Thermal Conductivity of Electric Molding Composites Filled with β-si 3 N 4

Similar documents
An Example file... log.txt

This document has been prepared by Sunder Kidambi with the blessings of

â, Đ (Very Long Baseline Interferometry, VLBI)

Surface Modification of Nano-Hydroxyapatite with Silane Agent

Pose Determination from a Single Image of a Single Parallelogram


Ä D C Ã F D {f n } F,

Price discount model for coordination of dual-channel supply chain under e-commerce

APPARENT AND PHYSICALLY BASED CONSTITUTIVE ANALYSES FOR HOT DEFORMATION OF AUSTENITE IN 35Mn2 STEEL

Books. Book Collection Editor. Editor. Name Name Company. Title "SA" A tree pattern. A database instance

A Robust Adaptive Digital Audio Watermarking Scheme Against MP3 Compression

LA PRISE DE CALAIS. çoys, çoys, har - dis. çoys, dis. tons, mantz, tons, Gas. c est. à ce. C est à ce. coup, c est à ce

Ú Bruguieres, A. Virelizier, A. [4] Á «Î µà Monoidal

EXTRACT THE PLASTIC PROPERTIES OF METALS US- ING REVERSE ANALYSIS OF NANOINDENTATION TEST

Application of ICA and PCA to extracting structure from stock return

General Neoclassical Closure Theory: Diagonalizing the Drift Kinetic Operator

Planning for Reactive Behaviors in Hide and Seek

ÇÙÐ Ò ½º ÅÙÐ ÔÐ ÔÓÐÝÐÓ Ö Ñ Ò Ú Ö Ð Ú Ö Ð ¾º Ä Ò Ö Ö Ù Ð Ý Ó ËÝÑ ÒÞ ÔÓÐÝÒÓÑ Ð º Ì ÛÓ¹ÐÓÓÔ ÙÒÖ Ö Ô Û Ö Ö ÖÝ Ñ ¹ ÝÓÒ ÑÙÐ ÔÐ ÔÓÐÝÐÓ Ö Ñ

Framework for functional tree simulation applied to 'golden delicious' apple trees

2013 SIMULIA Regional User Meeting

ADVANCES IN MATHEMATICS(CHINA)

PART IV LIVESTOCK, POULTRY AND FISH PRODUCTION

OC330C. Wiring Diagram. Recommended PKH- P35 / P50 GALH PKA- RP35 / RP50. Remarks (Drawing No.) No. Parts No. Parts Name Specifications

UNIQUE FJORDS AND THE ROYAL CAPITALS UNIQUE FJORDS & THE NORTH CAPE & UNIQUE NORTHERN CAPITALS

The University of Bath School of Management is one of the oldest established management schools in Britain. It enjoys an international reputation for

An Introduction to Optimal Control Applied to Disease Models

F O R SOCI AL WORK RESE ARCH

A Double-objective Rank Level Classifier Fusion Method

Max. Input Power (W) Input Current (Arms) Dimming. Enclosure

u x + u y = x u . u(x, 0) = e x2 The characteristics satisfy dx dt = 1, dy dt = 1

Singing voice enhancement for monaural music recordings with a cascade two-stage algorithm

Stochastic invariances and Lamperti transformations for Stochastic Processes

" #$ P UTS W U X [ZY \ Z _ `a \ dfe ih j mlk n p q sr t u s q e ps s t x q s y i_z { U U z W } y ~ y x t i e l US T { d ƒ ƒ ƒ j s q e uˆ ps i ˆ p q y

ETIKA V PROFESII PSYCHOLÓGA

Relation Between the Growth Twin and the Morphology of a Czochralski Silicon Single Crystal

Examination paper for TFY4240 Electromagnetic theory

Vectors. Teaching Learning Point. Ç, where OP. l m n

ACS AKK R0125 REV B 3AKK R0125 REV B 3AKK R0125 REV C KR Effective : Asea Brown Boveri Ltd.

