Integrated Circuits & Systems

Similar documents
Integrated Circuits & Systems

Integrated Circuits & Systems

EEC 118 Lecture #5: CMOS Inverter AC Characteristics. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

ENEE 359a Digital VLSI Design

Integrated Circuits & Systems

The Inverter. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic

5.0 CMOS Inverter. W.Kucewicz VLSICirciuit Design 1

Integrated Circuits & Systems

CMPEN 411 VLSI Digital Circuits. Lecture 04: CMOS Inverter (static view)

CMPEN 411 VLSI Digital Circuits Spring 2012

THE CMOS INVERTER CHAPTER. Quantification of integrity, performance, and energy metrics of an inverter Optimization of an inverter design

Integrated Circuits & Systems

THE INVERTER. Inverter

Practice 7: CMOS Capacitance

Lecture 4: CMOS Transistor Theory

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

CARNEGIE MELLON UNIVERSITY DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING DIGITAL INTEGRATED CIRCUITS FALL 2002

Chapter 5. The Inverter. V1. April 10, 03 V1.1 April 25, 03 V2.1 Nov Inverter

ECE 438: Digital Integrated Circuits Assignment #4 Solution The Inverter

The CMOS Inverter: A First Glance

Integrated Circuits & Systems

Lecture 12 CMOS Delay & Transient Response

EE115C Digital Electronic Circuits Homework #4

Lecture 5: DC & Transient Response

ECE321 Electronics I

Integrated Circuits & Systems

ENGR890 Digital VLSI Design Fall Lecture 4: CMOS Inverter (static view)

COMP 103. Lecture 10. Inverter Dynamics: The Quest for Performance. Section 5.4.2, What is this lecture+ about? PERFORMANCE

EE5311- Digital IC Design

The Physical Structure (NMOS)

2007 Fall: Electronic Circuits 2 CHAPTER 10. Deog-Kyoon Jeong School of Electrical Engineering

Lecture 4: DC & Transient Response

Digital Integrated Circuits A Design Perspective

Lecture 8-1. Low Power Design

CMOS Inverter (static view)

EECS 141: FALL 05 MIDTERM 1

Announcements. EE141- Fall 2002 Lecture 7. MOS Capacitances Inverter Delay Power

Midterm. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Lecture Outline. Pass Transistor Logic. Restore Output.

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

EE 466/586 VLSI Design. Partha Pande School of EECS Washington State University

The CMOS Inverter: A First Glance

Topic 4. The CMOS Inverter

Check course home page periodically for announcements. Homework 2 is due TODAY by 5pm In 240 Cory

Digital Integrated Circuits

Dynamic operation 20

University of Pennsylvania Department of Electrical Engineering. ESE 570 Midterm Exam March 14, 2013 FORMULAS AND DATA

MOSFET and CMOS Gate. Copy Right by Wentai Liu

EEC 118 Lecture #6: CMOS Logic. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

9/18/2008 GMU, ECE 680 Physical VLSI Design

Lecture 4: CMOS review & Dynamic Logic

Lecture 6: DC & Transient Response

Digital Integrated Circuits EECS 312

Digital Integrated Circuits A Design Perspective

CMOS logic gates. João Canas Ferreira. March University of Porto Faculty of Engineering

EEE 421 VLSI Circuits

DC and Transient. Courtesy of Dr. Daehyun Dr. Dr. Shmuel and Dr.

EEC 116 Lecture #5: CMOS Logic. Rajeevan Amirtharajah Bevan Baas University of California, Davis Jeff Parkhurst Intel Corporation

ECE 342 Solid State Devices & Circuits 4. CMOS

MOS Transistor Theory

Power Dissipation. Where Does Power Go in CMOS?

EE141Microelettronica. CMOS Logic

Properties of CMOS Gates Snapshot

Miscellaneous Lecture topics. Mary Jane Irwin [Adapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.]

