Specific Ion Solvtion in Ethylene Carbonate and Propylene Carbonate

Similar documents
Theory and Modeling of Specific Ion Hydration

Developing Monovalent Ion Parameters for the Optimal Point Charge (OPC) Water Model. John Dood Hope College

Intermolecular Forces in Density Functional Theory

The change in free energy on transferring an ion from a medium of low dielectric constantε1 to one of high dielectric constant ε2:

An introduction to Molecular Dynamics. EMBO, June 2016

Lecture C2 Microscopic to Macroscopic, Part 2: Intermolecular Interactions. Let's get together.

Subject of the Lecture:

All-atom Molecular Mechanics. Trent E. Balius AMS 535 / CHE /27/2010

Hyeyoung Shin a, Tod A. Pascal ab, William A. Goddard III abc*, and Hyungjun Kim a* Korea

Chapter 3. Crystal Binding

Why the Sulfinyl Group is special in DMSO? Chao Lv June 4, 2014

Solvent Scales. ε α β α: solvent's ability to act as a hydrogen bond-donor to a solute

CE 530 Molecular Simulation

Example questions for Molecular modelling (Level 4) Dr. Adrian Mulholland

Lecture 11: Potential Energy Functions

Calculation of entropy from Molecular Dynamics: First Principles Thermodynamics Mario Blanco*, Tod Pascal*, Shiang-Tai Lin#, and W. A.

Density of methanolic alkali halide salt solutions by. experiment and molecular simulation

Chapter 12 Intermolecular Forces and Liquids

COSMO-RS Theory. The Basics

3rd Advanced in silico Drug Design KFC/ADD Molecular mechanics intro Karel Berka, Ph.D. Martin Lepšík, Ph.D. Pavel Polishchuk, Ph.D.

Chapter 2 Experimental sources of intermolecular potentials

4 th Advanced in silico Drug Design KFC/ADD Molecular Modelling Intro. Karel Berka, Ph.D.

Molecular Mechanics. Yohann Moreau. November 26, 2015

Water structure near single and multi-layer nanoscopic hydrophobic plates of varying separation and interaction potentials

Molecular mechanics. classical description of molecules. Marcus Elstner and Tomáš Kubař. April 29, 2016

Soot - Developing anisotropic potentials from first principles for PAH molecules. Tim Totton, Alston Misquitta and Markus Kraft 12/11/2009

Name: Date: Blk: Examine your periodic table to answer these questions and fill-in-the-blanks. Use drawings to support your answers where needed:

Electronic Supplementary Information

Molecular Modeling and Simulation of Phase Equilibria for Chemical Engineering

Aqueous solutions. Solubility of different compounds in water

Free energy, electrostatics, and the hydrophobic effect

Paper No. 1: ORGANIC CHEMISTRY- I (Nature of Bonding and Stereochemistry)

K + 09/04/2018. Structure of Organic Molecules. Ionic bond. The compound potassium fluoride consists of potassium (K+) ions and fluoride (F-) ions

Solvation and reorganization energies in polarizable molecular and continuum solvents

Water and Aqueous Solutions. 2. Solvation and Hydrophobicity. Solvation

Biomolecular modeling I

Solutions. Chapter 14 Solutions. Ion-Ion Forces (Ionic Bonding) Attraction Between Ions and Permanent Dipoles. Covalent Bonding Forces

We have considered how Coulombic attractions and repulsions help to organize electrons in atoms and ions.


Solutions and Non-Covalent Binding Forces

WS 1: Ionic Bonds 1. Charge on particle 1= q1 Charge on particle 2 = q2

Structural Bioinformatics (C3210) Molecular Mechanics

BIOC : Homework 1 Due 10/10

Non-covalent force fields computed ab initio

Intermolecular Forces, Liquids, Solids. IM Forces and Physical Properties

Speeding up path integral simulations

Journal of Atoms and Molecules

Linking electronic and molecular structure: Insight into aqueous chloride solvation. Supplementary Information

Computer simulation methods (2) Dr. Vania Calandrini

Statistical Theory and Learning from Molecular Simulations

CH1810 Lecture #1 Solutions of Ionic Compounds

Peptide folding in non-aqueous environments investigated with molecular dynamics simulations Soto Becerra, Patricia

CHEMISTRY The Molecular Nature of Matter and Change

Advanced Quantum Chemistry III: Part 6

6 Hydrophobic interactions

Hands-on : Model Potential Molecular Dynamics

GHW#3. Chapter 3. Louisiana Tech University, Chemistry 481. POGIL(Process Oriented Guided Inquiry Learning) Exercise on Chapter 3.