New method for solving nonlinear sum of ratios problem based on simplicial bisection

I118 Graphs and Automata

PH Nuclear Physics Laboratory Gamma spectroscopy (NP3)

A Language for Task Orchestration and its Semantic Properties

Optimal Control of PDEs

Klour Q» m i o r L l V I* , tr a d itim i rvpf tr.j UiC lin» tv'ilit* m in 's *** O.hi nf Iiir i * ii, B.lly Q t " '

Some emission processes are intrinsically polarised e.g. synchrotron radiation.

$%! & (, -3 / 0 4, 5 6/ 6 +7, 6 8 9/ 5 :/ 5 A BDC EF G H I EJ KL N G H I. ] ^ _ ` _ ^ a b=c o e f p a q i h f i a j k e i l _ ^ m=c n ^

Radu Alexandru GHERGHESCU, Dorin POENARU and Walter GREINER

The Effect of Temperature and Space Velocity on the Performance of Plate Reformer for Molten Carbonate Fuel Cell

Juan Juan Salon. EH National Bank. Sandwich Shop Nail Design. OSKA Beverly. Chase Bank. Marina Rinaldi. Orogold. Mariposa.

Front-end. Organization of a Modern Compiler. Middle1. Middle2. Back-end. converted to control flow) Representation

h : sh +i F J a n W i m +i F D eh, 1 ; 5 i A cl m i n i sh» si N «q a : 1? ek ser P t r \. e a & im a n alaa p ( M Scanned by CamScanner

Estimation of Retention Factors of Nucleotides by Buffer Concentrations in RP-HPLC

2016 xó ADVANCES IN MATHEMATICS(CHINA) xxx., 2016

Lund Institute of Technology Centre for Mathematical Sciences Mathematical Statistics

Glasgow eprints Service

Loop parallelization using compiler analysis

Periodic monopoles and difference modules

Research of Application the Virtual Reality Technology in Chemistry Education

TELEMATICS LINK LEADS

Sample Exam 1: Chapters 1, 2, and 3

A Study on the Analysis of Measurement Errors of Specific Gravity Meter

Affine-invariant Shape Recognition Using Grassmann Manifold

QUESTIONS ON QUARKONIUM PRODUCTION IN NUCLEAR COLLISIONS

Œ æ fl : } ~fiæ fl ŒÊ Æ Ã%æ fl È

Pharmacological and genomic profiling identifies NF-κB targeted treatment strategies for mantle cell lymphoma

Radiative Electroweak Symmetry Breaking with Neutrino Effects in Supersymmetric SO(10) Unifications

Applications of Discrete Mathematics to the Analysis of Algorithms

Lecture 16: Modern Classification (I) - Separating Hyperplanes

Testing SUSY Dark Matter

SCOTT PLUMMER ASHTON ANTONETTI

In Vivo Study of Porous Calcium Silicate Bioceramic in Extra-osseous Sites

Lower Austria. The Big Travel Map. Big Travel Map of Lower Austria.

Emphases of Calculus Infinite Sequences and Series Page 1. , then {a n } converges. lim a n = L. form í8 v «à L Hôpital Rule JjZ lim

Constructive Decision Theory

õ Î î Ç Phase Detector Â

hal , version 1-27 Mar 2014

cº " 6 >IJV 5 l i u $

The Effect of Deposition Parameter on Electrical Resistivity of TiAlN Thin Film

F(jω) = a(jω p 1 )(jω p 2 ) Û Ö p i = b± b 2 4ac. ω c = Y X (jω) = 1. 6R 2 C 2 (jω) 2 +7RCjω+1. 1 (6jωRC+1)(jωRC+1) RC, 1. RC = p 1, p

An improved algorithm for scheduling two identical machines with batch delivery consideration

NPTEL COURSE ON MATHEMATICS IN INDIA: FROM VEDIC PERIOD TO MODERN TIMES

T T V e g em D e j ) a S D } a o "m ek j g ed b m "d mq m [ d, )

Mutually orthogonal latin squares (MOLS) and Orthogonal arrays (OA)

Fast Fourier Transform Solvers and Preconditioners for Quadratic Spline Collocation

