Regression with limited dependent variables. Professor Bernard Fingleton

Similar documents
Predictive Analytics : QM901.1x Prof U Dinesh Kumar, IIMB. All Rights Reserved, Indian Institute of Management Bangalore

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models

Lecture 6: Introduction to Linear Regression

STAT 405 BIOSTATISTICS (Fall 2016) Handout 15 Introduction to Logistic Regression

Diagnostics in Poisson Regression. Models - Residual Analysis

Chapter 13: Multiple Regression

x i1 =1 for all i (the constant ).

Chapter 11: Simple Linear Regression and Correlation

1. Inference on Regression Parameters a. Finding Mean, s.d and covariance amongst estimates. 2. Confidence Intervals and Working Hotelling Bands

Lecture 9: Linear regression: centering, hypothesis testing, multiple covariates, and confounding

Statistics for Managers Using Microsoft Excel/SPSS Chapter 13 The Simple Linear Regression Model and Correlation

Lecture 9: Linear regression: centering, hypothesis testing, multiple covariates, and confounding

Statistics for Economics & Business

Professor Chris Murray. Midterm Exam

Department of Quantitative Methods & Information Systems. Time Series and Their Components QMIS 320. Chapter 6

See Book Chapter 11 2 nd Edition (Chapter 10 1 st Edition)

Module Contact: Dr Susan Long, ECO Copyright of the University of East Anglia Version 1

Limited Dependent Variables

Statistics for Business and Economics

Here is the rationale: If X and y have a strong positive relationship to one another, then ( x x) will tend to be positive when ( y y)

LOGIT ANALYSIS. A.K. VASISHT Indian Agricultural Statistics Research Institute, Library Avenue, New Delhi

Marginal Effects in Probit Models: Interpretation and Testing. 1. Interpreting Probit Coefficients

since [1-( 0+ 1x1i+ 2x2 i)] [ 0+ 1x1i+ assumed to be a reasonable approximation

Basic Business Statistics, 10/e

Comparison of Regression Lines

Introduction to Regression

Hydrological statistics. Hydrological statistics and extremes

[The following data appear in Wooldridge Q2.3.] The table below contains the ACT score and college GPA for eight college students.

Chapter 8 Indicator Variables

Chapter 14: Logit and Probit Models for Categorical Response Variables

a. (All your answers should be in the letter!

ANSWERS. Problem 1. and the moment generating function (mgf) by. defined for any real t. Use this to show that E( U) var( U)

Negative Binomial Regression

2016 Wiley. Study Session 2: Ethical and Professional Standards Application

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Introduction to Analysis of Variance (ANOVA) Part 1

ECONOMICS 351*-A Mid-Term Exam -- Fall Term 2000 Page 1 of 13 pages. QUEEN'S UNIVERSITY AT KINGSTON Department of Economics

Reduced slides. Introduction to Analysis of Variance (ANOVA) Part 1. Single factor

Advanced Statistical Methods: Beyond Linear Regression

Tests of Single Linear Coefficient Restrictions: t-tests and F-tests. 1. Basic Rules. 2. Testing Single Linear Coefficient Restrictions

STAT 3008 Applied Regression Analysis

Learning Objectives for Chapter 11

/ n ) are compared. The logic is: if the two

Statistics MINITAB - Lab 2

3/3/2014. CDS M Phil Econometrics. Vijayamohanan Pillai N. CDS Mphil Econometrics Vijayamohan. 3-Mar-14. CDS M Phil Econometrics.

Continuous vs. Discrete Goods

Interval Estimation in the Classical Normal Linear Regression Model. 1. Introduction

STATISTICS QUESTIONS. Step by Step Solutions.

where I = (n x n) diagonal identity matrix with diagonal elements = 1 and off-diagonal elements = 0; and σ 2 e = variance of (Y X).

DO NOT OPEN THE QUESTION PAPER UNTIL INSTRUCTED TO DO SO BY THE CHIEF INVIGILATOR. Introductory Econometrics 1 hour 30 minutes

Basically, if you have a dummy dependent variable you will be estimating a probability.

ANSWERS CHAPTER 9. TIO 9.2: If the values are the same, the difference is 0, therefore the null hypothesis cannot be rejected.

