Multiple-color cw visible lasers by frequency sum-mixing in a cascading Raman fiber laser

Similar documents
Efficient Generation of Second Harmonic Wave with Periodically. Poled MgO:LiNbO 3

Dmitriy Churin. Designing high power single frequency fiber lasers

Blue-green Emitting Semiconductor Disk Lasers with Intra-Cavity Frequency Doubling

Miniaturization of an Optical Parametric Oscillator with a Bow-Tie. Configuration for Broadening a Spectrum of Squeezed Light

Evaluation of Second Order Nonlinearity in Periodically Poled

SECOND HARMONIC GENERATION IN PERIODICALLY POLED NONLINEAR CRYSTALS WITH 1064 nm GAUSSIAN LASER PULSES

Threshold for strong thermal dephasing in periodically poled KTP in external cavity frequency doubling

Efficient generation of >2 W of green light by single-pass frequency doubling in PPMgLN

High-power terahertz radiation from surface-emitted THz-wave parametric oscillator

Simultaneous optical parametric oscillation and intracavity second-harmonic generation based on a hexagonally poled lithium tantalate

Observation of spectral enhancement in a soliton fiber laser with fiber Bragg grating

Simultaneous stimulated Raman scattering and second harmonic generation in periodically poled lithium niobate

Efficient generation of blue light by intracavity frequency doubling of a cw Nd:YAG laser with LBO

Ho:YLF pumped HBr laser

Development of a compact Yb optical lattice clock

Fiber Lasers: Fundamentals and Applications

Phase-matching temperature shifts in blue generation by frequency doubling of femtosecond pulses in KNbO 3

Generation of ultrafast mid-infrared laser by DFG between two actively synchronized picosecond lasers in a MgO:PPLN crystal

Fiber Lasers. Chapter Basic Concepts

The Gouy phase shift in nonlinear interactions of waves

An alternative method to specify the degree of resonator stability

Continuous-Wave Nd:YVO 4 self-raman lasers operating at 1109nm, 1158nm and 1231nm

Singly resonant optical parametric oscillator for mid infrared

Continuous-wave watt-level Nd:YLF/KGW Raman laser operating at near-ir, yellow and lime-green wavelengths

Laser Physics OXFORD UNIVERSITY PRESS SIMON HOOKER COLIN WEBB. and. Department of Physics, University of Oxford

Stimulated Emission Devices: LASERS

Frequency Doubling Ole Bjarlin Jensen

DEVELOPMENT OF HIGH-POWER PICOSECOND FIBER-BASED ULTRAVIOLET SOURCE

Principles of Mode-Hop Free Wavelength Tuning

Potassium Titanyl Phosphate(KTiOPO 4, KTP)

OPTI 511L Fall A. Demonstrate frequency doubling of a YAG laser (1064 nm -> 532 nm).

Optical second harmonic generation properties of BiB 3 O 6

Spectral broadening in continuous-wave intracavity Raman lasers

(b) Spontaneous emission. Absorption, spontaneous (random photon) emission and stimulated emission.

Ultra-narrow-band tunable laserline notch filter

A tunable corner-pumped Nd:YAG/YAG composite slab CW laser

Fiber Gratings p. 1 Basic Concepts p. 1 Bragg Diffraction p. 2 Photosensitivity p. 3 Fabrication Techniques p. 4 Single-Beam Internal Technique p.

3.5x10 8 s/cm (c axis, 22 C, 1KHz) α x =11x10-6 / C, α y =9x10-6 / C, α z =0.6x10-6 / C

Multi-cycle THz pulse generation in poled lithium niobate crystals

Efficient frequency doubling by a phase-compensated crystal in a semimonolithic cavity

NONLINEAR FREQUENCY CONVERSION IN A CRYSTALLINE WHISPERING-GALLERY MODE DISK

S... ~~YYYYI I 3. ,.,, ,. I 10. ". I I , ; "".~" '''.''':,, "'''~., !~~VRIELIDES. I s. I b. ~~~~" ' "OF PAGES. ~::'(O)1a

Wavelength switchable flat-top all-fiber comb filter based on a double-loop Mach-Zehnder interferometer

CW-Lyman- Source for Laser Cooling of Antihydrogen in a Magnetic Trap

Lasers and Electro-optics

Periodic Poling of Stoichiometric Lithium Tantalate for High-Average Power Frequency Conversion

Multi-Watt 589-nm Na D 2 -line Generation via Frequency Doubling of a Raman Fibre Amplifier: A source for LGS-assisted AO.