45 2 Û Vol.45 No Ó ACTA METALLURGICA SINICA Feb pp

: œ Ö: =? À =ß> real numbers. œ the previous plane with each point translated by : Ðfor example,! is translated to :)

B œ c " " ã B œ c 8 8. such that substituting these values for the B 3 's will make all the equations true

2 Hallén s integral equation for the thin wire dipole antenna

A Study on Dental Health Awareness of High School Students

APPH 4200 Physics of Fluids

A Theory of Universal AI

Matrices and Determinants

CONVEX OPTIMIZATION OVER POSITIVE POLYNOMIALS AND FILTER DESIGN. Y. Genin, Y. Hachez, Yu. Nesterov, P. Van Dooren

5. Blocking and Confounding

Finding small factors of integers. Speed of the number-field sieve. D. J. Bernstein University of Illinois at Chicago

Margin Maximizing Loss Functions

4. The 2 k Factorial Designs (Ch.6. Two-Level Factorial Designs)

Plasma diagnostics and abundance determinations for planetary nebulae current status. Xiaowei Liu Department of Astronomy, Peking University

â çüì ÂÚUèÿææ - I, SUMMATIVE ASSESSMENT I,

póåíüéëáë ~åç `Ü~ê~ÅíÉêáò~íáçå çñ pê O pá R k U Wbì O müçëéüçê rëáåö píêçåíáìã `~êäçñóä~íé

Transcription:

22 Ê 6  ŠVol. 22, No. 6 2007 11 à Journal of Inorganic Materials Nov., 2007 Ð ¹: 1000-324X(200706-1201-05 β-si 3 N 4 / ¾Ú Đ Â ÉÓÅÖ ¼» 1, ³ º 1, µ² 2, ¹ 3 (1. ÅƱ 100084; 2. 100081; 3. ««210016 Û«º β-si 3N 4 ² ¼ SiO 2 Ý Ó ÑÕ ÛÄ Æ Í Áß Ò β-si 3N 4 SiO 2 Ó Ó ÛÄݱ µ «β-si 3N 4 Ù Ó ÛÄݱ Ø Ê Þ 50vol% β-si 3N 4 Ê Ó ÄÛ SiO 2 Ê Ó À 3.8 ºÈ ß Ó ÄÛ Õ ÏßÒ Ê Ó Ê Ó Agari ÄÛ Õµ Ò Ë «β-si 3N 4; Û Æ ÄÛ ± ¹«TB383 ÏÀ«A Thermal Conductivity of Electric Molding Composites Filled with β-si 3 N 4 ZHU Yuan 1, CHEN Ke-Xin 1, JIN Hai-Bo 2, FU Ren-Li 3 (1. State Key of New Ceramics and Fine Processing, Department of Materials Science & Engineering, Tsinghua University, Beijing 100084, China; 2. Discipline of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China; 3. Discipline of Materials Science & Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China Abstract: New electric molding composites were fabricated with hybridizing epoxy and β-si 3 N 4 instead of silica. The thermal conductivity of composites filled with β-si 3 N 4 was compared with that co-filled with β-si 3 N 4 and SiO 2. The results demonstrate that the thermal conductivity of the composite increases obviously with the increasing of β-si 3 N 4 content. Thermal conductivity of β-si 3 N 4 -filled composite is about 3.8 times as large as that of SiO 2 -filled one when the additional volume fraction achieves to 50%. Based on the experimental results, the discussion of calculating model for predicting thermal conductivity of composites shows that Agari model is more applicable to predict the thermal conductivities of β-si 3 N 4 filled and β-si 3 N 4 /SiO 2 co-filled composites. Furthermore, a common expression of Agari model for co-filled composites and its parameters are given. Key words: β-si 3 N 4 ; SiO 2 ; electric molding composite; thermal conductivity 1 Ý Æ» ±Í ÅÆ Å Æ Â Â½± ß³ Ë ÅÜ Å»ÏÌ ÆÌ ÑÅÁ ß ÏÅ ß³ Ë ß³Ñ Ü [1] Ü [2] ÌÇ 2006 11 13, Ôµ ÌÇ 2007 05 15 Ä [3] Ôܺ [4] ÔÜ [5,6] Ü [6] [7] Ü Ï [8] ÔÜ Ï [9,10] ѼÓÏ / Ï [11] Þ» ÅÔÇ Ì ÑÑÏ Ò AlN BN Ñ Ú ÜÅß³ Ö± Ü» ß Al 2 O 3 Ñ SiO 2 ³ à  (50472019 ß (1983, Ö Â Õ Ë Ã Ò Â E-mail: kxchen@mail.tsinghua.edu.cn