Digital Microelectronic Circuits ( ) The CMOS Inverter. Lecture 4: Presented by: Adam Teman

EE115C Digital Electronic Circuits Homework #5

Interconnect (2) Buffering Techniques. Logical Effort

Digital Integrated Circuits 2nd Inverter

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

EE5311- Digital IC Design

VLSI GATE LEVEL DESIGN UNIT - III P.VIDYA SAGAR ( ASSOCIATE PROFESSOR) Department of Electronics and Communication Engineering, VBIT

EE 560 MOS TRANSISTOR THEORY PART 2. Kenneth R. Laker, University of Pennsylvania

Lecture 5: DC & Transient Response

EE5311- Digital IC Design

EE5780 Advanced VLSI CAD

MOS Transistor Theory

MOSFET: Introduction

Very Large Scale Integration (VLSI)

EEC 116 Lecture #3: CMOS Inverters MOS Scaling. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

EE213, Spr 2017 HW#3 Due: May 17 th, in class. Figure 1

Spiral 2 7. Capacitance, Delay and Sizing. Mark Redekopp

Announcements. EE141- Spring 2003 Lecture 8. Power Inverter Chain

ENEE 359a Digital VLSI Design

UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences

VLSI Design I; A. Milenkovic 1

EE115C Digital Electronic Circuits Homework #6

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Sciences

ESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals

Lecture 7 Circuit Delay, Area and Power

ESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals

Lecture 11 VTCs and Delay. No lab today, Mon., Tues. Labs restart next week. Midterm #1 Tues. Oct. 7 th, 6:30-8:00pm in 105 Northgate

Lecture 6 Power Zhuo Feng. Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010

EECS 151/251A Homework 5

Today s lecture. EE141- Spring 2003 Lecture 4. Design Rules CMOS Inverter MOS Transistor Model

Based on slides/material by. Topic 3-4. Combinational Logic. Outline. The CMOS Inverter: A First Glance

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

PASS-TRANSISTOR LOGIC. INEL Fall 2014

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: 1st Order RC Delay Models. Review: Two-Input NOR Gate (NOR2)

Introduction to CMOS VLSI. Chapter 2: CMOS Transistor Theory. Harris, 2004 Updated by Li Chen, Outline

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: CMOS Inverter: Visual VTC. Review: CMOS Inverter: Visual VTC

CPE/EE 427, CPE 527 VLSI Design I L06: CMOS Inverter, CMOS Logic Gates. Course Administration. CMOS Inverter: A First Look

Transcription:

Federal University of Santa Catarina Center for Technology Computer Science & Electronics Engineering Integrated Circuits & Systems INE 5442 Lecture 13 The CMOS Inverter: dynamic behavior (delay) guntzel@inf.ufsc.br

Abstractions Electric-level Electrical Schematics Logic-level Logic Schematics in out V in V out Truth Table in out 0 1 1 0 Slide 13.2

Dynamic Behavior R p in out 0 1 1 0 V in = 0V V out = C L V in = V out = 0V C L R n R n and R p are the on-resistance (Ro n ) of NMOS, PMOS, respect. C L represents the total charge attached to the gate s output Slide 13.3

Dynamic Behavior Steady State Vin V in = 0V R p V out = Vout 0V t C L 0V t Falling Transition Vin Vin= (0 ) R p i Vout = ( 0) Vout 0V t R n C L 0V t Steady State Vin V in = V out = 0V Vout 0V t R n C L 0V t Slide 13.4

Dynamic Behavior Steady State Vin V in = V out = 0V Vout 0V t R n C L 0V t Rising Transition Vin 0V t Vin= ( 0) R p R n i Vout = (0 ) C L Vout 0V t Steady State Vin V in = 0V R p V out = Vout 0V t C L 0V t Slide 13.5