Stimulated Emission. Electrons can absorb photons from medium. Accelerated electrons emit light to return their ground state

Numerical investigation of the impact of reflectors on spectral performance of Raman fibre laser

IN RECENT YEARS, Cr -doped crystals have attracted a

Laser Basics. What happens when light (or photon) interact with a matter? Assume photon energy is compatible with energy transition levels.

requency generation spectroscopy Rahul N

THz QCL sources based on intracavity difference-frequency mixing

Semiconductor Lasers II

New Concept of DPSSL

Temperature Tuning Characteristics of Periodically Poled Lithium Niobate for Second Harmonic Generation at 490 nm

System optimization of a long-range Brillouin-loss-based distributed fiber sensor

Q. Shen 1,2) and T. Toyoda 1,2)

Red, blue, and green laser-light generation from the NYAB nonlinear crystal

SO17 1BJ, United Kingdom phone ABSTRACT 1. INTRODUCTION

Coherent Combining and Phase Locking of Fiber Lasers

Hyperfine structure and isotope shift measurements on 4d 10 1 S 0 4d 9 5p J = 1 transitions in Pd I using deep-uv cw laser spectroscopy

High Power Diode Lasers

Computer Modelling and Numerical Simulation of the Solid State Diode Pumped Nd 3+ :YAG Laser with Intracavity Saturable Absorber

High Power Continuous Wave Nd:KGW Laser With Low Quantum Defect Diode Pumping

Coherent Raman imaging with fibers: From sources to endoscopes

Oscillateur paramétrique optique en

Nonlinear Optics (WiSe 2016/17) Lecture 9: December 16, 2016 Continue 9 Optical Parametric Amplifiers and Oscillators

Tunable Stokes laser generation based on the stimulated polariton scattering in KTiOPO 4 crystal

Crystals NLO Crystals LBO

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

Quasi-Phase-Matched Gallium Arsenide for Mid Infrared Frequency Conversion

Sintec Optronics Pte Ltd

Gratings in Electrooptic Polymer Devices

Strathprints Institutional Repository

Nuremberg, Paul-Gordan-Str. 6, Erlangen, Germany

Frequency-Doubling of Femtosecond Pulses in Thick Nonlinear Crystals With Different Temporal and Spatial Walk-Off Parameters

A microring multimode laser using hollow polymer optical fibre

Highly Nonlinear Fibers and Their Applications

Chemistry Instrumental Analysis Lecture 5. Chem 4631

Multibeam-waist modes in an end-pumped Nd:YVO 4 laser

Quadratic nonlinear interaction

Polarization control and sensing with two-dimensional coupled photonic crystal microcavity arrays. Hatice Altug * and Jelena Vučković

OPTICAL GAIN AND LASERS

Recent progress on single-mode quantum cascade lasers

Performance Limits of Delay Lines Based on "Slow" Light. Robert W. Boyd

arxiv: v1 [physics.optics] 11 Jan 2016

Schemes to generate entangled photon pairs via spontaneous parametric down conversion

Efficient mode transformations of degenerate Laguerre Gaussian beams

Quantum Dot Lasers. Jose Mayen ECE 355

Single Emitter Detection with Fluorescence and Extinction Spectroscopy

Simultaneous Generation of UV at 411 nm and Red at 671 nm in a Dual-Structure Periodically Poled LiTaO 3 Crystal

Photon Pair Production using non-linear waveguides

Self-Phase Modulation in Optical Fiber Communications: Good or Bad?

Atomic filter based on stimulated Raman transition at the rubidium D1 line

Chapter-4 Stimulated emission devices LASERS

Lukas Gallmann. ETH Zurich, Physics Department, Switzerland Chapter 4b: χ (2) -nonlinearities with ultrashort pulses.