1202  Š22 Ê ± ±» Ö Al 2 O 3 Ñ SiO 2 ÅÜ ¾ ³ Æ Û ±Í ÜÅß³ Å Ã β-si 3 N 4 Ó É 320W/m K ÅÜ [12], ÔÜ É AlN  ÆÀ Å»ÏÌ Ù Ü Á ßÑ Å ß ÆÛ Ü «ÔÅ ²³ º β-si 3 N 4 Å ³ β-si 3 N 4 Å Ó ÐÆ Ã» β-si 3 N 4 SiO 2 Þ Û Ô ÔÓÖÆ Ó Ë β-si 3 N 4 β-si 3 N 4 SiO 2 Ô Ë (ºÓ Ë Ô Ã Æ ÜÅß³Û Å ÅÜ Å»Ï ÑÉ Î ¾ ³ ¹ Ó Ë ÝIJ Ö ³»É Ë º Ó Ë ± Ì ³¹ Ä ³ Ñ É Ò Ä Maxwell Ñ Agari Û Ô Ü Å Ö Ó Ë Ô Ú» ß Û ¾» ºÓ Ë Ô ÅÜ Ö ÓÖÆ Å 2 ÎÙ ÅÃÑ ÆÒ» ¼ A Ö QSF Þ Þ ÙÝ 364, Ä ½ ß ÉÜ Ù Åà ŠÉÜ ÉÜ ÙÝ 182, Ð ½» β-si 3 N 4 ( ÆÛ Ñ SiO 2 ± ( Ä Ç. ß ³ 1. β-si 3 N 4 Ñ SiO 2 ± SEM ½Ë 1 2 Õ β-si 3 N 4 Â Ü Ñ± É ¾  SiO 2 Ê ¼Ù ± ÍÞ ±» Å Þ ÉÜ ÎÆ Ô ß ¹ Ý ÉÜ Ö ÃÅÈ φ12.5mm 1mm ½ÖÞ 1 ß ÒÄ Table 1 Properties of raw materials Raw material Epoxy Silica β-si 3N 4 Density/g cm 3 1.28 2.64 3.20 Thermal conductivity 1 /W m 1 K 0.30 14 320 1 β-si 3N 4 ÎØ Fig. 1 Micrograph of β-si 3N 4 powder 2 SiO 2 ÎØ Fig. 2 Micrograph of silica powder л Ï Ì ² Ï Þ Å Ï Þ ÅÜ ÀÇÓ (1 Û λ = 100 α ρ C p (1 ÓÒ λ ÅÜ (W/m K; α Å Ï (cm 2 /s; C p ÅÉ (J/g K; ρ (g/cm 3. ¾» ² Ý Ô ÅÜ ½Ü Å»Ï «ÅÉÐÝ Á Î ß C P = ÅÉ n ω i Cp i (2 i=1 Ò ω i «ÐÝ C i p «ÅÉ Ô A B Û«¹ Û É ± ¹ Ë 2 Õ A «Ó Ë β-si 3 N 4 Ô B «β-si 3 N 4 Ñ SiO 2 Ô Ë Ô ºÓ Ë Ô 3 ÎÙ º 3.1 ½ Ê 3 A «Ó Ë β-si 3 N 4 Ô ÅÜ β-si 3 N 4 ± ÍÌ Ò Ô ÅÜ β-si 3 N 4 Ë Ì