The Geometry of Logit and Probit

Linear regression. Regression Models. Chapter 11 Student Lecture Notes Regression Analysis is the

1 Binary Response Models

4 Analysis of Variance (ANOVA) 5 ANOVA. 5.1 Introduction. 5.2 Fixed Effects ANOVA

First Year Examination Department of Statistics, University of Florida

Limited Dependent Variables and Panel Data. Tibor Hanappi

ECON 351* -- Note 23: Tests for Coefficient Differences: Examples Introduction. Sample data: A random sample of 534 paid employees.

Linear Regression Analysis: Terminology and Notation

Lab 4: Two-level Random Intercept Model

Lecture Notes on Linear Regression

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Chapter 15 Student Lecture Notes 15-1

Introduction to Dummy Variable Regressors. 1. An Example of Dummy Variable Regressors

Question 1 carries a weight of 25%; question 2 carries 20%; question 3 carries 25%; and question 4 carries 30%.

18. SIMPLE LINEAR REGRESSION III

Reminder: Nested models. Lecture 9: Interactions, Quadratic terms and Splines. Effect Modification. Model 1

January Examinations 2015

Chapter 12 Analysis of Covariance

BIO Lab 2: TWO-LEVEL NORMAL MODELS with school children popularity data

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction

28. SIMPLE LINEAR REGRESSION III

Tests of Exclusion Restrictions on Regression Coefficients: Formulation and Interpretation

Outline. Zero Conditional mean. I. Motivation. 3. Multiple Regression Analysis: Estimation. Read Wooldridge (2013), Chapter 3.

Lecture 4 Hypothesis Testing

9. Binary Dependent Variables

Correlation and Regression. Correlation 9.1. Correlation. Chapter 9

Logistic regression models 1/12

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Chapter 8 Multivariate Regression Analysis

Lecture Notes for STATISTICAL METHODS FOR BUSINESS II BMGT 212. Chapters 14, 15 & 16. Professor Ahmadi, Ph.D. Department of Management

Logistic Regression Maximum Likelihood Estimation

β0 + β1xi and want to estimate the unknown

Properties of Least Squares

University of California at Berkeley Fall Introductory Applied Econometrics Final examination

Chapter 2 - The Simple Linear Regression Model S =0. e i is a random error. S β2 β. This is a minimization problem. Solution is a calculus exercise.

CS 2750 Machine Learning. Lecture 5. Density estimation. CS 2750 Machine Learning. Announcements

Midterm Examination. Regression and Forecasting Models

Lecture 6 More on Complete Randomized Block Design (RBD)

Homework Assignment 3 Due in class, Thursday October 15

CHAPTER 8. Exercise Solutions

Statistics II Final Exam 26/6/18

is the calculated value of the dependent variable at point i. The best parameters have values that minimize the squares of the errors

ECONOMETRICS II (ECO 2401S) University of Toronto. Department of Economics. Winter 2017 Instructor: Victor Aguirregabiria

Scatter Plot x

17 - LINEAR REGRESSION II

Stat 642, Lecture notes for 01/27/ d i = 1 t. n i t nj. n j

Discrete Dependent Variable Models James J. Heckman

Transcription:

Regresson wth lmted dependent varables Professor Bernard Fngleton

Regresson wth lmted dependent varables Whether a mortgage applcaton s accepted or dened Decson to go on to hgher educaton Whether or not foregn ad s gven to a country Whether a job applcaton s successful Whether or not a person s unemployed Whether a company expands or contracts

Regresson wth lmted dependent varables In each case, the outcome s bnary We can treat the varable as a success (Y = 1) or falure (Y = 0) We are nterested n explanng the varaton across people, countres or companes etc n the probablty of success, p = prob( Y =1) Naturally we thnk of a regresson model n whch Y s the dependent varable

Regresson wth lmted dependent varables But the dependent varable Y and hence the errors are not what s assumed n normal regresson Contnuous range Constant varance (homoscedastc) Wth ndvdual data, the Y values are 1(success) and 0(falure) the observed data for N ndvduals are dscrete values 0,1,1,0,1,0, etc not a contnuum The varance s not constant (heteroscedastc)

Bernoull dstrbuton probablty of a success ( Y = 1) s p probablty of falure ( Y = 0) s 1- p = q EY ( ) = p var( Y) = p(1 p) as p vares for = 1,...,N ndvduals then both mean and varance vary EY ( ) = p var( Y ) = p (1 p ) regresson explans varaton n EY ( ) = p as a functon of some explanatory varables EY ( ) = f( X,..., X ) 1 K but the varance s not constant as EY ( ) changes whereas n OLS regresson, we assume only the mean vares as X vares, and the varance remans constant

