Fabrication of graphene nanogap with crystallographically matching edges and its. electron emission properties

Similar documents
TRANSVERSE SPIN TRANSPORT IN GRAPHENE

Lithography-free Fabrication of High Quality Substrate-supported and. Freestanding Graphene devices

Lithography-Free Fabrication of High Quality Substrate- Supported and Freestanding Graphene Devices

Tunneling characteristics of graphene

Edge chirality determination of graphene by Raman spectroscopy

ICTP Conference Graphene Week 2008

Supplementary Figure 1: Micromechanical cleavage of graphene on oxygen plasma treated Si/SiO2. Supplementary Figure 2: Comparison of hbn yield.

Intrinsic Electronic Transport Properties of High. Information

Supporting Information. by Hexagonal Boron Nitride

Supplementary Information for

Solvothermal Reduction of Chemically Exfoliated Graphene Sheets

Highly Conductive 3D Nano-Carbon: Stacked Multilayer Graphene System with Interlayer Decoupling

Ambipolar Graphene Field Effect Transistors by Local Metal Side Gates USA. Indiana 47907, USA. Abstract

Hybrid Surface-Phonon-Plasmon Polariton Modes in Graphene /

Raman Imaging and Electronic Properties of Graphene

Reduction of Fermi velocity in folded graphene observed by resonance Raman spectroscopy

SUPPLEMENTARY INFORMATION

Raman spectroscopy at the edges of multilayer graphene

Ambipolar bistable switching effect of graphene

Theoretical Study on Graphene Silicon Heterojunction Solar Cell

Supporting Online Material for

Supplementary Figure S1. AFM images of GraNRs grown with standard growth process. Each of these pictures show GraNRs prepared independently,

Understanding the effect of n-type and p-type doping in the channel of graphene nanoribbon transistor

The role of charge traps in inducing hysteresis: capacitance voltage measurements on top gated bilayer graphene

NiCl2 Solution concentration. Etching Duration. Aspect ratio. Experiment Atmosphere Temperature. Length(µm) Width (nm) Ar:H2=9:1, 150Pa

Sub-5 nm Patterning and Applications by Nanoimprint Lithography and Helium Ion Beam Lithography

Molecular Dynamics Study of Thermal Rectification in Graphene Nanoribbons

Multicolor Graphene Nanoribbon/Semiconductor Nanowire. Heterojunction Light-Emitting Diodes

MICROWAVE AND MILLIMETERWAVE ELECTRICAL PERMITTIVITY OF GRAPHENE MONOLAYER. G. Konstantinidis 3

SUPPLEMENTARY INFORMATION

Determination of the Number of Graphene Layers: Discrete. Distribution of the Secondary Electron Intensity Derived from

Authors: D.S.Roveri 1, H.H.Bertan 1, M.A.R.Alves 1, J.F.Mologni 2, E.S.Braga 1

Supplementary Figure 1 Dark-field optical images of as prepared PMMA-assisted transferred CVD graphene films on silicon substrates (a) and the one

Supplementary Figure 1 Detailed illustration on the fabrication process of templatestripped

Supporting Information Available:

Electrical transport across metal/two-dimensional carbon junctions: Edge versus side contacts

Song Fengqi, Zhang Lu, Zhu Lianzhong, Ge Jun, Wang Guanghou *

Supporting Information

Etching of Graphene Devices with a Helium Ion Beam

Thermal Transport in Graphene and other Two-Dimensional Systems. Li Shi. Department of Mechanical Engineering & Texas Materials Institute

Supplementary Information for. Origin of New Broad Raman D and G Peaks in Annealed Graphene

Highly doped and exposed Cu(I)-N active sites within graphene towards. efficient oxygen reduction for zinc-air battery

Supplementary Methods A. Sample fabrication

Graphene photodetectors with ultra-broadband and high responsivity at room temperature

Supporting information:

A. Optimizing the growth conditions of large-scale graphene films

Molecular Dynamics Study of Thermal Rectification in Graphene Nanoribbons

Graphene devices and integration: A primer on challenges

Application Note. Graphene Characterization by Correlation of Scanning Electron, Atomic Force and Interference Contrast Microscopy

Reduced graphene oxide as ultra fast temperature sensor

Supplementary information for Tunneling Spectroscopy of Graphene-Boron Nitride Heterostructures