Delay Definitions Propagation delay (V in x V out ): V in t phl = propagation delay for (output) fall transition 50% t plh = propagation delay for (output) rise transition V out t phl 50% t plh 90% t Fall and Rise Times: t f = fall time t r = rise time 10% t f t r t Adapted from: Rabaey; Chandrakasan; Nikolic, 2003 Slide 13.6

Propagation Delay: First-Order Analysis How to Compute? t p = v 2 v 1 C L(v) i(v) dv With i the (dis)charging current v, the voltage over the capacitor, v 1 and v 2 are the initial and final voltages, respectively. Intractable: i(v) and C L (v) are non-linear functions of v! For manual analysis, we would rather rely on a simplified switch model! Slide 13.7

Propagation Delay: First-Order Analysis Using a constant value for R on we fall into the case of an RC network, where R=R eq and C=C L R eq = 1 /2 /2 V dv 3 I DSAT (1+ λv ) 4I DSAT 1 7 9 λv DD with W I DSAT = k' L (V DD V T )V DSAT V 2 DSAT 2 V out C L t phl = ln(2) R eq. C L = 0.69 R n. C L R n Slide 13.8

Propagation Delay: First-Order Analysis t phl = f (R n.c L ) = t = f (R plh p.c L ) = 0.69. R n.c 0.69. R p.c L L R p V out V out C L C L R n Sometimes, an average propagation delay value may be useful: t p = t plh + t phl 2 Slide 13.9

How to Get a Faster Inverter? 1. Keeping C L Small (Fanout, routing and self-loading ) t phl = f (R n.c L ) = t = f (R plh p.c L ) = 0.69. R n.c 0.69. R p.c L L R p V out V out C L C L R n Slide 13.10

How to Get a Faster Inverter? 2. Decreasing the on-resistance of transistors R, I L=Lmin ~R/2, ~2xI L=Lmin Watch out for self-loading! 2W W In digital design, W is usually kept minimum Slide 13.11

Computing Capacitances Lumping All Capacitances into C L at Inv1 s Output Node Inv1 Inv2 Assuming an ideal voltage source with zero fall and rise times M2 M4 V in C gd12 C db2 V out C g4 V out2 M1 C db1 C w C g3 M3 Source: Rabaey; Chandrakasan; Nikolic, 2003 Slide 13.12

Computing Capacitances Gate-Drain Capacitance C gd12 Inv1 Inv2 Overlap capacitances of M1 and M2 M2 M4 V in C gd12 C db2 V out C g4 V out2 But we have to use a grounded equivalent value for C gd12 M1 C db1 C w C g3 M3 Source: Rabaey; Chandrakasan; Nikolic, 2003 Slide 13.13

Computing Capacitances Gate-Drain Capacitance C gd12 Taking the Miller Effect into account ΔV V in C gd12 V out ΔV V out ΔV M1 ΔV V in M1 2C gd12 For each transistor: C gd = 2 C GD0 W Source: Rabaey; Chandrakasan; Nikolic, 2003 Slide 13.14

Computing Capacitances Diffusion Capacitances C db1 and C db2 Due to the reverse biased p-n junctions Inv1 Inv2 Quite non-linear M2 M4 V in C gd12 C db2 V out C g4 V out2 M1 C db1 C w C g3 M3 Slide 13.15

Computing Capacitances Diffusion Capacitances C db1 and C db2 Using K eq (from diode s theory) to linearize C db C eq = K eq C j0 K eq = φ 0 m (V high V low )(1 m) [(φ 0 V high )1 m (φ 0 Vlow) 1 m ] Slide 13.16