METHODS FOR TREATING SOLVENT EFFECTS AND INTERMOLECULAR FORCES. Mark S. Gordon Iowa State University Ames Laboratory

Phase Equilibria and Molecular Solutions Jan G. Korvink and Evgenii Rudnyi IMTEK Albert Ludwig University Freiburg, Germany

Explanation of Dramatic ph-dependence of Hydrogen Binding on Noble Metal Electrode: Greatly Weakened Water Adsorption at High ph.

Water models in classical simulations

A. MP2 - Inclusion of counterpoise in the optimisation step

Assessment Schedule 2017 Chemistry: Demonstrate understanding of thermochemical principles and the properties of particles and substances (91390)

Spectroscopy of the Cyano Radical in an Aqueous Environment

ONETEP PB/SA: Application to G-Quadruplex DNA Stability. Danny Cole

Dependence of ion hydration on the sign of the ion s charge

Accounting for Solvation in Quantum Chemistry. Comp chem spring school 2014 CSC, Finland

Dielectric polarization of 2-pyrrolidinone molecules in benzene solution - a quantum-chemical study

Ionic Bonding - Electrostatic Interactions and Polarization

Chapter 9 Ionic and Covalent Bonding

Solutions and Their Properties

Level 3 Chemistry Demonstrate understanding of thermochemical principles and the properties of particles and substances

Advanced Quantum Chemistry III: Part 6

Free Energy Simulation Methods

Electric properties of molecules

Fernanda C Bononi 1, Ted Hullar 2, Cort Anastasio 2, Davide Donadio 1

CSUS Department of Chemistry Experiment 3 Chem.1A

Molecular dynamics simulation of limiting conductances for LiCl, NaBr, and CsBr in supercritical water

From Dynamics to Thermodynamics using Molecular Simulation

SUPPLEMENTARY INFORMATION

Investigating Popular Water Models

Atoms can form stable units called molecules by sharing electrons.

Atomic Structure and Bonding. Chapter 1 Organic Chemistry, 8 th Edition John McMurry

Prediction of spectroscopic parameters for bio-organic and bio-inorganic intermediates in complex systems

Chapter 11 Intermolecular Forces, Liquids, and Solids

Lecture Presentation. Chapter 11. Liquids and Intermolecular Forces. John D. Bookstaver St. Charles Community College Cottleville, MO

Biochemistry,530:,, Introduc5on,to,Structural,Biology, Autumn,Quarter,2015,

CHEMISTRY - UTEXAS 1E CH.5 - INTERMOLECULAR FORCES (IMFS)

arxiv:chem-ph/ v1 24 May 1995

Alchemical free energy calculations in OpenMM

Lewis Dot Symbols. The Octet Rule ATOMS TEND TO GAIN, LOSE, or SHARE ELECTRONS to ATTAIN A FILLED OUTER SHELL of 8 ELECTRONS.

Coupling the Level-Set Method with Variational Implicit Solvent Modeling of Molecular Solvation

Intermolecular and Intramolecular Forces. Introduction

Some properties of water

Chapter 8. forces of attraction which hold atoms or ions together. 3 fundamental types of bonding. Ionic - metals & nonmetals

Why Is Molecular Interaction Important in Our Life

Chapter 3 Results. 3.1 Accurate pk a computation pk a values for a heterogeneous group of organic molecules

On the Unusual Properties of Halogen Bonds: A Detailed ab Initio Study of X 2 -(H 2 O) 1-5 clusters (X ) Cl and Br)

Properties of Solutions. Review

16 years ago TODAY (9/11) at 8:46, the first tower was hit at 9:03, the second tower was hit. Lecture 2 (9/11/17)