6 Þ «β-si 3N 4/ Ý Æ ÛÄݱ Á 1203 2 ³¼ ÍØÆ Table 2 Components of composites No. A B A1 A2 A3 A4 A5 B1 B2 B3 B4 B5 B6 Composition SiO 2 0 0 0 0 0 50 40 30 20 10 0 /vol% β-si 3N 4 0 15.2 38.5 49.3 62.5 0 10 20 30 40 50 ¾ 4 β-si 3 N 4 SiO 2 Đ Ò µ É Ò Ð Đ Ã Ú «Ý µé«(50vol% ¾ ² µé Ñ β-si 3 N 4 ĐË Ò Ð ĐÃÚ««Ë ¾ 4 Ñß ÏÎ µ É «Ì 50vol% β-si 3 N 4 Đ Ñ µ É Ò Ð Đ Ã Ú «Ñ µ É SiO 2 Đ 3.8 Ã Ú «Ø Đ ²Ç β-si 3 N 4 Đ ÃÚ«SiO 2, º ÁÛĐĐ β-si 3 N 4 ² È ½»Đ SiO 2 Đ Á Ø ² Đ Ò Á Á Ä Ã [16], Ò Ð Đ ÃÚ«3 Ò Ê β-si 3N 4 Ó ÄÛ β-si 3N 4 ƾ ËË Fig. 3 Thermal conductivities of β-si 3N 4-filled composites as a function of β-si 3N 4 volume fraction 4 Ó Ê Ó ÄÛ β-si 3N 4 ƾ ËË Fig. 4 Thermal conductivities of β-si 3N 4/SiO 2-filled composites as a function of β-si 3N 4 volume fraction 3.2 È ÁÐ Ê Ò ÐÃÚ«Ô ½«ÔĐ Maxwell Agari ÚÓ Ô ½ Ù ¹ ¾ºĐ Ð ÊÃÚ«Đ 3.2.1 Maxwell ÁÐ [13] Maxwell ¹ (Potential theory Ú Þ Ç Ì Å Ö Đ Ñ ½ Ð Đ Ò Ð ÃÚ«ÆÑÅ [ λd + 2λ c + 2φ(λ d λ d ] λ e = λ c λ d + 2λ c φ(λ d λ c (3 ÑÑÅ λ e Ò ÐĐÃÚ«Æ λ c ÖĐ ĐÃ Ú «( ; λ d Ö Đ Đ Ã Ú «(µ Ð; φ ÖĐ Î ½ 3.2.2 Agari ÁÐ [14,15] Agari Æ Ç Ò ÐÑ µ ÉÅ ½ ÅÄà ÚÅà Çà µ Ú (¹Ô Ú, ÃÚ«ÚÅ Ã Çà µ Ø Ô ( Ô Ú, Ã Ú «Ò Ð Đ Ã Ú «Í Ñ Ú Å Ñ lgλ c = Aφ + B (4 ( λd A = C f lg C p λ c (5 B = lg(c p λ c (6 ÑÑͳ e c d ½ Ô Ò Ð µð C f Ø µð ÄÃ Ç Đ ² 0 1 ² µðáè Äà C f Á 1. C p µç 1 ½ Ñ (4 Ï Î C f C p ¾ µð³ ÜĐ²Ú ÃÚ«Đ µ µðđ ½ Æ ÜÊÊ 3.2.3 ÁÐ ÞÑ Maxwell Agari Ô Ø Ñ µé Ò Ð ÎĐ ßÎ ¹ β-si 3 N 4 Ñ µé Ò Ð Ã Ú «Æ (A Å Đ Ù ¹ Ü À ÒÇ Maxwell Ô Ý Ú ½ Ê ¾ 5 Ô Ò Ð Ã Ú «Đ Ý Ì β-si 3 N 4 µéü