The lnear probablty model ths s a lnear regresson model Y = b + b X +... b X + e 0 1 1 K K Pr( Y = 1 X,..., X ) = b + b X +... b X b 1 1 K 0 1 1 K K s the change n the probablty that Y = 1 assocated wth a unt change n X, holdng constant X.... X, etc Ths can be estmated by OLS but 1 2 Note that snce var( Y ) s not constant, we need to allow for heteroscedastcty n tf, tests and confdence ntervals K

The lnear probablty model 1996 Presdental Electon 3,110 US Countes bnary Y wth 0=Dole, 1=Clnton

The lnear probablty model Ordnary Least-squares Estmates R-squared = 0.0013 Rbar-squared = 0.0010 sgma^2 = 0.2494 Durbn-Watson = 0.0034 Nobs, Nvars = 3110, 2 *************************************************************** Varable Coeffcent t-statstc t-probablty Constant 0.478917 21.962788 0.000000 prop-gradprof 0.751897 2.046930 0.040749 prop-gradprof = pop wth grad/professonal degrees as a proporton of educated (at least hgh school educaton)

The lnear probablty model 1.5 Clnton 1 0.5 Dole 0-0.5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 prop-gradprof = pop wth grad/professonal degrees as a proporton of educated (at least hgh school educaton)

The lnear probablty model Dole_Clnton_1 versus prop_gradprof (wth least squares ft) 1 Y = 0.479 + 0.752X 0.8 Dole_Clnton_1 0.6 0.4 0.2 0 0 0.05 0.1 0.15 0.2 0.25 0.3 prop_gradprof

The lnear probablty model Lmtatons The predcted probablty exceeds 1 as X becomes large Y ˆ = 0.479 + 0.752 X f X > 0.693 then Yˆ > 1 X = 0 gves Yˆ = 0.479 f X < 0 possble, then X < -0.637 gves Yˆ < 0

Solvng the problem We adopt a nonlnear specfcaton that forces the dependent proporton to always le wthn the range 0 to 1 We use cumulatve probablty functons (cdfs) because they produce probabltes n the 0 1 range Probt Uses the standard normal cdf Logt Uses the logstc cdf

Probt regresson Φ ( z) = area to left of z n standard normal dstrbuton Φ ( 1.96) = 0.025 Φ (0) = 0.5 Φ (1) = 0.84 Φ (3.0) = 0.999 we can put any value for z from - to +, and the outcome s 0 < p = Φ ( z) < 1

Probt regresson Pr( Y = 1 X, X ) =Φ ( b + b X + b X ) eg.. 0 1 2 1 2 1 2 0 1 1 2 2 b = 1.6, b = 2, b = 0.5 X = 0.4, X = 1 z = b + b X + b X = 1.6 + 2x0.4 + 0.5x1 = 0.3 0 1 1 2 2 Pr( Y = 1 X, X ) =Φ( 0.3) = 0.38 1 2

Probt regresson Model 9: Probt estmates usng the 3110 observatons 1-3110 Dependent varable: Dole_Clnton_1 VARIABLE COEFFICIENT STDERROR T STAT SLOPE (at mean) const -2.11372 0.215033-9.830 prop_gradprof 9.35232 1.32143 7.077 3.72660 log_urban 15.9631 5.64690 2.827 6.36078 prop_hghs 3.07148 0.310815 9.882 1.22389

Probt regresson Actual and ftted Dole_Clnton_1 versus prop_gradprof 1 ftted actual 0.8 Dole_Clnton_1 0.6 0.4 0.2 0 0 0.05 0.1 0.15 0.2 0.25 0.3 prop_gradprof

Probt regresson Interpretaton The slope of the lne s not constant As the proporton of graduate professonals goes from 0.1 to 0.3, the probablty of Y=1 (Clnton) goes from 0.5 to 0.9 As the proporton of graduate professonals goes from 0.3 to 0.5 the probablty of Y=1 (Clnton) goes from 0.9 to 0.99

Probt regresson Estmaton The method s maxmum lkelhood (ML) The lkelhood s the jont probablty gven specfc parameter values Maxmum lkelhood estmates are those parameter values that maxmse the probablty of drawng the data that are actually observed

