Clouds and Rain Unit (3 pts)

Similar documents
Climate versus Weather

Lesson Overview. Climate. Lesson Overview. 4.1 Climate

The Transfer of Heat

Weather and Climate. An Introduction

Background: What is Weather?

Science Chapter 13,14,15

I T A T I O N H B I T B T V A O C J K M R S A T M O S P H E R E

Planetary Atmospheres (Chapter 10)

3 Weather and Climate

Earth Science Chapter 16 and 17. Weather and Climate

Space Atmospheric Gases. the two most common gases; found throughout all the layers a form of oxygen found in the stratosphere

Science 1206 Chapter 1 - Inquiring about Weather

Ocean s Influence on Weather and Climate

Global Weather Trade Winds etc.notebook February 17, 2017

1 What Is Climate? TAKE A LOOK 2. Explain Why do areas near the equator tend to have high temperatures?

Name Period 4 th Six Weeks Notes 2013 Weather

UNIT TEST PRACTICE TEST

Global Wind Patterns

Why is the air cooler at higher altitudes? Short answer lapse rate troposphere

Climate Change Lecture Notes

General Comments about the Atmospheres of Terrestrial Planets

Thermal / Solar. When air is warmed it... Rises. Solar Energy. Evaporation. Condensation Forms Clouds

Outline. Planetary Atmospheres. General Comments about the Atmospheres of Terrestrial Planets. General Comments, continued

Chapter 10 Planetary Atmospheres Earth and the Other Terrestrial Worlds

Atmosphere, Weather & Climate Review for Unit Assessment (Can be taken on Study Island Due Mon., 11/26/12)

2/22/ Atmospheric Characteristics

Haines ACC science Midterm study guide

What Is Air Temperature?

Midterm Study Guide: Haines, Manzanares & Soto

Directed Reading. Section: Solar Energy and the Atmosphere RADIATION. identical point on the next wave. waves

Weather Notes. Chapter 16, 17, & 18

Chapter 15: Weather and Climate

3 Severe Weather. Critical Thinking

The Cosmic Perspective Planetary Atmospheres: Earth and the Other Terrestrial Worlds

10.1 TEMPERATURE, THERMAL ENERGY AND HEAT Name: Date: Block: (Reference: pp of BC Science 10)

Three things necessary for weather are Heat, Air, Moisture (HAM) Weather takes place in the Troposphere (The lower part of the atmosphere).

Unit 3 Review Guide: Atmosphere

Chapter 10 Planetary Atmospheres Earth and the Other Terrestrial Worlds

also known as barometric pressure; weight of the air above the surface of the earth; measured by a barometer air pressure, high

Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds. What is an atmosphere? Earth s Atmosphere. Atmospheric Pressure

Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds

Meteorology Study Guide

Earth s Atmosphere. Energy Transfer in the Atmosphere. 3. All the energy from the Sun reaches Earth s surface.

1. CLIMATOLOGY: 2. ATMOSPHERIC CHEMISTRY:

PHYSICAL SCIENCE SPRING FINAL REVIEW GUIDE

The Atmosphere. Characteristics of the Atmosphere. Section 23.1 Objectives. Chapter 23. Chapter 23 Modern Earth Science. Section 1

Table of Contents. Chapter: Atmosphere. Section 1: Earth's Atmosphere. Section 2: Energy Transfer in the Atmosphere. Section 3: Air Movement

Natural Causes of Climate. 3B Day 2

1 What Is Climate? TAKE A LOOK 2. Explain Why do areas near the equator tend to have high temperatures?

2010 Pearson Education, Inc.

The Atmosphere. All weather occurs here 99% of water vapor found here ~75 % of total mass of the atmosphere

Weather. Describing Weather

Air Masses, Fronts, Storm Systems, and the Jet Stream

4-1 The Role of Climate

4-1 The Role of Climate

Atoms and molecules are in motion and have energy

A Quick Look at the Atmosphere and Climate

Chapter 10 Planetary Atmospheres Earth and the Other Terrestrial Worlds. What is an atmosphere? Planetary Atmospheres

1 What Is Climate? TAKE A LOOK 2. Explain Why do areas near the equator tend to have high temperatures?

Water in the Atmosphere The Role of Water in Earth s Surface Processes. Hurricane Warning

Table of Contents. Chapter: Atmosphere. Section 1: Earth's Atmosphere. Section 2: Energy Transfer in the Atmosphere. Section 3: Air Movement

Weather. A. atmosphere is a layer of gases that wrap around the Earth like a blanket.