1204  Š22 Ê Đ Ë Æ Ú Đ ² Ú Å ÕØ Maxwell Ô Ý β-si 3 N 4 µé«á Đ¼ Á Î Đ¼ Đ ² µ Ç Maxwell Ô µ É Đ Đ Å É Đ Ð À ³ Đ β-si 3 N 4 Ð ÁÛĐ Ð Æ [16], Ð (Ê Á Û Đ Ð Á È Ø Ä Ç º µ É «ÁÛĐ β-si 3 N 4 ÐÁ ÄÃ Ò ÐÃÚ«Đ ² Ò Ð ĐÃÚ«Maxwell Ô Maxwell ÔÆ µé Ø ÖĐĐ Ñ µé«50% Đ Ò ÐĐ ½ ¼ ² Ô Ù ¹ Ü ½ ¹ Agari Ô A Å Æ Ú½È Î Ã Ú«À Ò (µ¾ 6, ÐÝ A=2.22, B = 0.468. ¾ (5 (6 ÚÑ Ð C p =1.13, C f =0.747, ÌÇ Agari ÔĐÒ ³ ² ¹ Agari Ô ½ Ñ µé Ò ÊĐ ÃÚ«²Ú Å Ñ µé β-si 3 N 4 Ò Ð Æ Đ Ò Ð Agari ÔÃÚ«Ñ Å logλ e = 2.22φ 0.468 (7 Ñ λ e Ò ÐĐÃÚ«φ Ñ µ É Î ½ 3.3 Ü ²» È Þ Agari Ôµ¹Ý Ñ µé Ê Ð ÚÙ Đ Ù¹ Ñ µ É Ò Ð Ê Ã Ú «Đ Ú µ É Ò Ð Æ Agari Ô ¹Ô Ú Ñ Ô Å λ e = φ 1 λ d1 + φ 2 λ d2 + (1 φ 1 φ 2 λ c (8 Ñ φ 1, φ 2, λ d1, λ d2 ½ ÚÓµÉ Đ µé«ãú«ô Ú Ñ Ô Å 1 λ c = φ 1 λ d1 + φ 2 λ d2 + (1 φ 1 φ 2 λ c (9 (8 Ñ (9 Ñ» ÐÄ (10 ÑÅ λ n e = φ 1λ n d1 + φ 2λ n d2 + (1 φ 1 φ 2 λ n c (10 Ç (10 Ñ Ñ n=1 ¹ Ô Ú Ñ n = 1 Ô Ú Ñ Ì µ É Ä Ã Ç ² Ò ÐÃÈ ÉÚ µé Agari Ô Ô Å 5 β-si 3N 4 Ê Ó ÄÛ Maxwell Õ Fig. 5 Thermal conductivities of Maxwell model calculating and experiment results for β-si 3N 4-filled composites 6 Ò Ê β-si 3N 4 Ó ÄÛ Agari ÕµÓ Fig. 6 Linear fitting result with Agari model for thermal conductivity of β-si 3N 4-filled composites ( λe ( λd1 lg = φ 1 C f1 lg + C p λ c C p λ c ( λd2 φ 2 C f2 lg C p λ c (11 Ñ C f1, C f2 ½ Ú ÄÃ Ç Đ² C p Ò ÐĐÃÈ ( λd1 ( λd2 A 1 = C f1 lg, A 2 = C f2 lg, C p λ c C p λ c B = lg(c p λ c (12 É (11 Ñ ÐÄÅ lgλ e = A 1 φ 1 + A 2 φ 2 + B (13 Ç B Å Ñ φ 1 β-si 3 N 4 ½ φ 2 SiO 2 ½ É φ 1 + φ 2 =0.5. ² (13 Ñ Ú Å lgλ e = (A 1 A 2 φ 1 + (0.5A 2 + B (14