Low Frequency Noise in MoS 2 Negative Capacitance Field-effect Transistor

Graphene A One-Atom-Thick Material for Microwave Devices

performance electrocatalytic or electrochemical devices. Nanocrystals grown on graphene could have

Supplementary Figure 1 A schematic representation of the different reaction mechanisms

Enhancing the Performance of Organic Thin-Film Transistor using a Buffer Layer

Supplementary material for High responsivity mid-infrared graphene detectors with antenna-enhanced photo-carrier generation and collection

Spin-Conserving Resonant Tunneling in Twist- Supporting Information

Graphene-based long-wave infrared TM surface plasmon modulator

Precision Cutting and Patterning of Graphene with Helium Ions. 1.School of Engineering and Applied Sciences, Harvard University, Cambridge MA 02138

SUPPLEMENTARY INFORMATION

Hopping in CVD Grown Single-layer MoS 2

SUPPLEMENTARY INFORMATION

AN IMPROVED METHOD FOR TRANSFERRING GRAPHENE GROWN BY CHEMICAL VAPOR DEPOSITION

SUPPLEMENTARY INFORMATION

Supplementary Figure 1. Selected area electron diffraction (SAED) of bilayer graphene and tblg. (a) AB

Efficient Preparation of Large-Area Graphene Oxide Sheets for Transparent Conductive Films

Overview. Carbon in all its forms. Background & Discovery Fabrication. Important properties. Summary & References. Overview of current research

Supporting Online Material for

Raman spectroscopy of graphene on different substrates and influence of defects

Impact of Calcium on Transport Property of Graphene. Jyoti Katoch and Masa Ishigami*

Supplementary Figure 1 Experimental setup for crystal growth. Schematic drawing of the experimental setup for C 8 -BTBT crystal growth.

Scanning tunneling microscopy and spectroscopy of graphene layers on graphite

state spectroscopy Xing Lan Liu, Dorothee Hug, Lieven M. K. Vandersypen Netherlands

SUPPLEMENTARY INFORMATION

Supplementary Information. Experimental Evidence of Exciton Capture by Mid-Gap Defects in CVD. Grown Monolayer MoSe2

Journal Name. Supporting Information. Significant enhancement in blue emission and electrical conductivity of N-doped graphene. Dynamic Article Links

Electric Field-Dependent Charge-Carrier Velocity in Semiconducting Carbon. Nanotubes. Yung-Fu Chen and M. S. Fuhrer

Extrinsic Origin of Persistent Photoconductivity in

Direct Observation of Inner and Outer G Band Double-resonance Raman Scattering in Free Standing Graphene

COMPARISON OF J-E CHARACTERISTICS OF A CNT BASED COLD CATHODE GROWN BY CVD AND PECVD

crystals were phase-pure as determined by x-ray diffraction. Atomically thin MoS 2 flakes were

Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1

Photoelectric Effect Experiment

The role of contacts in graphene transistors: A scanning photocurrent study

Black phosphorus: A new bandgap tuning knob

Graphene Canada Montreal Oct. 16, 2015 (International Year of Light)

Supplementary Information

The study of wettability in reduced graphene oxide film on copper substrate using electrostatic spray deposition technique

Controlling Graphene Ultrafast Hot Carrier Response from Metal-like. to Semiconductor-like by Electrostatic Gating

Low-temperature ballistic transport in nanoscale epitaxial graphene cross junctions

Supplementary information for Nonvolatile Memory Cells Based on MoS 2 /Graphene Heterostructures

CZ České Budějovice, Czech Republic b Technical University of Liberec, Department of Materials Science, Hálkova 6, D Dresden, Germany

Monolayer Semiconductors

Wafer-scale fabrication of graphene

Nanoelectronics. Topics

Graphene. Tianyu Ye November 30th, 2011

Energetic particles and their detection in situ (particle detectors) Part II. George Gloeckler

High Mobility Ambipolar MoS 2 Field-Effect Transistors: Substrate and Dielectric Effects

Spatially resolved spectroscopy of monolayer graphene on SiO 2

Transcription:

Fabrication of graphene nanogap with crystallographically matching edges and its electron emission properties H. M. Wang, 1 Z. Zheng, 1 Y.Y.Wang, 1 J.J. Qiu, Z.B. Guo, Z. X. Shen, 1 and T. Yu 1,* 1 Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 1 Nanyang Walk, Block 5, Level 3, Singapore 637616 Data Storage Institute, 5 Engineering Drive 1, Singapore 117608 We demonstrate the fabrication of graphene nanogap with crystallographically matching edges on SiO /Si substrates by divulsion. The current-voltage measurement is then performed in a high-vacuum chamber for a graphene nanogap with few hundred nanometers separation. The parallel edges help to build uniform electrical field and allow us to perform electron emission study on individual graphene. It was found that current-voltage (I-V) characteristics are governed by the space-charge-limited flow of current at low biases while the Fowler Nordheim model fits the I-V curves in high voltage regime. We also examined electrostatic gating effect of the vacuum electronic device. Graphene nanogap with atomically parallel edges may open up opportunities for both fundamental and applied research of vacuum nanoelectronics. * Electronic mail: yuting@ntu.edu.sg 1

Since the discovery of large size graphene in 004, 1 it inspired researchers due to its unique electronic properties, including linear energy dispersion relationship, high carrier mobility, 3 ballistic transport, 4 and quantum interference 5, 6. The recent experiments of width 7 and layer 8 engineering have demonstrated the potential applications of graphene in nanoeletronics. In addition, graphene may be of the potential in the application of vacuum electronics, like flat-panel displays, and microwave amplifiers for two reasons: (1) Graphene has atomically sharp edges with the thickness of 0.34nm. The nature of sharpness is supposed to give a great enhancement of field strength as an emitter. 9 Electrons can be extracted from the edges by tunneling through the surface potential barrier under a comparatively small bias; () Its metallic nature and low contact resistance 10 with metals give a small voltage drop both along the graphene and at the graphene/metal interface. This means that there are no factors significantly obstructing the supply of electrons to the emitter. Recently, the electric field emission behavior of vertically aligned few-layer graphene was studied in a parallel plate type setup. 11, 1, 13 The low turn-on electrical field, 11 high emission current density, 11 high emission stability, 1 and long lifetime, 1 make graphene sheets an efficient emitter for display backlight sources. However, graphene sheets in previous experiments are in a dense network structure. Electron emission from individual graphene sheet has yet to be reported. In this letter, we will present the fabrication of graphene nanogaps and experimental study on its electron emission properties. The effect of electrostatic gating is also examined. Graphene nanogaps were fabricated by divulsion with the help of a standard electronic beam lithography process. A graphene layer on top of Polymethyl methacrylate () allows us to produce a graphene nanogap on top of a Si/SiO substrate in a relatively easy way. Using the model of visibility study, 14 a 100nm thick layer on top of a 300nm thick SiO is found to achieve the highest contrast (8%) centered at the wavelength of 500nm. The fabrication processes are illustrated in Fig. 1. After a 100nm thick layer was spanned onto SiO substrate, graphene flakes were transferred onto the layer by mechanical exfoliation 1. After localizing graphene flakes, another 300nm was coated onto the substrate. Subsequently, electrical contacts Ti(10nm)/Au(130nm) were formed by using a combination of electron beam lithography and evaporation. After liftoff, these

contacts became free standing bridge and therefore supported graphene from both sides. The free standing structure of graphene only survived in the solvent. Most of suspended graphene flakes collapsed and were torn apart by the surface tension of solvent during the drying process. The method is one of easy ways to produce a graphene nanogap device with atomically parallel edges. As proof, optical image, contrast and Raman spectra of single layer graphene (SLG) on top of (100nm)/SiO (300nm)/Si are given in Fig. a, b and c, respectively. The D peak of the Raman spectrum has a full width at half maximum of 3cm -1 which distinguishes a monolayer from few-layer graphene. 15 Scanning electron micrograph (SEM) of a representative SLG nanogap connected with suspended electrodes is shown in Fig. d. The length and width of the nanogap are around.8μm and 100nm, respectively. In the SEM image, graphene exhibits similar contrast to the substrate, and the brighter edge helps us to profile graphene flakes. The arrows in Fig. d point out the edges of graphene nanogap. Before the electrical measurement, the devices were transferred into a vacuum chamber (<10-7 Torr) and annealed at 400 C for eight hours to remove amorphous carbon deposited during SEM imaging. The I-V characterization was carried out by Keithley 37 sourcemeter in a vacuum chamber with a base pressure of ~10-6 Torr. Another Keithley 37 sourcemeter served to give a gate bias. The across-gap voltage increases from 0V up to 60V, with a ramp-up voltage rise of 1V in each step. The sweeping rate is 1 second/v. A current limit of 50nA is imposed to avoid overheating. The back-gating voltage in the range of -80V up to 80V is applied across SiO onto the graphene cathode. For such a graphene nanogap, understanding of the I-V characteristics has become important for applications in vacuum nanoelectrnics. Experimental I-V curves for the nanogap device (see Fig. d) are shown in Fig. 3a. It is found that current increases with voltage, especially for voltages higher than 30V until the compliance of 50nA is approached. We analyzed the I-V curves using the Fowler-Nordheim (F- N) model 16, which is always used to study the field emission process. And then the field enhancement factor β is estimated. According to F-N equation, the emission current is given by: I 3 F B Φ exp( ), where I is the current, B is a constant given by 6.83 10 7 ( V ev Φ F 3 cm 1 ), Ф 3