Improvement of spatial and temporal coherence of a broad area laser diode using an external-cavity design with double grating feedback

ECE 484 Semiconductor Lasers

Nonlinear Effects in Optical Fiber. Dr. Mohammad Faisal Assistant Professor Dept. of EEE, BUET

Transcription:

Multiple-color cw visible lasers by frequency sum-mixing in a cascading Raman fiber laser Yan Feng, Shenghong Huang, Akira Shirakawa, and Ken-ichi Ueda Institute for Laser Science, University of Electro-Communications, 1-5-1 Chofugaoka, Chofu Tokyo 182-8585, Japan feng@ils.uec.ac.jp Abstract: Multiple cw visible lasers at wavelengths ranging from 550nm to 625nm were generated by intracavity frequency sum-mixing of a cascading Raman fiber laser in a type-i noncritically phase-matched lithium triborate crystal. The phase matching conditions for individual wavelengths were realized by tuning the temperature of the lithium triborate crystal. 2004 Optical Society of America OCIS codes: (140.3510) Lasers, fiber; (140.3550) Lasers, Raman; (140.7300) Visible lasers References and links 1. H. M. Kretschmann, F. Heine, G. Huber and T. Halldorsson, "All-solid-state continuous-wave doubly resonant all-intracavity sum-frequency mixer," Opt. Lett. 22, 1461-1463 (1997). 2. H. Watanabe, T. Omatsu and M. Tateda, "Efficient self-pumped phase conjugation with a loop geometry in a Rhodamine-6G solid dye laser amplifier," Opt. Express 11, 176-180 (2003), http://www.opticsexpress.org/abstract.cfm?uri=opex-11-2-176 3. H. M. Pask and J. A. Piper, "Efficient all-solid-state yellow laser source producing 1.2-W average power," Opt. Lett. 24, 1490-1492 (1999). 4. S. M. Giffin, G. W. Baxter, L. T. McKinnie and V. V. Ter-Mikirtychev, "Efficient 550-600-nm tunable laser based on noncritically phase-matched frequency doubling of room-temperature LiF:F - 2 in lithium triborate," Appl. Opt. 41, 4331-4335 (2002). 5. J. C. Bienfang, C. A. Denman, B. W. Grime, P. D. Hillman, G. T.Moore and J. M. Telle, "20 W of continuous-wave sodium D2 resonance radiation from sum-frequency generation with injection-locked lasers," Opt. Lett. 28, 2219-2221 (2003). 6. G. Z. Luo, S. N. Zhu, J. L. He, Y. Y. Zhu, H. T. Wang, Z. W. Liu, C. Zhang and N. B. Ming, "SImultaneously efficient blue and red light generations in a periodically poled LiTaO 3," Appl. Phys. Lett. 78, 3006-3008 (2001). 7. J.-L. He, J. Liao, H. Liu, J. Du, F. Xu, H.-T. Wang, S. N. Zhu, Y. Y. Zhu and N. B. Ming, "Simultaneous cw red, yellow, and green light generation, "traffic signal lights," by frequency doubling and sum-frequency mixing in an aperiodically poled LiTaO 3," Appl. Phys. Lett. 83, 228-230 (2003). 8. R. P. Mildren, M. Convery, H. M. Pask, J. A. Piper and T. Mckay, "Efficient, all-solid-state, Raman laser in the yellow,orange and red," Opt. Express 12, 785-790 (2004), http://www.opticsexpress.org/abstract.cfm?uri=opex-12-5-785 9. H. Moosmuller and J. D. Vance, "Sum-frequency generation of continuous-wave sodium D2 resonant radiation," Opt. Lett. 22, 1135-1137 (1997). 10. P. W. Milonni, H. Fearn, J. M. Telle and R. Q. Fugate, "Theory of continuous-wave excitation of the sodium beacon," J. Opt. Soc. Am. A 16, 2555-2566 (1999). 11. F. L. Galeener, J. C. Mikkelsen, R. H. Geils and W. J. Mosby, "The relative Raman cross sections of vitreous SiO 2, GeO 2, B 2 O 3, and P 2 O 5," Appl. Phys. Lett. 32, 34-36 (1978). 12. S. Huang, Y. Feng, A. Shirakawa and K. Ueda, "Generation of 10.5 W, nm laser based on phosphosilicate Raman fiber laser," Jpn. J. Appl. Phys. 42, L1439-L1441 (2003). 13. K. Kato, "Temperature-Tuned 90 Phase-Matching Properties of LiB3O5," IEEE J. Quantum Electron. 30, 2950-2952 (1994). 14. SNLO, free software for modeling nonlinear frequency conversion processes in nonlinear crystals, http://www.sandia.gov/imrl/x1118/xxtal.htm 15. G. D. Boyd and D. A. Kleinman, "Parametric Interaction of Focused Gaussian Light Beams," J. Appl. Phys. 39, 3597-3639 (1968). (C) 2004 OSA 3 May 2004 / Vol. 12 No. 9 / OPTICS EXPRESS 1843