Probt regresson Pr( Y = 1) condtonal on X,..., X s p =Φ ( b + b X +... b X ) 1 K 0 1 1 K K Pr( Y = 0) condtonal on X,..., X s 1- p = 1 Φ ( b + b X +... b X ) 1 K 0 1 1 K K y s the value of Y observed for ndvdual for 'th ndvdual, Pr( Y y = y ) s p (1 p ) y for = 1,.., n, jont lkelhood s L=Π Pr( Y = y ) =Π p (1 p ) y [ ] [ ] L= Π Pr( Y = y ) =Π Φ ( b + b X +... b X ) 1 Φ ( b + b X +... b X ) log lkelhood s = { Φ + + } + (1 y )ln { 1 Φ ( b + b X +... b X } 1 y 0 1 1 K K 0 1 1 K K 0 1 1 K K 0 1 1 K K ln L yln ( b b X... b X 0 1 we obtan the values of b, b,..., b that gve the maxmum value of ln L K 1 y 1 y

Hypothetcal bnary data success X 1 10 0 2 0 3 1 9 1 5 1 8 0 4 0 5 1 11 1 12 0 3 0 4 1 12 0 8 1 14 0 3 1 11 1 9 0 4 0 6 1 7 1 9 0 3 0 1

Iteraton 0: log lkelhood = -13.0598448595 Iteraton 1: log lkelhood = -6.50161713610 Iteraton 2: log lkelhood = -5.50794602456 Iteraton 3: log lkelhood = -5.29067548323 Iteraton 4: log lkelhood = -5.26889753239 Iteraton 5: log lkelhood = -5.26836878709 Iteraton 6: log lkelhood = -5.26836576121 Iteraton 7: log lkelhood = -5.26836575008 Convergence acheved after 8 teratons Model 3: Probt estmates usng the 24 observatons 1-24 Dependent varable: success VARIABLE COEFFICIENT STDERROR T STAT SLOPE (at mean) const -4.00438 1.45771-2.747 X 0.612845 0.218037 2.811 0.241462

Model 3: Probt estmates usng the 24 observatons 1-24 Dependent varable: success VARIABLE COEFFICIENT STDERROR T STAT SLOPE (at mean) const -4.00438 1.45771-2.747 X 0.612845 0.218037 2.811 0.241462 If X = 6, probt = Φ ( 4.00438 + 0.612845*6) =Φ ( -0.32731) = 0.45

Actual and ftted success versus X 1 ftted actual 0.8 0.6 success 0.4 0.2 0 2 4 6 8 10 12 14 X

Logt regresson Based on logstc cdf Ths looks very much lke the cdf for the normal dstrbuton Smlar results The use of the logt s often a matter of convenence, t was easer to calculate before the advent of fast computers

Logstc functon f(z) EPRO1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0-3 -2-1 0 1 2 3 4 z logt

Z e z 1 Prob success = = 1+ e Z 1+ e Z Z Z e 1+ e e 1 Prob fal = 1- = = = 1 1 + Z Z Z Z 1+ e 1+ e 1+ e 1+ e Z Z Prob success e 1+ e Z odds rato = = = e Z Prob fal 1+ e 1 log odds rato = z e z 1 z = b0+ b1x1+ b2x2 +... + bkx k

Logstc functon p = b + b X 0 1 p plotted aganst X s a straght lne wth p <0 and >1 possble p p = exp( b0 + b1x) 1 + exp( b + b X) 0 1 plotted aganst X gves s-shaped logstc curve so p > 1 and p < 0 mpossble equvalently p ln = b0 + b X 1 1 p ths s the equaton of a straght lne, so p ln plotted aganst X s lnear 1 p

Estmaton - logt X s fxed data, so we choose b, b, hence p p exp( b0 + b1x) = 1 + exp( b + b X) 0 1 0 1 so that the lkelhood s maxmzed

Logt regresson z = b + b X +... b X 0 1 1 K K Pr( Y = 1) condtonal on X,..., X s p = [1 + exp( z)] 1 K Pr( Y = 0) condtonal on X,..., X s 1- p = 1 [1 + exp( z)] 1 K y s the value of Y observed for ndvdual for 'th ndvdual, y Pr( Y = y ) s p (1 p ) y for = 1,.., n, jont lkelhood s L=Π Pr( Y = y ) =Π p (1 p ) 1 y 1 1 y 1 L= Π Pr( Y = y) =Π [1 + exp( z)] 1 [1 + exp( z)] log lkelhood s 1 ln L= yln {[1 + exp( z)] } + (1 y)ln{ 1 [1 + exp( ( z)] 1 } 0 1 1 we obtan the values of b, b,..., b that gve the maxmum value of ln L K 1 y 1 y