Chapter 3 Packet. and causes seasons Earth tilted at 23.5 / 365 1/4 days = one year or revolution

THE EARTH S CLIMATE SYSTEM

Topic 1 The Atmosphere and Atmospheric Variables

GEOGRAPHY EYA NOTES. Weather. atmosphere. Weather and climate

Chapter 2. Heating Earth's Surface & Atmosphere

The Atmosphere - Chapter Characteristics of the Atmosphere

Website Lecture 3 The Physical Environment Part 1

Climate vs. Weather. Weather: Short term state of the atmosphere. Climate: The average weather conditions in an area over a long period of time

3) What is the difference between latitude and longitude and what is their affect on local and world weather and climate?

Earth s Atmosphere About 10 km thick

Standard 3: Students will understand the atmospheric processes that support life and cause weather and climate.

The Atmosphere. Composition of the Atmosphere. Section 2

Assessment Schedule 2017 Earth and Space Science: Demonstrate understanding of processes in the atmosphere system (91414)

Name Period Date 8R MIDTERM REVIEW I. ASTRONOMY 1. Most stars are made mostly of. 2. The dark, cooler areas on the sun s surface are

Seasons, Global Wind and Climate Study Guide

Hurricanes. Where's the Really Bad Weather 1. What: Rotating wind/rain storm Winds from 75 to 200 mph As big as 600 miles wide

IV. Atmospheric Science Section

Meteorology. I. The Atmosphere - the thin envelope of gas that surrounds the earth.

ATMOSPHERE PACKET CHAPTER 22 PAGES Section 1 page 546

1 Our Dynamic Climate Guiding Question: What factors determine Earth s climate?

Atmospheric Basics Atmospheric Composition

4 Forecasting Weather

4-1 The Role of Climate. Copyright Pearson Prentice Hall

Composition of the Atmosphere

How Does the Sun s Energy Cause Rain?

Composition of the Atmosphere

Overview Atmosphere. Meeting Individual Needs. Directed Reading for Content Mastery

Unit 2 Meteorology Test **Please do not write on this test** 5. El Nino & La Nina 6. Photosynthesis 7. Coriolis Effect 8.

Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds. What is an atmosphere? About 10 km thick

Weather Review. Use this graph to answer the next questions. A B C D

Our Planet Earth. I nteractions of Earth Systems

1 Characteristics of the Atmosphere

1/2/2016 WEATHER DEFINITION

Weather Maps. The Sun s radiation produces weather on Earth.

Weather is the state or condition of the atmosphere at a given location for a brief time period.

Chapter 4 Lesson 1: Describing Earth s Atmosphere

Weather and Climate. Weather the condition of the Earth s atmosphere at a particular time and place

Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds Pearson Education, Inc.

Transcription:

Name: Section: Clouds and Rain Unit (Topic 8A-2) page 1 Clouds and Rain Unit (3 pts) As air rises, it cools due to the reduction in atmospheric pressure Air mainly consists of oxygen molecules and nitrogen molecules. Remember that warm molecules move faster than cold molecules. This allows warm air molecules to push aside nearby molecules and spread out, which lowers their density and causes them to rise. Atmospheric pressure is caused by the weight of the air above. Thus, up in the mountains, air pressure is lower, because there is less atmosphere above you (less air pressing down on top of you). Therefore, as warm air rises higher into the atmosphere, it experiences lower pressure. Since the group of warm, rising air molecules are no longer being squeezed together as strongly by the air above, the group of warm, rising air molecules can now push outward (i.e., the warm air expands as it rises). However, in pushing outward against the neighboring cooler air molecules, they give their energy to the neighboring air, causing the warm, rising air to cool down. Experiment: Blow into your hand. First, keep your mouth opening small, then open wide as if yawning. In which case does the air feel warm? In which case does it feel cool? When the opening is small, the air is forced together, and quickly expands once outside your mouth. If the water molecules in the air cool down enough, they will begin to bond with one another. (The water molecules are no longer moving fast enough to fly apart when they get to close to one another and strong hydrogen bonds form between them.) Thus, rising air produces cloudy and rainy skies. As the rising air cools down more and more, it loses its water as rain. By the time the air reaches the location where air sinks, it is completely dry; dry air cannot produce clouds or rain. lower pressure low pressure high pressure Note: In most situations water vapor needs additional help from aerosols tiny solid particles like dust or drops of liquid in the air to condense: it is easier for water molecule to bond with big, slower-moving objects. The kind and size of aerosols available can have a big impact on whether clouds form and rain occurs and how much rain occurs. 1. As air rises, does it become warmer or cooler? water has fallen out as rain mountain 2. Does water vapor cool and condense into clouds and rain when air rises or when air sinks?