Computing Capacitances Diffusion Capacitances C db1 and C db2 K eq for a 0.25 µm inverter: K eq = C ox (ff/μm 2 ) Relevant capacitances for 0.25 µm transistors CGD0 (ff/μm) CJ (ff/μm 2 ) φ 0 m (V high V low )(1 m) [(φ 0 V high ) 1 m (φ 0 Vlow) 1 m ] m j ϕ b (V) CJSW (ff/μm) m jsw ϕ bsw (V) NMOS 6 0.31 2 0.5 0.9 0.28 0.44 0.9 PMOS 6 0.27 1.9 0.48 0.9 0.22 0.32 0.9 fall rise NMOS V low = 1.25V; V high = 2.5V K eq (m=0.5, ϕ 0 =0.9)= 0.57 K eqsw (m=0.44, ϕ 0 =0.9)= 0.61 V low = 0V; V high = 1.25V K eq (m=0.5, ϕ 0 =0.9)= 0.79 K eqsw (m=0.44, ϕ 0 =0.9)= 0.81 PMOS V low =0V; V high = 1.25V K eq (m=0.48, ϕ 0 =0.9)= 0.79 K eqsw (m=0.32, ϕ 0 =0.9)= 0.86 V low = 1.25V; V high = 2.5V K eq (m=0.48, ϕ 0 =0.9)= 0.59 K eqsw (m=0.32, ϕ 0 =0.9)= 0.7 Slide 13.17

Computing Capacitances Wiring Capacitances C w Inv1 Inv2 M2 M4 V in C gd12 C db2 V out C g4 V out2 M1 C db1 C w C g3 M3 Slide 13.18

Computing Capacitances Gate Capacitance of Fanout C g3 and C g4 Inv1 Inv2 M2 M4 V in C gd12 C db2 V out C g4 V out2 M1 C db1 C w C g3 M3 C fanout = C gate (NMOS ) + C gate (PMOS) = (C GS0n + C GD0n + W n L n C ox ) + (C GS0p + C GD0p + W p L p C ox ) Ignores the Miller Effect Assumes C gate is constant Slide 13.19

Computing Capacitances Inverter in 0.25µm CMOS technology W n /L n = 0.375µm/0.25µm (9λ/2λ) W p /L p = 1.125µm/0.25µm NMOS: PD = (5+4+4+1+1) x λ = 15 x λ = 15 x 0.125µm = 1.875µm AD = (4 x 4) λ 2 + (3 x 1) λ 2 = 19λ 2 = 0.30 µm 2 0.25µm = 2λ (3λ/2λ) Slide 13.20 Source: Rabaey; Chandrakasan; Nikolic, 2003

Computing Capacitances Inverter in 0.25µm CMOS technology W n /L n = 0.375µm/0.25µm (9λ/2λ) W p /L p = 1.125µm/0.25µm PMOS: PD = (5+9+5) x λ = 19 x λ = 19 x 0.125µm = 2.375µm AD = (5 x 9) λ 2 = 45λ 2 = 0.70 µm 2 0.25µm = 2λ (3λ/2λ) Slide 13.21 Source: Rabaey; Chandrakasan; Nikolic, 2003

Computing Capacitances W/L AD(μm 2 ) PD(μm) AS(μm 2 ) PS(μm) NMOS 0.375/0.25 0.3 (19λ 2 ) 1.875 (15λ) 0.3 (19λ 2 ) 1.875 (15λ) PMOS 1.125/0.25 0.7 (45λ 2 ) 2.375 (19λ) 0.7 (45λ 2 ) 2.375 (19λ) C ox (ff/μm 2 ) Relevant capacitances for 0.25 µm transistors CGD0 (ff/μm) CJ (ff/μm 2 ) m j ϕ b (V) CJSW (ff/μm) m jsw ϕ bsw (V) NMOS 6 0.31 2 0.5 0.9 0.28 0.44 0.9 PMOS 6 0.27 1.9 0.48 0.9 0.22 0.32 0.9 Slide 13.22