Estmaton maxmum lkelhood estmates of the parameters usng an teratve algorthm

Estmaton Iteraton 0: log lkelhood = -13.8269570846 Iteraton 1: log lkelhood = -6.97202524093 Iteraton 2: log lkelhood = -5.69432863365 Iteraton 3: log lkelhood = -5.43182376684 Iteraton 4: log lkelhood = -5.41189406278 Iteraton 5: log lkelhood = -5.41172246346 Iteraton 6: log lkelhood = -5.41172244817 Convergence acheved after 7 teratons Model 1: Logt estmates usng the 24 observatons 1-24 Dependent varable: success VARIABLE COEFFICIENT STDERROR T STAT SLOPE (at mean) const -6.87842 2.74193-2.509 X 1.05217 0.408089 2.578 0.258390

VARIABLE COEFFICIENT STDERROR T STAT SLOPE (at mean) const -6.87842 2.74193-2.509 X 1.05217 0.408089 2.578 0.258390 If X = 6, logt = -6.87842 + 1.05217*6 =-0.5654 = ln(p/(1-p) P = exp(-0.5654)/{1+exp(-0.5654)} = 1/(1+exp(0.5654)) = 0.362299

Actual and ftted success versus X 1 ftted actual 0.8 0.6 success 0.4 0.2 0 2 4 6 8 10 12 14 X

Modellng proportons and percentages

The lnear probablty model consder the followng ndvdual data for Y and Y = 0,0,1,0,0,1,0,1,1,1 X = 1,1, 2, 2,3,3, 4, 4,5,5 constant = 1,1,1,1,1,1,1,1,1,1 X Yˆ = 0.1+ 0.2 X s the OLS estmate Notce that the X values for ndvduals 1 and 2 are dentcal, lkewse 3 and 4 and so on If we group the dentcal data, we have a set of proportons p = 0/2, 1/2, 1/2, 1/2, 1 = 0, 0.5, 0.5, 0.5, 1 X = 1,2,3,4,5 pˆ = 0.1+ 0.2 X s the OLS estmate

The lnear probablty model When n ndvduals are dentcal n terms of the varables explanng ther success/falure Then we can group them together and explan the proporton of successes n n trals Ths data format s often mportant wth say developng country data, where we know the proporton, or % of the populaton n each country wth some attrbute, such as the % of the populaton wth no schoolng And we wsh to explan the cross country varatons n the %s by varables such as GDP per capta or nvestment n educaton, etc

Regresson wth lmted dependent varables Wth ndvdual data, the values are 1(success) and 0(falure) and p s the probablty that Y = 1 the observed data for N ndvduals are dscrete values 0,1,1,0,1,0, etc not a contnuum Wth grouped ndvduals the proporton p s equal to the number of successes Y n n trals (ndvduals) So the range of Y s from 0 to n The possble Y values are dscrete, 0,1,2,,n, and confned to the range 0 to n. The proportons p are confned to the range 0 to 1

Modellng proportons Proporton (Y/n( Y/n) ) Contnuous response 5/10 = 0.5 11.32 1/3 = 0.333 17.88 6/9 = 0.666 3.32 1/10 = 0.1 11.76 7/20 = 0.35 1.11 1/2 = 0.5 0.03

Bnomal dstrbuton the moments of the number of successes n trals, each ndependent, = 1,..., N p s the probablty of a success n each tral EY ( ) = np var( Y ) = n p (1 p ) the varance s not constant, but depends on Y ~ B( n, p ) Y n and p

Data Regon Cleveland,Durham Cumbra Northhumberland Humbersde N Yorks Output growth survey of startup frms q 0.169211 0.471863 0.044343 0.274589 0.277872 starts(n) expanded(y) propn =Y/n 13 8 0.61538 34 34 1.00000 10 0 0.00000 15 9 0.60000 16 14 0.87500

The lnear probablty model Regresson Plot Y = 0.296428 + 1.41711X R-Sq = 48.9 % 1.0 propn =e/s 0.5 0.0-0.2-0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 gvagr

OLS regresson wth proportons y = 0.296 + 1.42 x Predctor Coef StDev T P Constant 0.29643 0.05366 5.52 0.000 x 1.4171 0.2559 5.54 0.000 S = 0.2576 R-Sq = 48.9% R-Sq(adj) = 47.3% Negatve proporton Proporton > 1 Ftted values = y = 0.296 + 1.42 x 0.48310-0.00576 1.07892 0.58634 0.25346