Clouds and Rain Unit (Topic 8A-2) page 2 Surface Air Pressure, Temperature, and Cloudy Skies and Clear Skies In the previous section, we saw that as air rises, it cools, causing Clear High Altitude Winds Skies the water vapor in the air to condense into clouds and rain (if enough is present). If we apply this idea to a convection cell, clouds and rain will be High Surface Winds more common above the warm Pressure spot. The sinking air at the cold spot will not have any water Cold vapor (it was lost at the warm Ocean spot, and in any case air warms as it sinks), so clear skies will be more common above the cold spot. Low Pressure Warm Beneath regions of warm, low-density, rising air, the pressure at the surface of the Earth is lower (fewer air molecules above), and beneath regions of cold, high-density, sinking air, the pressure at the surface of the Earth is higher (more air molecules above). Another way to think about this: if the air is rising going up it is not pressing down very hard, and if the air is sinking going down it is pressing down harder. Thus, lower air pressure at the surface is associated with cloudy and rainy skies, and high pressure is associated with clear skies. (Just listen to weather forecasters on the news!). Also, notice that the winds blow from the place with higher pressure at the surface to places with lower pressure at the surface. 3. Where are the cloudy and rainy skies, at the warm spot or at the cold spot? 4. Where are the clear skies, at the warm spot or at the cold spot? 5. Where is the surface air pressure higher, at the warm spot or at the cold spot? 6. When do we typically get more clouds and rain, when air pressure is higher or lower? 7. Does air move from the place with lower pressure at the surface to the place with higher pressure at the surface, or does air move from the place with higher pressure at the surface to the place with lower pressure at the surface? In other words, do winds blow towards the place with lower pressure or towards the place with higher pressure?

Clouds and Rain Unit (Topic 8A-2) page 3 The Global Rainfall Pattern Memorize the global rainfall pattern shown below, as well as the global wind pattern. If you know where surface winds come together and the air rises, then you know where it rains. Similarly, where surface winds move apart, air sinks, and the skies are clear. Remember that the dotted arrows show air rising and sinking air going towards or away from the surface of the Earth. As we saw in Unit 8A-1 in which we examined the global wind pattern, warm air rises at the Equator and cold air sinks at the Poles. Air moving away from the Poles and Equator turns under the influence of the Coriolis effect, so it cannot travel all the way from the Equator to the Poles or from the Poles to the Equator. As a result, air sinks at 30 o N and 30 o S where it is cooler than the Equator, and air rises at 60 o N and 60 o S where it is warmer than the Poles. (90 o N) North Pole 60 o N 30 o N Equator (0 o ) 30 o S 60 o S South Pole (90 o S) Clear Rainy Clear Rainy Clear Rainy Clear 8. At what latitudes does air rise? 9. At what latitudes does air sink? 10. At which latitudes are cloudy and rainy skies more common? 11. At which latitudes are clear skies more common?