is work function and F is local electric field. The local electric field is often written as F βv = β E =, d where E is the applied macroscopic field obtained by an applied voltage V between two graphene electrodes separated with a distance d, β is field enhancement factor. Assuming that the data in Fig. 3a are described by F-N relation, the corresponding ln( I ) ~ 1 plots under different gate bias are plotted V V in Fig. 3b. It is found that the F-N plots yielded a straight line for all the gate biases after the current goes beyond 5 na and up to the limit 50nA. The results confirm that the current higher than 5nA was mainly resulted from field emission process. By linear fitting, we can obtain a slope which equals to 3 / BΦ d β from the F-N plots, where d is given by the experimental configuration (about 100nm), the work function Ф = 5 ev is used for graphitic materials; 11 therefore, the enhancement factor β can be determined. Fig. 3d shows β extracted from F-N plots as a function of gate voltage. From the figure, it is found that when the gate voltage sweeps from +80V to -80V, the value of β varies around 68 and exhibit very weak dependence on gate voltage. The value of β from the experiments is not as high as several hundred which are expected. There are two possible reasons: 1) As reported in literature, 17 β is proportional to the spacing between anode and the cathode. The small gap spacing between the cathode and anode in the experiments may contribute to the small value of β; ) The other possible reason is that the field enhancement is limited in the nanogap because of its lateral nature on substrate. Impurities (such as oxygen, water, organic residue) were unavoidably absorbed on the emitter and the substrate when samples were transferred from annealing chamber to FE chamber in atmosphere. The impurities could form dipole and apply an additional disturbance on local electrical field near graphene edge. The disturbance may change the local work-function of the graphene edge. 18 In addition, some electrons emitted from the cathode could be trapped in the impurities in front of cathode; the trapped electrons reduced the local electrical field of the cathode. Therefore, the emission performance could be degraded. The weak gating dependence of β may be due to the fact that the gating bias generates an electrical field 4

at graphene edge rather smaller than the across-gap bias does. The quantitative comparison about the local electrical field near the edge will be given in simulation part. As shown in Fig. 3b, the electron emission at low bias can not be described by the F-N law. Emission of electron sometimes could become a space-charge limited (SCL) emission, described by the classical Child-Langmuir (CL) law. 19,0,1 Depending on the across-gap voltage (V) and gap spacing (d), 1 4ε 0 e V the classical CL law in two-dimensional system is given by I ( )( ) ( ), where ε 0 is the 9 m d permittivity of free space, e is the elementary charge, and e m e is electron mass. Assuming that the low bias data in Fig. 3a are described by CL relation, the corresponding ln( I ) ~ ln( V ) curves are plotted in Fig. 3c. It is observed that the plots of ln(i ) versus ln(v ) yielded a straight line when I is lower than 5nA. The slope α of the line is extracted from Fig. 3c under different gate voltage. And the relationship of slope α and gate voltage is then plotted in Fig. 3d. It is observed that the slope α of the best fit line fluctuates around 1.5, depending on gate voltage. The value of 1.5 indicates that the classic CL law is effective at the low across-gap bias regime. Above results reveal that there are two distinct regimes for I-V curves of the graphene nanogap. Our analysis elucidates the transition from CL law to F-N law with the increase of voltage. When a small across-gap bias is applied across two SLG electrodes, the electrons emitted receive scattering by the impurities on SiO surface and are trapped to the impurities in front of the cathode. The process suppresses both the electric field near cathodes and the electron emission. As the quantity of impurities is not high, above process saturates after the bias approaches a certain value. Finally, electrons are emitted from the cathode surface following the F-N field emission. In the low across-gap bias regime, the large fluctuation of α with respect to gating biases indicates that the electrical field near SLG edges generated by the gating bias is comparable to that generated by the across-gap bias. The transition was also observed in the other two samples we examined. 3 5