1. Introduction Coherent cw light sources in visible region are of great importance for applications in metrology, remote sensing, medicine, and display, etc. [1]. Diode-pumped Nd-doped solid-state lasers can operate efficiently in blue, green, and red spectral regions by frequency doubling. However, the wavelength region from 550 to 650 nm was difficult to cover for the absence of fundamental lasers that can operate efficiently there. Several approaches have been used to generate the all-solid-state source in the yellow-orange wavelength region: solid dye - lasers [2], frequency doubling of crystal Raman lasers [3] or LiF : F 2 laser [4], and sum-frequency mixing of two Nd laser lines at 1064nm and 1319nm [5]. Besides, there is considerable interest in generating multiple visible lasers from a single compact laser system. For example, such kind of systems had been demonstrated by frequency doubling and frequency sum mixing of Nd 3 :YVO 4 lasers in periodically or aperiodically poled LiTaO 3 [6, 7], and crystal Raman lasers [8]. In this paper we report the generation of multiple cw visible lasers at 550nm, 569nm, 589nm, 606.5nm, and 625nm by intracavity frequency sum mixing of a cascading Raman fiber laser in a type-i noncritically phase matched lithium triborate (LBO) crystal. The phase matching conditions for the 569nm, 589nm, and 606.5nm laser were realized in the experiments by tuning the temperature of LBO crystal to the vicinity of 70 C, 40 C, and 20 C, respectively. 2. Experimental setup Prism Yb-doped Fiber laser nm FBG nm HR PDF 300 m L2 LBO in oven M2 L1 M1 Fig. 1 Schematic of the experimental setup. Cavity is formed by FBG, M1. M2 is a dichroic mirror through which visible lights escape from the cavity. Inset is a picture of dispersed visible emission (from left to right, 569nm, 589nm, and 606.5nm) when temperature is tuned to near 30 C, where all frequency sum-mixing channels are off the phase-match condition so that the intensities of these emissions were comparable. Schematic of experimental setup is shown in Fig. 1. An Ytterbium-doped double-clad fiber laser with a Flexcor-1060 single mode fiber output at nm was used as pump source. The initial motivation of the study is to generate 589nm laser by the frequency doubling of a nm Raman fiber laser for the possible application in Sodium laser guided star [9, 10] and spectroscopy. So the experimental setup is designed for this purpose. The pump source fiber end was spliced to a fiber Bragg grating (FBG) (reflectivity >99% at nm and bandwidth of 1.2 nm). Since both the pump fiber and FBG are made of the Flexcor-1060 fiber, a very low loss splicing was achieved between them. The Raman gain fiber was a 300-m-long phosphorous-doped single-mode optical fiber (PDF), which had 12mol % of P 2 O 5 and a refractive index difference between the core and the clad of 0.0107. A small mismatch in the (C) 2004 OSA 3 May 2004 / Vol. 12 No. 9 / OPTICS EXPRESS 1844