Transcription:

Specific Ion Solvtion in Ethylene Carbonate and Propylene Carbonate A. Arslanargin, A. Powers, S. Rick, T. Pollard, T. Beck Univ Cincinnati Chemistry Support: NSF, OSC TSRC 2016 November 2, 2016 A. Arslanargin, A. Powers, S. Rick, T. Pollard, Specific T. Beck Ion(Univ Solvtion Cincinnati Ethylene Chemistry Carbonate Support: and NSF, Propylene OSCNovember Carbonate TSRC 2016) 2, 2016 1 / 26

Outline 1. Introduction 2. Force fields 3. Energies 4. Classical structure 5. Thermodynamics 6. Cavity potentials 7. Quantum studies A. Arslanargin, A. Powers, S. Rick, T. Pollard, Specific T. Beck Ion(Univ Solvtion Cincinnati Ethylene Chemistry Carbonate Support: and NSF, Propylene OSCNovember Carbonate TSRC 2016) 2, 2016 2 / 26

EC and PC (a) (b) Figure: Images of the EC (a) and PC (b) molecules. Modeled with AMBER-GAFF force field. LJ and Buckingham models for ions. Fixed charges, enhanced molecular dipoles relative to gas phase. Cations bind on top (hard), anions on bottom (soft). J. Phys. Chem. B 120, 1497 (2016) A. Arslanargin, A. Powers, S. Rick, T. Pollard, Specific T. Beck Ion(Univ Solvtion Cincinnati Ethylene Chemistry Carbonate Support: and NSF, Propylene OSCNovember Carbonate TSRC 2016) 2, 2016 3 / 26

EC and PC EC: dipole 4.61 D, ε 89.8, BP 515 K, MP 36.4 K, α 6.8 Å 3 PC: dipole 4.81 D, ε 64.9, BP 515 K, MP -49 K, α 8.7 Å 3 EC AMBER GAFF dipole 6.2 D PC AMBER GAFF dipole 6.4 D AMBER GAFF good for density, ε, surf tension, not so good for enthalpy of vaporization (20 % too large) 20 % charge reduction fixes above error, but other consequences? Water polarizability is only α 1.47 Å 3 A. Arslanargin, A. Powers, S. Rick, T. Pollard, Specific T. Beck Ion(Univ Solvtion Cincinnati Ethylene Chemistry Carbonate Support: and NSF, Propylene OSCNovember Carbonate TSRC 2016) 2, 2016 4 / 26

Force field and QM interactions: Li + /EC Binding energies (kcal/mol) 40 20 0 20 40 Lennard Jones MP2 Buckingham (a) 0 1 2 3 4 Ion displacement (Å) Figure: Li + -EC (a) binding energy curves with Lennard-Jones and modified Buckingham potentials, and MP2 calculations. A. Arslanargin, A. Powers, S. Rick, T. Pollard, Specific T. Beck Ion(Univ Solvtion Cincinnati Ethylene Chemistry Carbonate Support: and NSF, Propylene OSCNovember Carbonate TSRC 2016) 2, 2016 5 / 26

Force field and QM interactions: Cl /EC Binding energies (kcal/mol) 0 10 20 Lennard Jones MP2 Buckingham (b) 0 1 2 3 4 Ion displacement (Å) Figure: Cl -EC (b) binding energy curves with Lennard-Jones and modified Buckingham potentials, and MP2 calculations. A. Arslanargin, A. Powers, S. Rick, T. Pollard, Specific T. Beck Ion(Univ Solvtion Cincinnati Ethylene Chemistry Carbonate Support: and NSF, Propylene OSCNovember Carbonate TSRC 2016) 2, 2016 6 / 26

MD simulations and FE calcs AMBER GAFF FF for EC and PC LJ models taken from Horinek et al. params for ion-water Derived modified Buckingham model from MP2 calcs above PBC and Ewald Free energies using our LMFT-type approach; separates electrostatics into local and far field contributions Experimental thermodynamic data from Pierandrea Lo Nostro group s papers cited in our paper. Ion pair solubility measurements. A. Arslanargin, A. Powers, S. Rick, T. Pollard, Specific T. Beck Ion(Univ Solvtion Cincinnati Ethylene Chemistry Carbonate Support: and NSF, Propylene OSCNovember Carbonate TSRC 2016) 2, 2016 7 / 26