In order to understand the experimental results further, we investigated the spatial distribution of electric field inside a graphene nanogap via finite element modeling. The across-gap voltage of 60V was applied across a nanogap with 100nm separation and 100nm width. Note that the dimension of the device model does not match the real sample because of the limitation of our workstation. However, simulation results still make sense in understanding the experimental results of the real nanogap device. According to the simulation results, very high gradients of electric field are found near graphene edges. The field strength in the gap is around 1.35 10 9 V/m along the edges of the nanogap. The maximum field strength is about 3.6 10 9 V/m at the two corners of SLG edges. Let s turn to the electric field created by electrostatic gating voltage. The gating voltage of 80V applied to the graphene device creates an electrical field of about 3 10 8 V/m across the silicon oxide. The magnitude of electrical field is almost one order smaller than that induced by the across-gap bias at graphene edges. Assuming that the gating bias keeps 80V and the across-gap bias decreases to several voltages, the strength of electrical field created by both biases at the edge of graphene becomes comparable. Under this situation, electrons emitted can be controlled by gating biases. Therefore, the electrostatic gating can not affect the emission current under high across-gap voltage, but affect the emission current under low across-gap bias. These analyses are consistent with the experimental results we observed. Actually, the electrical field distribution near SLG edges is more complicated in real cases. Firstly, electrons in SLG behave not like the free electrons in metal. As the density of states in graphene is low near the K point, SLG may be subjected to band-bending under high electrical field. 3 In addition, there are electronic states at graphene edges, where SLG is subject to electron localization. For these reasons, SLG may exhibit both internal voltage drops near edges and statistical decoupling of the edge-state electron distribution from the electron distribution in graphene body. Therefore, the electrical field distribution near edges may become very complex in real cases. In summary, we demonstrated a technique by which SLG nanogap can be achieved with crystallographically parallel edges. We investigated I-V characteristics of a lateral graphene nanogap inside a vacuum chamber. From the I-V curves, the transition from the classic Child-Langmuir law at 6

low current region to the Fowler-Nordheim law at high current region is observed in the graphene nanogap devices. Electrons emitted from SLG graphene are almost independent of the gate voltage within the range from -80V to +80V. This research could enable the construction of graphene based vacuum nanoelectronics with many far-reaching potential applications. 1 K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Science 306, 666 (004). A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov and A. K. Geim, Reviews of Modern Physics 81, 109 (009). 3 K. I. Bolotin, K. J. Sikes, Z. Jiang, G. Fundenberg, J. Hone, P. Kim, and H. L. Stormer, Solid State Comm. 146, 351 (008). 4 X. Du, I. Skachko, A. Barker and E. Y. Andrei, Nature Nanotech., 3, 491 (008). 5 F. Miao, S. Wijeratne, U. Coskun, Y. Zhang W. Bao and C.N. Lau, Science, 317, 1530 (007). 6 H. Wang, C. Choong, J. Zhang, K. L. Teo and Y. Wu, Solid State Comm. 145, 341 (008). 7 M. Y. Han, B. Özyilmaz, Y. Zhang, P. Kim, Phys. Rev. Lett, 98, 06805 (007). 8H. M. Wang, Y. H. Wu, Z. H. Ni, and Z. X. Shen, Appl. Phys. Lett. 9, 053504 (008). 9 C. E. Hunt, J. T. Trujillo, W. J. Orvis, IEEE Trans. Electron Devices 38, 309 (1991). 10 S. Russo, M.F. Craciun, M. Yamamoto, A.F. Morpurgo, S. Tarucha, arxiv:0901.0485. 11. Y. Wu, B. Yang, B. Zong, H. Sun, Z. Shen, and Y. Feng, J. Mater. Chem. 14, 469 (004). 1 S. Wang, J. Wang, P. Miraldo, M. Zhu, R. Outlaw, K. Hou, X. Zhao, B. C. Holloway, and D. Manos, T. Tyler, O. Shenderova, M. Ray, J. Dalton, and G. McGuire, Appl. Phys. Lett. 89, 183103 (006). 13 G. Eda, H. E. Unalan, N. Rupesinghe, G. A. J. Amaratunga, M. Chhowalla, Appl. Phys. Lett. 93, 3350 (008). 14 G. Teo, H. Wang, Y. Wu, Z. Guo, J. Zhang, Z. Ni, and Z. Shen, J. Appl. Phys. 103, 1430 (008). 7