Grouped Data Regon Cleveland,Durham Cumbra Northhumberland Humbersde N Yorks Output growth survey of startup frms q 0.169211 0.471863 0.044343 0.274589 0.277872 starts(n) expanded(y) propn =Y/n 13 8 0.61538 34 34 1.00000 10 0 0.00000 15 9 0.60000 16 14 0.87500

Proportons and counts ln( p / (1 p ) = b + b X 0 1 ln( pˆ / (1 pˆ ) = bˆ + bˆ X EY ( ) Yˆ = = n pˆ np 0 1 n Yˆ = sze of sample = estmated expected number of successes n sample

Bnomal dstrbuton For regon n! Pr ob( Y = y) = p (1 p) y!( n y)! y n y n = number of ndvduals p = probablty of a success Y = number of successes n n ndvduals

Bnomal dstrbuton For regon n! Pr ob( Y = y) = p (1 p) y!( n y)! Example P =0.5, n = 10 ob Y 10! = = = 5!(10 5)! y n y 5 5 Pr ( 5) 0.5 (0.5) 0.2461 EY ( ) = np= 5 var( Y) = np(1 p) = 2.5

Y s B(10,0.5) E(Y)=np = 5 var(y)=np(1-p)=2.5 500 400 Frequency 300 200 100 0 1 2 3 4 5 6 7 8 9 10 C25 Y s B(10,0.9) E(Y)=np = 9 var(y)=np(1-p)=0.9 500 400 Frequency 300 200 100 0 1 2 3 4 5 6 7 8 9 10 C27

Maxmum Lkelhood proportons Assume the data observed are Y = y = 5 successes from 10 trals and Y = y = 9 successes from 10 trals 1 1 2 2 what s the lkelhood of these data gven p = 0.5, p = 0.9? n! Pr ob( Y = 5) = p (1 p ) 1 y n y 1 1 1 y1!( n1 y1)! 1 1 1 10! 5 5 Pr ob( Y1 = 5) = 0.5 (0.5) = 0.2461 5!(10 5)! n! Pr ob( Y = 9) = p (1 p ) Y 2 y n y 2 2 2 y2!( n2 y2)! 2 2 2 10! = = = 9!(10 9)! 9 1 Pr ob( 2 9) 0.9 (0.1) 0.3874 1 2 lkelhood of observng y = 5, y = 9 gven p = 0.5, p = 0.9 = 0.2461x0.3874 = 0.095 1 2 1 2 However lkelhood of observng y = 5, y = 9 gven p = 0.1, p = 0.8 = 0.0015x0.2684 = 0.0004 1 2 1 2

Inference

Lkelhood rato/devance Y = 2ln( L / L )~ χ 2 2 u r L u = lkelhood of unrestrcted model wth k1 df L r = lkelhood of restrcted model wth k2 df k2 > k1 Restrctons placed on k2-k1 k1 parameters typcally they are set to zero

Devance Ho: b = 0, = 1,...,( k2 k1) 2 = 2ln( / )~ 2 u r k2 k1 Y L L χ 2 E( Y ) = k2 k1

Iteraton 7: log lkelhood = -5.26836575008 Convergence acheved after 8 teratons = Lu Model 3: Probt estmates usng the 24 observatons 1-24 Dependent varable: success VARIABLE COEFFICIENT STDERROR T STAT SLOPE (at mean) const -4.00438 1.45771-2.747 X 0.612845 0.218037 2.811 0.241462 Model 4: Probt estmates usng the 24 observatons 1-24 Dependent varable: success VARIABLE COEFFICIENT STDERROR T STAT SLOPE (at mean) const 0.000000 0.255832-0.000 Log-lkelhood = -16.6355 Comparson of Model 3 and Model 4: Null hypothess: the regresson parameters are zero for the varables X =Lr 2{Lu Lr]= 2[-5.268 + 16.636] = 22.73 Test statstc: Ch-square(1) = 22.7343, wth p-value = 1.86014e-006 Of the 3 model selecton statstcs, 0 have mproved. Nb 2ln(Lu/Lr) = 2* (-16.6355- -5.2683) = 22.7343