SAPT energy partitioning Table: SAPT2/aug-cc-phwCVDZ interaction energies for ion-solvent dimers; all energies are given in kcal/mol. Solvent Ion E elst E exch E ind E disp E SAPT E MP2 EC Li + -41.63 13.55-21.52-0.57-50.17-49.57 K + -28.04 10.08-8.43-1.73-28.12-27.42 F - -40.83 30.97-17.05-5.25-32.17-30.62 Cl - -28.23 19.02-8.21-5.43-22.85-22.12 Br - -26.43 18.05-7.01-5.57-20.97-20.24 PC Li + -43.50 13.81-21.09-0.50-51.27-51.20 K + -29.01 10.41-8.78-1.77-29.14-28.45 F - -39.81 31.70-19.03-5.79-32.93-30.84 Cl - -26.90 19.27-9.20-6.02-22.85-21.82 Br - -25.08 18.31-7.85-6.21-20.84-19.88 A. Arslanargin, A. Powers, S. Rick, T. Pollard, Specific T. Beck Ion(Univ Solvtion Cincinnati Ethylene Chemistry Carbonate Support: and NSF, Propylene OSCNovember Carbonate TSRC 2016) 2, 2016 8 / 26

Ion specificity Dispersion differs between cations and anions as expected, but weak contribution to ion specificity between anions. Electrostatics, exchange, and induction make larger contributions. A. Arslanargin, A. Powers, S. Rick, T. Pollard, Specific T. Beck Ion(Univ Solvtion Cincinnati Ethylene Chemistry Carbonate Support: and NSF, Propylene OSCNovember Carbonate TSRC 2016) 2, 2016 9 / 26

RDF Li + /EC 50 10 g(r) 40 30 20 10 (a) Buckingham Lennard Jones 8 6 4 2 Coordination number 0 1 2 3 4 5 6 0 r (Å) Figure: RDFs A. Arslanargin, A. Powers, S. Rick, T. Pollard, Specific T. Beck Ion(Univ Solvtion Cincinnati Ethylene Chemistry Carbonate Support: and NSF, Propylene OSCNovember Carbonate TSRC 2016) 2, 2016 10 / 26

Experiment/Theory Experiment (neutron, Xray absorption) suggest coordination of 4-4.5. Ab initio simulation puts first maximum at about 2 Å, and 4-coordinated (see below). A. Arslanargin, A. Powers, S. Rick, T. Pollard, Specific T. Beck Ion(Univ Solvtion Cincinnati Ethylene Chemistry Carbonate Support: and NSF, Propylene OSCNovember Carbonate TSRC 2016) 2, 2016 11 / 26

RDF Cl /EC 3 60 g(r) 2 1 (b) Buckingham Lennard Jones 0 2 4 6 8 10 12 14 0 r (Å) 40 20 Coordination number Figure: RDFs A. Arslanargin, A. Powers, S. Rick, T. Pollard, Specific T. Beck Ion(Univ Solvtion Cincinnati Ethylene Chemistry Carbonate Support: and NSF, Propylene OSCNovember Carbonate TSRC 2016) 2, 2016 12 / 26

Ion FEs Table: Single-ion free energies and enthalpies are calculated for the two models at T = 313 K for EC and PC. U SR is solvent reorganization energy. Marcus values for K + and Cl in PC are -73.2 and -76.7. Solvent Ion µ ex LJ h ex LJ µ ex Buck h ex Buck s ex Buck U SR EC K + -84.0-93.7-87.8-97.6-31.3 60.8 F - -67.0-77.7-82.4-90.3-25.2 45.2 Cl - -57.8-71.2-68.2-75.4-23.0 41.9 Br - -50.5-65.8-61.1-70.3-29.4 38.8 PC K + -87.1-100.9-87.9-99.1-35.8 58.0 F - -64.0-77.1-83.5-91.9-26.8 45.1 Cl - -51.3-65.5-63.7-71.6-25.2 41.0 Br - -47.1-63.6-59.5-70.9-36.4 39.6 A. Arslanargin, A. Powers, S. Rick, T. Pollard, Specific T. Beck Ion(Univ Solvtion Cincinnati Ethylene Chemistry Carbonate Support: and NSF, Propylene OSCNovember Carbonate TSRC 2016) 2, 2016 13 / 26