Computing Capacitances capacitor capacitor Value (ff) (H L) Value (ff) (L H) C gd1 2 CGD0 n W n 0.23 0.23 C gd2 2 CGD0 p W p 0.61 0.61 C db1 K eqn AD n CJ + K eqswn PD n CJSW 0.66 0.90 C db2 K eqp AD p CJ + K eqswp PD p CJSW 1.5 1.15 C g3 (CGD0 n + CGS0 n ) W n + W n L n C ox 0.76 0.76 C g4 (CGD0 p + CGS0 p ) W p + W p L p C ox 2.28 2.28 Cw Provided by extraction tool 0.12 0.12 C L Σ 6.1 6.0 Slide 13.23

Propagation Delay of an Inverter Example Compute the propagation delays for the inverter of previous slides. From the layout, W n /L n = 1.5 and W p /L p = 4.5 (assuming that W W d and L L d ). From lecture 11, Normalized R eq of NMOS and PMOS Transistors in 0.25 µm (W/L=1, L=L min ) (V) 1 1.5 2 2.5 NMOS (kω) 35 19 15 13 PMOS (kω 115 55 38 31 t phl = 0.69 13kΩ 6.1fF = 36ps 1.5 t plh = 0.69 31kΩ 6.0 ff = 29ps 4.5 Slide 13.24

Propagation Delay of an Inverter Spice Simulation Results t phl = 39.9 ps t plh = 31.7 ps Good accuracy? (a stroke of good luck ) Overshooting: gate-drain capacitances couple output to input Source: Rabaey; Chandrakasan; Nikolic, 2003 Slide 13.25

Spice Simulations for the Inverter Simulation Circuit M2 in out M1 C L C L represents the output load seen by this inverter (assuming the lumped model) Slide 13.26

Spice Simulations for the Inverter File inversor-v0.cir ( www.inf.ufsc.br/~guntzel/ine5442/combinational-cmos/ ) * Simulacao de um inversor CMOS * Inclusao de arquivo de tecnologia.include parametros.txt * Fonte de alimentacao V1 vdd 0 dc 3.3 V2 gnd 0 dc 0 * Fonte de tensao que serve de estimulo para a entrada V3 in 0 pulse(3.3 0 2n 200p 200p 2n 4n) *Descricao de um inversor com trans. minimos em tecnologia 0.35um *Entrada= "in"; saida="out" M2 vdd in out vdd PMOS l=0.35u w=0.4u pd=1.4u ad=0.2p ps=1.4u as=0.2p M1 gnd in out gnd NMOS l=0.35u w=0.4u pd=1.4u ad=0.2p ps=1.4u as=0.2p * Capacitancia para representar carga vista pela saida da porta CL out 0 20f.control.endc.end tran 0.1p 6n plot in out Slide 13.27

Spice Simulations for the Inverter File inversor-v0.cir ( www.inf.ufsc.br/~guntzel/ine5442/combinational-cmos/ ) * Simulacao de um inversor CMOS * Inclusao de arquivo de tecnologia.include parametros.txt * Fonte de alimentacao V1 vdd 0 dc 3.3 V2 gnd 0 dc 0 Specific of SpiceOpus. Allows for using the node names vdd and gnd instead of 0 and 1. * Fonte de tensao que serve de estimulo para a entrada V3 in 0 pulse(3.3 0 2n 200p 200p 2n 4n) *Descricao de um inversor com trans. minimos em tecnologia 0.35um *Entrada= "in"; saida="out" M2 vdd in out vdd PMOS l=0.35u w=0.4u pd=1.4u ad=0.2p ps=1.4u as=0.2p M1 gnd in out gnd NMOS l=0.35u w=0.4u pd=1.4u ad=0.2p ps=1.4u as=0.2p * Capacitancia para representar carga vista pela saida da porta CL out 0 20f.control.endc.end tran 0.1p 6n plot in out Slide 13.28