mode field diameters of PDF and the Flexcor-1060 fiber resulted in a splicing loss of only about 0.2 db between them. Aspheric lens L2 (focal length: 8 mm) was used to collimate the light from PDF. The beam was focused once again into a LBO crystal using lens L1 (focal length 50 mm). Both lenses were coated with antireflecting coating for nm. Frequency doubling was achieved in a type-i noncritically phase-matched LBO (3 3 20mm 3 ) mounted in an oven with temperature control. Concave mirror M1 (50-mm radius of curvature and HR at around nm) was used as the end-mirror. The dichroic mirror M2 (highly reflecting at nm and transmitting at 589 nm) was used as output coupler for the 589 nm light. The visible light escaping from the cavity through M2 was separated from infrared radiation leaking through M2 by a Brewster prism. Spectra of the output were measured with an AQ-6315A optical spectrum analyzer (ANDO Co.) directly after the dichroic mirror M2. 3. Results Threshold as low as 1.8W was realized for the nm laser. 602cm -1 Raman shift is required to convert nm to nm light. The Raman gain at 602cm -1 is not the peak value. There are two peaks in the Raman scattering spectrum of PDF, one is at 1330cm -1 which is sharp and due to oxygen double-bonded to P atoms, the other is at 490cm -1 which is broad and due to oxygen double bonded to Si atoms [11]. When the pump power increased to about 6.5W, nm laser reached the threshold too, which is a Stokes shift from nm by 490cm -1. Fig.2 (left) shows the emission spectra at pump power of 5.6W and 11W, respectively. The feedback for nm is from the nonzero reflection of the free space optics (at the level of tens percentage according to transmission data provided by company) at one end and the Fresnel reflection of the fiber end at other end. Outcoupling for nm laser is very low, so intracavity intensity of nm laser is expected high. Consequently, Raman gain at nm is very high, so it can lase in spite of the lossy resonator. Emergence of high order Stokes lasers was also observed in experiments on fundamental lasers[12], where the feedback for nm laser is from the Fresnel reflection of fiber end at both ends. Log 10 (I) [arb. units] -10-20 -30-40 -50-60 -70 nm Pump power 11W Pump power 5.6W nm nm -80 1080 1120 1160 1200 1240 1280 λ [nm] Log 10 (I) [arb. units] 0-10 -20-30 -40-50 -60-70 -80-90 606.5nm 550nm 625nm 540 560 580 600 620 640 λ [nm] Fig. 2 (left) The emission spectra at the near-infrared wavelength range at pump power of 5.6W and 11W, respectively. (right) typical emission spectra at visible wavelength range when the temperature of LBO crystal was tuned to 70 C (dash line), 40 C (solid line), and 20 C (dot line), which correspond to phase matching condition for 569nm, 589nm and 606.5nm generation, respectively. Intracavity frequency conversion was used with the aim of increasing efficiency in mind. The LBO crystal was cut at θ = 90 and φ = 0. With such a cut configuration, phase match condition for type-i second harmonic generation (SHG) can be obtained over a wide wavelength range by tuning the crystal temperature [13]. Calculated by SNLO [14], type-i noncritical phase match condition for SHG of nm can be realized near 40 C with effective nonlinear coefficient d eff = 8.39 10-1 pm/v and good temperature, bandwidth, and acceptance (C) 2004 OSA 3 May 2004 / Vol. 12 No. 9 / OPTICS EXPRESS 1845