Model comparison Table: Free energy, enthalpy, and entropy changes of solvation. First 3 rows for EC, second 3 for PC. Potassium salts with F, Cl, Br. Second row adds U SR correction for induced dipoles. µ ex LJ hlj ex slj ex µ ex Buck hbuck ex sbuck ex µ ex exp hexp ex sexp ex -151.8(19.8) -172.1(-3.6) -64.9(-74.8) -170.4(1.2) -187.9(-19.4) -55.9(-65.8) -171.6-168.5 9.9-179.4(-10.9) -28.8(-38.7) -143.2(5.2) -166.3(-16.6) -73.8(-69.6) -156.4(-8.0) -173.3(-23.6) -54.0(-49.8) -148.4-149.7-4.2-164.8(-15.1) -26.8(-22.6) -135.9(7.1) -160.9(-11.0) -79.9(-57.9) -150.1(-7.1) -169.1(-19.2) -60.7(-38.7) -143.0-149.9-22.0-160.6(-10.7) -33.5(-11.5) -151.7-178.3-85.0-171.4-190.8-62.0-182.3-34.8-140.4(3.6) -168.7(-3.7) -90.4(-24.6) -152.4(-8.4) -173.2(-8.2) -66.5(0.7) -144.4-165.0-65.8-164.7(0.3) -39.3(26.5) -136.0(4.6) -166.3(-5.4) -96.8(-31.9) -148.0(-7.4) -171.1(-10.2) -73.8(-8.9) -140.6-160.9-64.9-162.6(-1.7) -46.7(18.2) A. Arslanargin, A. Powers, S. Rick, T. Pollard, Specific T. Beck Ion(Univ Solvtion Cincinnati Ethylene Chemistry Carbonate Support: and NSF, Propylene OSCNovember Carbonate TSRC 2016) 2, 2016 14 / 26

Solvent reorganization energy effect? U SR shows up in both enthalpy and entropy, but cancels in free energy. Seems like an extra repulsive contribution helps some compared with experiment. Where does this come from? We proposed it is repulsive interaction of induced dipoles (all pointing towards ion) in first solvation shell (see below). A. Arslanargin, A. Powers, S. Rick, T. Pollard, Specific T. Beck Ion(Univ Solvtion Cincinnati Ethylene Chemistry Carbonate Support: and NSF, Propylene OSCNovember Carbonate TSRC 2016) 2, 2016 15 / 26

Cycle Figure: Thermodynamic cycle shows the relationship between the free energies of solution and solvation and the lattice free energy. A. Arslanargin, A. Powers, S. Rick, T. Pollard, Specific T. Beck Ion(Univ Solvtion Cincinnati Ethylene Chemistry Carbonate Support: and NSF, Propylene OSCNovember Carbonate TSRC 2016) 2, 2016 16 / 26

Volcano plot 30 KF KF H soln (kcal/mol) 20 10 KCl KBr KCl 0 KBr 0 10 20 30 40 H solv (X - - K +, kcal/mol) Figure: Relationship between the enthalpy of solution and the difference between the single solvation enthalpies of K + and halide ions (F, Cl, and Br ) for both EC (circles) and PC (triangles). H solv is our calculated value. A. Arslanargin, A. Powers, S. Rick, T. Pollard, Specific T. Beck Ion(Univ Solvtion Cincinnati Ethylene Chemistry Carbonate Support: and NSF, Propylene OSCNovember Carbonate TSRC 2016) 2, 2016 17 / 26