Spice Simulations for the Inverter File inversor-v0.cir ( www.inf.ufsc.br/~guntzel/ine5442/combinational-cmos/ ) * Simulacao de um inversor CMOS * Inclusao de arquivo de tecnologia.include parametros.txt * Fonte de alimentacao V1 vdd 0 dc 3.3 V2 gnd 0 dc 0 * Fonte de tensao que serve de estimulo para a entrada V3 in 0 pulse(3.3 0 2n 200p 200p 2n 4n) 2ns (=delay) 4ns (=period) V1=3.3V 2ns (=tv2) V2=0V 200ps (time v1 to v2) 200ps (time v2 to v1) Rise and fall times Slide 13.29

Spice Simulations for the Inverter File inversor-v0.cir ( www.inf.ufsc.br/~guntzel/ine5442/combinational-cmos/ ) *Descricao de um inversor com trans. minimos em tecnologia 0.35um *Entrada= "in"; saida="out" M2 vdd in out vdd PMOS l=0.35u w=0.4u pd=1.4u ad=0.2p ps=1.4u as=0.2p M1 gnd in out gnd NMOS l=0.35u w=0.4u pd=1.4u ad=0.2p ps=1.4u as=0.2p pd = drain perimeter [m] ad = drain area [m 2 ] ps = source perimeter [m] as = source area [m 2 ] Where do such dimensions come from? Let us assume the minimal dimensions of an actual 0.35µm technology Slide 13.30

Spice Simulations for the Inverter File inversor-v0.cir ( www.inf.ufsc.br/~guntzel/ine5442/combinational-cmos/ ) *Descricao de um inversor com trans. minimos em tecnologia 0.35um *Entrada= "in"; saida="out" M2 vdd in out vdd PMOS l=0.35u w=0.4u pd=1.4u ad=0.2p ps=1.4u as=0.2p M1 gnd in out gnd NMOS l=0.35u w=0.4u pd=1.4u ad=0.2p ps=1.4u as=0.2p two serial transistors with minimal dimensions in 0.35µm technology L min = 0.35µm 0,4µm 0,4µm 0,5µm 0,45µm L min NMOS = L min PMOS = 0.35µm W min NMOS = W min PMOS = 0.4µm Minimum width of poly for connection = 0,35µm Slide 13.31

Spice Simulations for the Inverter File inversor-v0.cir ( www.inf.ufsc.br/~guntzel/ine5442/combinational-cmos/ ) * Simulacao de um inversor CMOS * Inclusao de arquivo de tecnologia.include parametros.txt * Fonte de alimentacao V1 vdd 0 dc 3.3 V2 gnd 0 dc 0 * Fonte de tensao que serve de estimulo para a entrada V3 in 0 pulse(3.3 0 2n 200p 200p 2n 4n) *Descricao de um inversor com trans. minimos em tecnologia 0.35um *Entrada= "in"; saida="out" M2 vdd in out vdd PMOS l=0.35u w=0.4u pd=1.4u ad=0.2p ps=1.4u as=0.2p M1 gnd in out gnd NMOS l=0.35u w=0.4u pd=1.4u ad=0.2p ps=1.4u as=0.2p * Capacitancia para representar carga vista pela saida da porta CL out 0 20f.control.endc.end tran 0.1p 6n plot in out Capacitance to represent the output load seen by this inverter (~= to another gate in the same technology) Slide 13.32

Spice Simulations for the Inverter File inversor-v0.cir ( www.inf.ufsc.br/~guntzel/ine5442/combinational-cmos/ ) *Descricao de um inversor com trans. minimos em tecnologia 0.35um *Entrada= "in"; saida="out" M2 vdd in out vdd PMOS l=0.35u w=0.4u pd=1.4u ad=0.2p ps=1.4u as=0.2p M1 gnd in out gnd NMOS l=0.35u w=0.4u pd=1.4u ad=0.2p ps=1.4u as=0.2p * Capacitancia para representar carga vista pela saida da porta CL out 0 20f.control.endc.end tran 0.1p 6n plot in out Simulation step Total simulation time Print commands (within a segment.control..endc ) This is specific from SpiceOpus Slide 13.33