angle tolerances. The advantage of noncritical phase matching is the absence of walk-off of the laser beams, so one can use a long crystal to obtain higher conversion, and the laser quality will not be degraded. The LBO crystal was mounted near the beam waist, which was measured to be about 40µm, smaller than the optimum waist of 57µm for a nonlinear crystal of length 20mm and the fundamental light wavelength of nm according to Boyd and Kleinman [15]. But based on their theory the focusing parameter is not very critical, it is expected that the efficiency is within 10% of that for optimum focusing. Figure 2 (right) shows a typical spectrum of the visible output when temperature was tuned to 40 C. Interestingly, one can find beside strong emission at 589nm, there are lines at 550nm, 569nm, 606.5nm, and 625nm, which correspond to frequency mixing of nm nm, nm nm, nm nm, and nm nm, respectively. All possible mixing channels are calculated with SNLO [14], results are shown in Tab.1. Phase matching condition can be achieved for all frequency-mixing channels by tuning the temperature from 107 C to 6 C, while the effective nonlinear coefficient decreases slightly when the wavelength increases. Table 1 Calculated phase matching temperature and effective nonlinear coefficient for all frequency sum-mixing channels Mix channel (nm) λ v (nm) 550 569 585 589 606.5 625 T( C) 107 70 44 40 20 6 d eff ( 10-1 pm/v) 8.46 8.42 8.39 8.39 8.35 8.32 Power (mw) 6 10 0.2 In the experiments, we had also tuned the temperature to the phase matching condition of about 70 C and 20 C for the process of nm nm 569nm and nm nm 606.5nm. Corresponding emission spectra are also shown in Fig. 2 (right). Frequency doubling of the pump laser nm nm 550nm is of no interest, so it was not investigated. The process of nm nm 625nm is of interest, however the phase matching temperature of 6 C was not possible to reach in the experiments. nm nm 585nm is interesting, but it is weak and near the strong 589nm emission we didn t observe in the experiments. Figure 3 shows the 589nm laser output as a function of the pump power. Just above the threshold, the output of 589nm laser increased nonlinearly with the pump power, because of the square law dependence of the conversion efficiency on the fundamental laser intensity, but was soon saturated. The maximum output at 589 nm obtained was about 10mW. The saturation of the output is mainly due to the emergence of higher order Stokes Raman lasers. We had also investigated bright emission at 569nm and 606.5nm at the phase matching condition. The output power as a function of the pump power is shown in Fig. 4. Up to 6mW and 0.2mW of the 569nm and 606.5nm laser were obtained, respectively. The mixing efficiencies are low (lower than 0.1%), which results from the broad linewidth of the Raman lasers. Both nm and nm lines were broadened at higher pump power due to the broad Raman spectrum and high intracavity power. At the saturation stage the typical linewidth of nm and nm are about 2nm and 1.5nm, respectively. The linewidth of 589nm, 569nm, and 606.5nm are all at the level of 0.7nm. Another reason is the random polarization of the fundamental Raman fiber laser, so only half of the power is useful. Using narrower FBG at nm and at the wavelength of higher order Raman shift may narrow the linewidth of the Raman lasers. In present experiments the bandwidth of the nm (C) 2004 OSA 3 May 2004 / Vol. 12 No. 9 / OPTICS EXPRESS 1846

FBG is about 1.2nm. The feedback for the higher order Raman laser is the Fresnel reflection at fiber end and dielectric mirror, both of which are frequency-insensitive. Highly reflective FBG of bandwidth 0.1~0.2nm at 1µm region is available, so there is potential in this scheme to increase the efficiency. Another potential scheme is a master oscillator power amplifier (MOPA): use seeds of narrow bandwidth at requested wavelengths and amplify them in fiber by Raman gain. Multiple lasers of narrow bandwidth may be obtained in proper design. After that, specially designed periodically poled nonlinear crystals like PPLN and PPKTP can be used to convert these lasers to visible externally. Power (mw) 10 9 8 7 6 5 4 3 2 1 0 589nm 569nm 606.5nm 0.00 4 6 8 10 12 14 Pump Power (W) 0.30 0.25 0.20 0.15 0.10 0.05 Power (mw) Fig. 3. The output power at 569nm, 589nm, and 606.5nm as a function of the pump power. In the experiments the laser system was designed for nm only, laser at nm was determined by the Raman gain spectrum. Due to the broad Raman gain spectrum there is much flexibility in the laser wavelength in fact. One can choose the laser wavelength using corresponding FBG. In addition, in this study generation of multiple visible lasers is achieved by obtaining the phase matching condition for individual wavelength separately. Simultaneously generation of multiple visible lasers is possible by adopting aperiodically poled nonlinear crystals [7]. 4. Summary In summary, we have demonstrated multiple cw visible laser generation at wavelength ranging from 550nm to 625nm by the intracavity frequency sum mixing of a cascading Raman fiber laser in a type-i noncritically phase matched LBO crystal. The phase matching condition for the individual wavelength was realized by tuning the temperature of LBO crystal. The scheme has potential in simultaneous generation of multiple visible lasers, fiber based yellow-orange laser sources for laser guided star adaptive optics, and compact fiber based RGB laser sources for laser display by combination of other technology such as aperiodically poled nonlinear crystals. Acknowledgments This work is supported by the 21st Century COE program of Ministry of Education, Science and Culture of Japan. Yan Feng s webpage: http://geocities.com/yanfeng (C) 2004 OSA 3 May 2004 / Vol. 12 No. 9 / OPTICS EXPRESS 1847