ES mean potl at ion center vs. chg 200 m c (kcal/mol) 100 0 100 EC PC 200 1 0.5 0 0.5 1 q/e (a) A. Arslanargin, A. Powers, S. Rick, T. Pollard, Specific T. Beck Ion(Univ Solvtion Cincinnati Ethylene Chemistry Carbonate Support: and NSF, Propylene OSCNovember Carbonate TSRC 2016) 2, 2016 18 / 26

ES potl fluct vs. chg Quite different from water. Cations are more strongly solvated, and smooth transition as charge mutated. (Hummer, Pratt, Garcia, 1996) 200 180 (b) f c (kcal/mol) 160 140 120 EC PC 100 1 0.5 0 0.5 1 q/e A. Arslanargin, A. Powers, S. Rick, T. Pollard, Specific T. Beck Ion(Univ Solvtion Cincinnati Ethylene Chemistry Carbonate Support: and NSF, Propylene OSCNovember Carbonate TSRC 2016) 2, 2016 19 / 26

ES potl vs. cavity radius 2 m c (kcal/mol) 4 6 EC PC 2 4 6 8 r (Å) Figure: Electrostatic potential at the center of a vdw particle cavity in EC and PC as a function of the cavity radius. The dashed line shows the size of the particle (Cl size). A. Arslanargin, A. Powers, S. Rick, T. Pollard, Specific T. Beck Ion(Univ Solvtion Cincinnati Ethylene Chemistry Carbonate Support: and NSF, Propylene OSCNovember Carbonate TSRC 2016) 2, 2016 20 / 26

Introduction Force fields Energies Classical structure Thermodynamics Cavity potentials Quantum studies Li+ in EC; AIMD; PBE/D3BJ; 240 ps, 31 EC A. Arslanargin, A. Powers, S. Rick, T. Pollard,Specific T. Beck Ion(Univ Solvtion Cincinnati in Ethylene Chemistry Carbonate Support: and NSF, Propylene OSC November Carbonate TSRC 2016) 2, 2016 21 / 26

EC dipoles near and far from Li + A. Arslanargin, A. Powers, S. Rick, T. Pollard, Specific T. Beck Ion(Univ Solvtion Cincinnati Ethylene Chemistry Carbonate Support: and NSF, Propylene OSCNovember Carbonate TSRC 2016) 2, 2016 22 / 26

g(r) for Li + /EC 30 30 25 25 g(r) / arb. 20 15 10 20 15 10 n(r) 5 5 0 0 200 400 600 800 1000 0 r / pm A. Arslanargin, A. Powers, S. Rick, T. Pollard, Specific T. Beck Ion(Univ Solvtion Cincinnati Ethylene Chemistry Carbonate Support: and NSF, Propylene OSCNovember Carbonate TSRC 2016) 2, 2016 23 / 26

PC dipoles near and far from Li + A. Arslanargin, A. Powers, S. Rick, T. Pollard, Specific T. Beck Ion(Univ Solvtion Cincinnati Ethylene Chemistry Carbonate Support: and NSF, Propylene OSCNovember Carbonate TSRC 2016) 2, 2016 24 / 26

g(r) for Li + /PC 40 30 32 25 g(r) / arb. 24 16 20 15 10 n(r) 8 5 0 0 200 400 600 800 1000 0 r / pm A. Arslanargin, A. Powers, S. Rick, T. Pollard, Specific T. Beck Ion(Univ Solvtion Cincinnati Ethylene Chemistry Carbonate Support: and NSF, Propylene OSCNovember Carbonate TSRC 2016) 2, 2016 25 / 26

Conclusions Classical models can yield some insights into solvation But they struggle to reproduce solvation thermodynamic quantities Fixed charges can to some extent mimic polarization in pure solvent condensed phase, but can t reproduce ion solvation quantities Polarization is extreme near Li + ion that is likely important for solvation thermodynamics in EC especially it tends to disorder the solvation shell and creates repulsive solvent-solvent interactions A. Arslanargin, A. Powers, S. Rick, T. Pollard, Specific T. Beck Ion(Univ Solvtion Cincinnati Ethylene Chemistry Carbonate Support: and NSF, Propylene OSCNovember Carbonate TSRC 2016) 2, 2016 26 / 26