Spice Simulations for the Inverter Simulation Waveforms in tp LH out tp HL t plh =458ps t phl =180ps Slide 13.34

(Nearly) Actual Layout The CMOS Inverter Two transistors in series with one contact (assuming typical 0.35 µm CMOS Design Rules) L min = 0.35µm L min = 0.35µm 0,4µm 0,4µm b 0,45µm 0,5µm 0,4µm 0,45µm a 0,4µm 0,4µm b a=0,3µm (minimum diffusion contact to gate spacing) b=0,15µm (minimum diffusion enclosure to contact) Slide 13.35

(Nearly) Actual Layout The CMOS Inverter Two transistors in series with wider chanels (asuming typical 0.35 µm CMOS Design Rules) L min = 0.35µm L min = 0.35µm 0,4µm b 0,4µm 0,4µm b 0,4µm 0,4µm b 0,4µm 0,45µm a 0,4µm 0,45µm a 0,4µm b a=0,3µm (minimum diffusion contact to gate spacing) b=0,15µm (minimum diffusion enclosure to contact) minimum contact spacing =0,4µm Slide 13.36

(Nearly) Actual Layout The CMOS Inverter Inverter in a typical 0.35 µm CMOS technology a=0,3µm (minimum diffusion contact to gate spacing) b=0,15µm (minimum diffusion enclosure to contact) Obs: min. width of metal lines = 0,7µm PMOS: W=W min =0.35µm L=1.5 µm Slide 13.37 in NMOS: W=W min =0.35µm L=0.7 µm 0,4µm b 0,4µm 0,4µm 0,4µm 0,4µm Vdd b b b out Gnd

Spice Simulations for the Inverter - 2 File inversor-v1.cir ( www.inf.ufsc.br/~guntzel/ine5442/combinational-cmos/ ) * Simulacao de um inversor CMOS * Inclusao de arquivo de tecnologia.include parametros.txt * Fonte de alimentacao V1 vdd 0 dc 3.3 V2 gnd 0 dc 0 * Fonte de tensao que serve de estimulo para a entrada V3 in 0 pulse(3.3 0 2n 200p 200p 2n 4n) *Descricao de um inversor com trans. minimos em tecnologia 0.35um *Entrada= "in"; saida="out" M2 vdd in out vdd PMOS l=0.35u w=1.5u pd=3.2u ad=1.275p ps=3.2u as=1.275p M1 gnd in out gnd NMOS l=0.35u w=0.7u pd=2.4u ad=0.595p ps=2.4u as=0.595p * Capacitancia para representar carga vista pela saida da porta CL out 0 20f.control.endc.end tran 0.1p 6n plot in out Slide 13.38

Spice Simulations for the Inverter - 2 Simulation Waveforms in tp LH out tp HL t plh =170ps t phl =151ps Slide 13.39

Delay as Function of Very sensitive do Similar in shape to the R eq x curve Source: Rabaey; Chandrakasan; Nikolic, 2003 Slide 13.40

To Minimize Propagation Delay of a Gate Reduce C L Keep the drain diffusion areas as small as possible (to reduce selfloading capacitance) Place fanout gates as close as possible (to reduce routing capacitance) Increase the W/L ratio of the transistors Most powerful and effective design action Caution: it increases diffusion capacitance (and thus, C L ) It also increases gate capacitances (thus increasing the fanout factor of the driving gate) Increase Above certain levels yields only minimal improvements Increases power consumption and dissipation Slide 13.41

The References CMOS Inverter 1. RABAEY, J; CHANDRAKASAN, A.; NIKOLIC, B. Digital Integrated Circuits: a design perspective. 2 nd Edition. Prentice Hall, 2003. ISBN: 0-13-090996-3. 2. WESTE, Neil; HARRIS, David. CMOS VLSI Design: a circuits and systems perspective. Addison-Wesley, 4 th Edition, 2010. ISBN 978-0321547743. Slide 13.42