Iteraton 3: log lkelhood = -2099.98151495 Convergence acheved after 4 teratons Model 2: Logt estmates usng the 3110 observatons 1-3110 Dependent varable: Dole_Clnton_1 VARIABLE COEFFICIENT STDERROR T STAT SLOPE (at mean) const -3.41038 0.351470-9.703 log_urban 25.4951 9.10570 2.800 6.36359 prop_hghs 4.96073 0.508346 9.759 1.23820 prop_gradprof 15.1026 2.16268 6.983 3.76961 Model 3: Logt estmates usng the 3110 observatons 1-3110 Dependent varable: Dole_Clnton_1 VARIABLE COEFFICIENT STDERROR T STAT SLOPE (at mean) const -0.972329 0.184314-5.275 prop_hghs 2.09692 0.360723 5.813 0.523414 Log-lkelhood = -2136.12 Comparson of Model 2 and Model 3: Null hypothess: the regresson parameters are zero for the varables log_urban prop_gradprof Test statstc: Ch-square(2) = 72.2793, wth p-value = 2.01722e-016

DATA LAYOUT FOR LOGISTIC REGRESSION REGION URBAN SE/NOT SE OUTPUT GROWTH Y n Hants, IoW suburban SE 0.062916 9 11 Kent suburban SE 0.035541 4 10 Avon suburban not SE 0.133422 4 14 Cornwall, Devon rural not SE 0.141939 5 12 Dorset, Somerset rural not SE 0.145993 12 16 S Yorks urban not SE -0.150591 0 11 W Yorks urban not SE 0.152066 7 15

Logstc Regresson Table Predctor Coef StDev Z P Constant -1.2132 0.3629-3.34 0.001 gvagr 9.716 1.251 7.77 0.000 URBAN/SUBURBAN/RURAL suburban -0.8464 0.2957-2.86 0.004 urban -1.3013 0.4760-2.73 0.006 SOUTH-EAST/NOT SOUTH-EAST South-East 2.4411 0.3534 6.91 0.000 Log-Lkelhood = -210.068

Testng varables Prob = f(q) Log-lke degrees of freedom -247.1 32 Prob = f(q,urban,se) -210.068 29 2*Dfference = 74.064 74.064 > 7.81, the crtcal value equal to the upper 5% pont of the ch-squared dstrbuton wth 3 degree of freedom thus ntroducng URBAN/SUBURBAN/RURAL and SE/not SE causes a sgnfcant mprovement n ft

Interpretaton When the transformaton gves a lnear equaton lnkng the dependent varable and the ndependent varables then we can nterpret t n the normal way The regresson coeffcent s the change n the dependent varable per unt change n the ndependent varable, controllng for the effect of the other varables For a dummy varable or factor wth levels, the regresson coeffcent s the change n the dependent varable assocated wth a shft from the baselne level of the factor

Interpretaton ln( Pˆ /(1 Pˆ ) Changes by 9.716 for a unt change n gvagr by 2.441 as we move from not SE to SE countes by -1.3013 as we move from RURAL to URBAN by -0.8464 as we move from RURAL to SUBURBAN

Interpretaton The odds of an event = rato of Prob(event) to Prob(not event) The odds rato s the rato of two odds. The logt lnk functon means that parameter estmates are the exponental of the odds rato (equal to the logt dfferences).

Interpretaton For example, a coeffcent of zero would ndcate that movng from a non SE to a SE locaton produces no change n the logt Snce exp(0) = 1, ths would mean the (estmated) odds = Prob(expand)/Prob(not expand) do not change e the odds rato =1 In realty, snce exp(2.441) = 11.49 the odds rato s 11.49 The odds of SE frms expandng are 11.49 tmes the odds of non SE frms expandng

Interpretaton param. est. s.e. t rato p-value odds rato lower c.. upper c.. Constant -1.2132 0.3629-3.34 0.001 gvagr 9.716 1.251 7.77 0.000 16584.51 1428.30 1.93E+05 RURAL/SUBURBAN/URBAN suburban -0.8464 0.2957-2.86 0.004 0.43 0.24 0.77 urban -1.3013 0.4760-2.73 0.006 0.27 0.11 0.69 SE/not SE SE 2.4411 0.3534 6.91 0.000 11.49 5.75 22.96 Note that the odds rato has a 95% confdence nterval snce 2.4411+1.96*0.3534 =3.1338 and 2.4411-1.96*0.3534 1.96*0.3534 = 1.7484 and exp(3.1338)=22.96, exp(1.7484) = 5.75 The 95% c..for the odds rato s 5.75 to 22.96