6 Þ «β-si 3N 4/ Ý Æ ÛÄݱ Á 1205 ¹ (14 Ñ B Å Ã Ú «Æ Ú Ò Ê ¾ 7 Ô Ñ A 1 A 2 =1.2623, 0.5A 2 +B=0.06839, Æ C p Ñ µé º É Æ (12 Ñ B 0.468, Ð A 2 = 1.07, C f2 = 0.662, A 1 = 2.287, C f1 =0.732, Ð Ç Ò Đ³ º C f1 Đ ¾ (5 Ñ Ð Đ C f C f Æ Ñ µé ÒÐ Ý Đ Ä Ã Ç Đ Ç Ñ µ É Ò Ð Ã Ú «Ç Ù ¹ Ü Ñ µé Ò ÐÐÝĐ C f Æ Ø² ÁÛĐ β-si 3 N 4 ÄÃ Đ Ò½ SiO 2 ½ ĐÒµÉ ÎÚÞ β-si 3 N 4 ÄÃ Đ¼ β-si 3 N 4 /SiO 2 ĐÒµÉ Ð Æ Đ Ò Ð Agari ÔÃÚ«Ñ Å lgλ e = 2.29φ 1 + 1.07φ 2 0.468 (15 7 Ò Ê Ó Agari ÕµÓ Fig. 7 Linear fitting result with Agari model for thermal conductivity of co-filled composites 3.4 Agari ÁÐ ÏÎ Agari Ô µé«đ Ò ÐĐ ¹Ü½ ز Agari ÔØ Ó Þ ¹Ô ²Đ µ É Ü Ö ¾ ÑĐ Ü (, Õµ Ý Ñ µé Ê Agari ÔĐ ÙÜ ½ 4 1. β-si 3 N 4 Ø Ó Đ Ã Ú Ð Ð β-si 3 N 4 Ø Ò ÐĐÚÃÜ µé«ì 50% β-si 3 N 4 µé Ò Ð ĐÃÚ«Ø SiO 2 µéđ 3.8 2. β-si 3 N 4 Ñ µ É Ò Ð Đ Ã Ú «Ò Agari Ô Maxwell Ô¾Ù¹ µ É ÃÚ«½ Đ Ò ÐĐÃÚ«3. Agari Ô ÚÙ ¹ Ñ µé Ò ÐĐÃÚ«¹ ÃÚ µé «Ð ÐĐ Ä Đ [1] Gonon P, Sylvestre A, Teysseyre J, Prior C. Journal of Materials Science: Materials in Electronics, 2001, 12: 81 86. [2] Bujard P, Kuhnlein G, Ino S, et al. IEEE Trans. Components, Packaging, and Manu. Techno-part A, 1994, 17 (4: 527 532. [3] Bajaj P, Jha N K, Kumar A. J. Appl. Polym. Sci., 1995, 56 (10: 1339 1347. [4] Bujard P. Thermal conductivity of boron nitride filled epoxy resins: temperature dependence and influence of sample preparation. Inter Society Conference on Thermal Phenomena in the Fabrication and Operation of Electronic Components: I-THERM 88. New York, USA, 1988. 41 49. [5] Xu Y S, Chung D D L, Mroz C. Composites, Part A: applied science and manufacturing, 2001, 32: 1749 1757. [6] Li L, Chung D D L. Journal of Electronic Materials, 1994, 23 (6: 557 564. [7] Lee W S, Han I Y, Jin Y, et al. Thermal characterization of thermally conductive underfill for a flip-chip package using novel temperature sensing technique. Proceedings of 6th Electronics Packaging Technology Conference, Piscataway, NJ, USA, 2004. 47 52. [8] Bolt J D, Button D P, Yost B A. Mat. Sci. Eng. A, 1989, A109: 207 211. [9] Æ ÕÐ Ø (WANG Yu-Di, et al. Ã«Đ (Journal of Inorganic Materials, 2000, 15 (6: 1031 1036. [10] Æ ÕÐ Ø Ð 2001, 37: 109 112. [11] Mclvor S D, Darby M I, Wostenholm G H, et al. J. Mat. Sci., 1990, 25: 3127 3132. [12] Haggerty J S, Lightfoot A. Ceram. Eng. Sci. Proc., 1995, 16: 475. [13] Maxwell J C. A Treatise on Electricity and Magnetism. London, U. K.: Oxford Univ. Press, 1998, Ch9.1. [14] Agri Y, Uno T. J. Appl. Polym. Sci., 1986, 32: 5705 5712. [15] Agri Y, Ueda A, Nagai S. J. Appl. Polym. Sci., 1993, 49: 1625 1634. [16] ¹Í ĐÆ È - Þ²ÌÕ Å 2005. 34 35.