Clouds and Rain Unit (Topic 8A-2) page 4 Weather, Climate, & Fronts Up till now, we have been discussing climate, not weather. Climate is the long-term average of weather conditions (what the weather is usually like). For example, Southern California has a warm, dry climate. This does not mean that it is always warm (we have our cooler days) or that it does not rain in Southern California; it means that our weather is warm most of the time and that rain is less common here than elsewhere. Another way to think about it: weather is what conditions are like a particular day, climate is what conditions are like over a season or a year. Your own experience of actual storms and rain may contradict something that I said before: warm, rising air leads to clouds and rain. Many of you will say: wait a minute, the weather is cold when it rains! Before: After: Warm Air Storms often form along what meteorologists call fronts, a place where 2 air masses meet. An air mass is a collection of air with similar properties (e.g., temperature, moisture), often determined by where it comes from. For Cold Air Warm Air Cold Air example, warm, moist air moves up into the United States from the Gulf of Mexico, while cool, dry air comes down from Canada. We also use the word front to describe the location where two opposing armies meet and are shooting at one another. As in the military, the frontlines typically are where the action is (clouds, rain, hail, snow, etc.) in the atmosphere. At the locations where air masses meet (the front), the cooler air pushes the warmer air up, sliding in underneath to replace it, or the warmer air can move up and over the cooler air. As the warmer air rises, it becomes cooler, and if the change in temperature is strong enough and the rising air contains enough moisture, the water vapor in the rising air will condense into rain. If the warmer, rising air does not contain water, there cannot be rain along the front. Thus, the weather is cooler when it rains, because cooler air is coming in and lifting up the warmer air. (Remember, the warmer air might not be very warm, it is just warmer than the cooler air on the other side of the front.) 12. When warm air pushes into cold air, which one rises up on top, the warm air or the cold air? 13. What happens to the temperature of the air as it rises? Does it get warmer or cooler?

Clouds and Rain Unit (Topic 8A-2) page 5 Distribution of Heat from the Sun In this section, you will learn why temperature changes with the seasons, why some parts of the world are warmer than others, and how the motion of the ocean and atmosphere keep the warm places from getting too hot and the cool places from getting too cold. The Equator is warmer than the Poles, because it receives more heat from the Sun. Sunlight shines directly down upon the Equator, but approaches the Poles at an angle. As a result, sunlight is spread out over a wider area at the Poles (It is less Spread Out concentrated, so these places are colder.) In addition, sunlight that comes in at an angle is more North Pole likely to get reflected back into space (the white snow and ice at the Poles help a lot too) rather Equator Sun than absorbed, and passes through more of the atmosphere Concentrated (which absorbs a little bit more light than normal). An experiment that you might try: Get a flashlight. Hold your hand flat with your fingers pointing towards the ceiling. Hold the flashlight horizontal and shine it on your hand. Now, tilt you palm upwards towards the ceiling. What happens to the circle of light on your hand? You can see how sunlight is spread out at the Poles because it strikes the surface at an angle. 14. Which receives more light from the Sun, the Equator or the Poles? 15. Why does the Equator receive more heat than the Poles?

Clouds and Rain Unit (Topic 8A-2) page 6 Heat Distribution and the Seasons These factors also help explain why some parts of the year are warmer than other parts of the year (in other words, why we have seasons). Notice how the Earth is tilted relative to the Sun; the Earth s North Pole always points towards a star we call Polaris (creative, huh?), also known as the North Star. So, as the Earth orbits (travels around) the Sun, its tilt never changes. (The Earth s tilt is called its declination.) During our summer, the northern hemisphere is tilted towards the Sun, so we get more sunlight and become warmer. (The warmest spot is north of the Equator.) On the other hand, the southern hemisphere is tilted away from the Sun, so it gets less sunlight and becomes cooler. It takes the Earth 1 year to travel all the way around the Sun, so in 6 months, the Earth will be on the other side of the Sun. The tilt does not change (it always points towards the north star, Polaris), so now the northern hemisphere is tilted away from the Sun. (The warmest spot is south of the Equator.) We get less sunlight during this part of the year, so it is our winter. Earth N. Pole N. Pole Equator Sun Equator S. Pole S. Pole Northern Hemisphere Summer Earth Sun Northern Hemisphere Winter Earth Actually, the Earth s tilt wobbles very slowly in a small circle over thousands of years due to the gravitational pulls of Jupiter and other planets on the Earth. 16. How long does it take the Earth orbit the Sun one time? 17. Does the Earth s tilt change as it orbits the Sun over year? 18. Why are there seasons? For example, why does summer become winter?

