation for capacitance and the equation for the energy stored by a capacitor to create 2 further equations for energy stored? We know that E =!! QV And that Q = CV So we can derive: 1) E =!! CV! 2) E =!!!!! 38 How does a lightning strike model a capacitor? Imagine a thundercloud and the Earth below like a pair of charged parallel plates Because the thundercloud is negatively charged, a strong electric field exists between the thundercloud and the ground The potential difference between the thundercloud and the ground, V=Ed Where E is therefore the electric field strength and d is the height of the thundercloud above the ground For a thundercloud carrying a constant charge Q, the energy stored =!! QV =!! QEd If the thundercloud is forced by winds to rise to a new height d, the energy stored is now!! QEd As the electric field is unchanged, the increase in the energy stored is!! QEd!!! QEd This is equal to!! QE d The increase in the energy stored is because work is done by the force of the wind to overcome the electrical attraction between the thundercloud and the ground and to make the charged thundercloud move away from the ground 38.1 What circuit can be used to measure the energy stored in a charged capacitor and how? A joulemeter is used to measure the energy transfer from a charged capacitor to a light bulb when the capacitor discharges The capacitor p.d. V is measured and the joulemeter reading recorded before the discharge starts When the capacitor has discharged, the joulemeter reading is recorded again The difference of the two joulemeter readings is the energy transferred from the capacitor during the discharging process This is the total energy stored in the capacitor before it discharged

This can be compared with the calculation of the energy stored using E =!! CV! CHARGING AND DISCHARGING A CAPACITOR 39 What kind of voltage must a capacitor be connected to? Direct current 40 Where do the electrons flow when a capacitor test circuit is turned on? When a capacitor is connected to a d.c. power supply, a current flows in the circuit until the capacitor is fully charged, then stops The electrons flow from the negative terminal of the supply onto the plate connected to it 41 How is charge built up on a capacitor? When the electrons flow from the negative terminal of the supply onto the plate connected to it, a negative charge builds up on that plate At the same time, electrons flow from the other plate to the positive terminal of the supple, making that plate positive These electrons are repelled by the negative charge on the negative plate and attracted to the positive terminal of the supply The same number of electrons are repelled from the positive plate as are built up on the negative plate This means an equal but opposite charge builds up on each plate, causing the potential difference between the plates 42 What happens to the current in the circuit as the capacitor reaches its full capacitance? Initially the current through the circuit it high As the charge builds up on the plates, electrostatic repulsion makes it harder and harder for more electrons to be deposited When the p.d. across the capacitor is equal to the p.d. across the supply, the current falls to zero (hence when the capacitor is fully charged) 43 What happens when you charge a capacitor through a resistor? If you charge a capacitor through a fixed resistor, the resistance of the resistor will affect the time taken to charge the capacitor As soon as the switch is closed, a current starts to flow The potential difference across the capacitor is zero at first, so there is no p.d. opposing the current The potential difference of the battery causes an initial relatively high current to flow equal to V/R As the capacitor charges, the p.d. across the resistor gets smaller and smaller (because the p.d. across the capacitor is getting bigger) and so the current drops Charge is proportional to the potential difference, so the Q-t graph is the same as the V-t graph

43.1 What test circuit would you use to investigate the charging of a capacitor? 44 What is the graph of I against t for charging a capacitor through a resistor? 45 Describe the graph of I against t for charging a capacitor through a resistor? Initially, the current is high because the electrons can flow from the power source to the plates and the potential difference is low, so there is no p.d. to oppose the current However, as charge builds up on the plates, electrostatic repulsion makes it harder and harder for more electrons to be deposited When the p.d. across the capacitor is equal to the p.d. across the supply, the current falls to zero The capacitor is fully charged 46 What is the graph of V against t for charging a capacitor through a resistor? 47 Describe the graph of V against t for charging a capacitor through a resistor? There is no potential difference of the capacitor to start with, so V is zero As the current flows and the capacitor charges, the p.d. across the capacitor gets bigger This is because the electrons have built up on the plates and are repelling each other, causing a difference of charge and so a potential difference 48 What is the graph of Q against t for charging a capacitor through a resistor?

49 Describe the graph of Q against t for charging a capacitor through a resistor? Charge is proportional to potential difference (Q=CV) Hence, the Q-t graphs takes the same shape as the V-t graph 50 What two factors does the time taken to charge a capacitor through a resistor depend on? 1) The capacitance of the capacitor (C). This effects the amount of charge that can be transferred at a given voltage 2) The resistance of the circuit (R). This affects the current in the circuit 51 What is discharging a capacitor through a resistor? To discharge a capacitor, take out the battery and reconnect the circuit When a charged capacitor is connected across a resistor, the p.d. drives a current through the circuit This current flows in the opposite direction from the charging current The capacitor is fully discharged when the p.d. across the plates and the current in the circuit are both zero 52 What test circuit would you use to investigate the discharge of a capacitor? 53 What are the advantages of using a data logger in a discharge circuit? 1) Less chance of human error 2) Take more results either take them more quickly or more slowly than humans can 3) Can record data in dangerous areas (volcanoes etc.) 4) Can record data in inconvenient areas 5) Can record data in inaccessible areas 54 Why is a voltage sensor used in a discharge circuit? To measure the voltage across the capacitor 55 What is the graph of I against t for discharging a capacitor through a resistor?

56 Describe the graph of I against t for discharging a capacitor through a resistor? There is a high initial p.d. across the plates of the capacitor which will cause a high current to flow as the electrons repel each other and travel back to their start position Over time, as the potential difference between the plates drops, the electrons flow less and the current drops again towards zero Although it s the opposite 57 What is the graph of V against t for discharging a capacitor through a resistor? 58 Describe the graph of V against t for discharging a capacitor through a resistor? There is a build up of charges repelling each other on the plates of the capacitor from when it was charged This creates a large p.d. As the electrons move away from the plates and flow round the circuit, there is less and less build up of electrons on the plate which reduces the p.d. 59 What is the equation for the voltage on a discharging capacitor? V = V! e!!!!" 60 What is the graph of Q against t for discharging a capacitor through a resistor? 61 Describe the graph of Q against t for discharging a capacitor through a resistor?

Charge is proportional to potential difference (Q=CV) Hence, the Q-t graphs takes the same shape as the V-t graph 62 What is the equation for the charge on a discharging capacitor? Q = Q! e!!!!" 63 What is the time constant of capacitance? The time it takes for a capacitor to charge through a fixed resistor depends on R and C The time to discharge a capacitor depends on R and C too When the discharge time t is equal to RC, the equation becomes: Q = Q! e!!"!" Q = Q! e!!!!! =!! = 0.37 When the time t=rc, it is known as the time constant, and is the time taken for the charge on a discharging capacitor (Q) to fall to about 37% of Q o It is also the time taken for the charge of a charging capacitor to rise to about 63% of Q o 64 What is the equation for the time constant? t=rc 65 What is the relationship between the resistance in series with the capacitor and the time taken to charge/discharge the capacitor? The larger the resistance in series with the capacitor, the longer it takes to charge or discharge If t=rc then a larger R will result in a larger t 66 How would you find the time constant from a graph of Q, I, and V against t? From a graph of Q against t, just find 37% of Q o and find the time taken to reach that point From a graph of V against t, just find 37% of V o and find the time taken to reach that point 67 What would a graph of Ln(V/V) look like? A graph of Ln(V/V o ) against t would be a straight line with a negative gradient The gradient is equal to!!"