15 Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng, and Z. X. Shen, Nano Lett. 7, 758 (007). 16 R. H. Fowler and L. Nordheim, Proc. R. Soc. London, Ser. A 119, 683 (198). 17 C.J. Edgcombe and U.Valdrè, J. Microsc. 03, 188 (001). 18 Y.-J. Yu, Y. Zhao, S. Ryu, L. E. Brus, K. S. Kim and P. Kim, Nano Lett., 9, 3430 (009). 19 A.W. Chao and M. Tigner, Handbook of Accelerator Physics and Engineering, World Scientific, p.100, (1999). 0 L. K. Ang, T. J. T. Kwan, and Y. Y. Lau, Phys. Rev. Lett. 91, 08303 (003). 1 S S. Bhattacharjee, A. Vartak, and V. Mukherjee, Appl. Phys. Lett. 9, 191503 (008). See EPAPS supplementary material at [URL will be inserted by AIP] for an electrical potential contour plot in a monolayer graphene nanogap with gap spacing of 100 nm and electrode width of 100nm from both top view and side view. 3 R. Dombrowski, C. Steinebach, C. Wittneven, M. Morgenstern, and R. Wiesendanger, Phys. Rev. B 59, 8043 (1999). Figure Caption: Figure 1 Schematic diagram of fabrication processes. (a) Graphene flakes are transferred onto the heavily doped silicon substrate coated with 300nm SiO and 100nm. (b) Covering the sample with another thick layer of (about 300nm). (c) Exposure to e-beam and developing in MIBK solutions open windows for electrodes. (d) Evaporation of metal contacts. A strong metal bridge it possible when the total electrode thickness is comparable to bottom thickness. Metals are evaporated at 45 degree onto the substrate surface. e) Resists are lifted off in PG remover. A free standing graphene flake forms after lift-off. (f) The suspended graphene collapses and is torn apart by the surface tension of solvent during the drying process. 8

Figure (a) An optical image of SLG on (100nm)/SiO (300nm)/Si. The outline area corresponds to SLG, the scale bar is 0µm. (b) Experimental results of contrast spectra of the graphene sample. (c) Raman spectrum of the monolayer graphene flake obtained with WITEC CRM00 Raman system using a 53 nm Ar line as an excitation source. (d) Scanning electron micrograph of a representative SLG nanogap with suspended electrodes taken at 60 degree. The arrows point out the edges of graphene flakes. Figure 3 (a) Room temperature current-voltage characteristics of the individual graphene nanogap shown in Fig. (d) under different gate bias. (b) The corresponding Fowler Nordheim ( ln( I / V plots. (c) The plot of lni vs lnv curve obtained for the graphene sample. Voltage is measured in volts while current is measured in 10 10 A. (d) The gate-voltage dependence of field enhancement factor β in Fowler Nordheim law and the power α in the Child-Langmuir law. ) vs V 1 ) 9

100nm (a) Graphene (d) Au Air 300nm SiO SiO Si Substrate Si Substrate 300nm 100nm (b) Graphene (e) Au Au 300nm SiO 100nm Si Substrate (c) Air (f) cathode Au anode Au SiO Si Substrate Back Gate Fig.1 Wang et al, APL 10

(a) Contrast 0.10 0.05 0.00 (b) Intensity (a.u.) 1500 1000 500 (c) -0.05 400 500 600 700 800 Wavelength (nm) (d) 1µm 0 1500 000 500 3000 Wavenumber (cm -1 ) Fig. Wang et al, APL 11

Current (na) 40 30 0 10 (a) Gate voltage -80V -60V -40V -0V 0V 0V 40V 60V 80V ln(i/v ) -4-5 -6 (b) -80V -60V -40V -0V 0V 0V 40V 60V 80V ln(i) 0 0 10 0 30 40 50 Voltage (V) 7 6 5 4 3 (c) -80V -60V -40V -0V 0V 0V 40V 60V 80V ~V 3/ 1 0 1.0 1.5.0.5 3.0 3.5 4.0 ln(v) Field Enhancement Factor β 0.0 0.04 0.06 0.08 0.10 1/V (V -1 ) 100 90 (d) 80 1 70 60 ß a 50 0-100 -50 0 50 100 Gate Voltage (V) Power α in the CL law Fig.3 Wang et al, APL 1