Clouds and Rain Unit (Topic 8A-2) page 7 Temperature Distribution and Heat Emission The temperature of a place is not merely a matter of how much heat it receives, because if an object only gains heat, then it continues to get hotter and hotter. Objects also lose heat by conducting it to the neighboring environment (for example, your hand if you touch a cold surface) or radiating it away as infrared light (invisible to us because our eyes cannot capture it, but we can feel its heat when we get close to a hot object). Irrespective of how the heat is lost, the basic rule of heat loss is: The hotter an object is, the more heat it gives off. As an object gives away heat, it cools down, and therefore it gives away less and less heat over time. Even frozen objects give off heat, and therefore get even colder! (They just get colder slower and slower.) Every moment of the day and night, the Earth gives away heat to the atmosphere (via conduction) and radiates the rest towards outer space as infrared light. Over 99% of the atmosphere is made of nitrogen and oxygen. Infrared light goes right through these gases. The remaining less than 1% of the atmosphere includes greenhouse gases like carbon dioxide and water vapor which absorb infrared light, trapping its heat in the atmosphere. The heat in the atmosphere is eventually radiated into space too, helped by the fact that warm air rises upward (transporting the heat through the greenhouse gases). The Earth does not run out of heat, because it gains more heat each day by absorbing visible light from the Sun. The Poles are colder than the Equator, so they give off less heat than the Equator, but they still radiate heat into space. Interestingly, observations from satellites show that the Poles give off more heat each day than they receive from the Sun. Similarly, the Equator radiates less heat into space then it receives from the Sun. If the Poles are sending away more heat than they receive, they should get colder, and if the Equator sends away less heat than it receives, it should get warmer. But, of course, they are not getting warmer or colder; their temperatures are stable (global warming issues aside). An object s temperature is stable (does not increase or decrease) if the amount of heat it receives is exactly equal to the amount it gives away (just like how your bank account won t go up or down if the deposits are exactly equal to the withdrawals). 19. Which emits ( gives away ) more heat, a hot object or a cold object? 20. True or false? Cold objects emit heat, but less heat than hot objects. 21. If an object gives away (emits) as much heat as it receives, what happens to its temperature? In other words, does its temperature increase, decrease, or stay the same?

Clouds and Rain Unit (Topic 8A-2) page 8 22. What 2 gases is the atmosphere primarily made of? 23. Give 2 examples of greenhouse gases. 24. Do greenhouse gases warm or cool the atmosphere (and thus the Earth)? Temperature Distribution and the Motions of the Atmosphere and Ocean The temperatures of the Poles and Equator are not increasing or decreasing, because the ocean and atmosphere are moving ( transporting ) heat from the Equator towards the Poles (so the Equator has less to spend and the Poles more to spend ). In convection cells, the cool air moves away from the cold spot and towards the warm spot. The air then warms up at the warm spot, and rises (absorbs heat from the warm spot, cooling it down). Similarly, the cold spot cools the air above it. In other words, heat goes from the air to cold spot, warming the cold spot. Thus, the air moving in the convection cell is cooling down the warm spot (the Equator) and warming up the cool spot (the Poles). As we will see in the next lecture, the ocean does the same thing by moving warm water from the Equator towards the Poles and cool water from the Poles towards the Equator. The movement of water between the ocean and atmosphere also plays an important role in transporting heat from low latitudes (e.g., the Equator) towards high latitudes (e.g., the Poles). Warm ocean water evaporates under the clear skies of 30 o N/S (e.g., southern California), moving heat from the ocean into the atmosphere. (Remember: the hot, fastest-moving water molecules tend to be the ones that evaporate.) Some of the air moves towards the Poles in the winds called the westerlies (the convection cell between 30 o N/S and 60 o N/S). The air gives up its heat to the cooler ground beneath (e.g., Seattle), causing the water to condense into clouds and rain. Thus, the motion of the atmosphere keeps the Poles from becoming too cold and the Equator from becoming too hot. As the air moves, it carries the heat away from the hot places and moves cold air away from the cold places. The motion of the ocean the ocean currents performs a similar job, making the Earth a much more pleasant place to live. 25. Does the motion of the atmosphere warm or cool the Equator? 26. Does the motion of the atmosphere warm or cool the Poles?