Contents. 2 Sequences and Series Approximation by Rational Numbers Sequences Basics on Sequences...

Similar documents
The Way of Analysis. Robert S. Strichartz. Jones and Bartlett Publishers. Mathematics Department Cornell University Ithaca, New York

AN INTRODUCTION TO CLASSICAL REAL ANALYSIS

INDEX. Bolzano-Weierstrass theorem, for sequences, boundary points, bounded functions, 142 bounded sets, 42 43

Contents. Preface xi. vii

Real Analysis with Economic Applications. Efe A. Ok PRINCETON UNIVERSITY PRESS I PRINCETON AND OXFORD

Five Mini-Courses on Analysis

An Introduction to Modern Analysis

Contents Ordered Fields... 2 Ordered sets and fields... 2 Construction of the Reals 1: Dedekind Cuts... 2 Metric Spaces... 3

CONTENTS. Preface Preliminaries 1

Measure, Integration & Real Analysis

THEOREMS, ETC., FOR MATH 515

FUNDAMENTALS OF REAL ANALYSIS

HI CAMBRIDGE n S P UNIVERSITY PRESS

Introduction to Functional Analysis With Applications

Analysis Finite and Infinite Sets The Real Numbers The Cantor Set

Notation. General. Notation Description See. Sets, Functions, and Spaces. a b & a b The minimum and the maximum of a and b

Mathematical Analysis

Linear Topological Spaces

STUDY PLAN MASTER IN (MATHEMATICS) (Thesis Track)

Philippe. Functional Analysis with Applications. Linear and Nonlinear. G. Ciarlet. City University of Hong Kong. siajtl

Introduction to Spectral Theory

MATH 310 Course Objectives

Real Analysis Notes. Thomas Goller

Syllabuses for Honor Courses. Algebra I & II

The Foundations of Real Analysis A Fundamental Course with 347 Exercises and Detailed Solutions

MATHEMATICAL ANALYSIS

Course Description - Master in of Mathematics Comprehensive exam& Thesis Tracks

Modern Analysis Series Edited by Chung-Chun Yang AN INTRODUCTION TO COMPLEX ANALYSIS

PMATH 300s P U R E M A T H E M A T I C S. Notes

An Introduction to Complex Function Theory

3 (Due ). Let A X consist of points (x, y) such that either x or y is a rational number. Is A measurable? What is its Lebesgue measure?

CALCULUS SALAS AND HILLE'S REVISED BY GARRET J. ETGEI ONE VARIABLE SEVENTH EDITION ' ' ' ' i! I! I! 11 ' ;' 1 ::: T.

Lecture Notes in Advanced Calculus 1 (80315) Raz Kupferman Institute of Mathematics The Hebrew University

MATHEMATICS. Course Syllabus. Section A: Linear Algebra. Subject Code: MA. Course Structure. Ordinary Differential Equations

Lebesgue Integration on Euclidean Space

Your first day at work MATH 806 (Fall 2015)

A Course in Real Analysis

Part III. 10 Topological Space Basics. Topological Spaces

Theorems. Theorem 1.11: Greatest-Lower-Bound Property. Theorem 1.20: The Archimedean property of. Theorem 1.21: -th Root of Real Numbers

Follow links Class Use and other Permissions. For more information, send to:

An introduction to some aspects of functional analysis

Contents. Set Theory. Functions and its Applications CHAPTER 1 CHAPTER 2. Preface... (v)

Lebesgue Integration: A non-rigorous introduction. What is wrong with Riemann integration?

STAT 7032 Probability Spring Wlodek Bryc

Functional Analysis. Franck Sueur Metric spaces Definitions Completeness Compactness Separability...

Chapter 3: Baire category and open mapping theorems

CHAPTER 1 Prerequisites for Calculus 2. CHAPTER 2 Limits and Continuity 58

STAT 7032 Probability. Wlodek Bryc

Analysis Comprehensive Exam Questions Fall F(x) = 1 x. f(t)dt. t 1 2. tf 2 (t)dt. and g(t, x) = 2 t. 2 t

CALCULUS GARRET J. ETGEN SALAS AND HILLE'S. ' MiIIIIIIH. I '////I! li II ii: ONE AND SEVERAL VARIABLES SEVENTH EDITION REVISED BY \

Algebra 2. Chapter 4 Exponential and Logarithmic Functions. Chapter 1 Foundations for Functions. Chapter 3 Polynomial Functions

Waterloo, ON & Lincoln, NE March, Kenneth R. Davidson Allan P. Donsig

AN INTRODUCTION TO MATHEMATICAL ANALYSIS ECONOMIC THEORY AND ECONOMETRICS

MAT 578 FUNCTIONAL ANALYSIS EXERCISES

Manfred Einsiedler Thomas Ward. Ergodic Theory. with a view towards Number Theory. ^ Springer

ANALYSIS TOOLS WITH APPLICATIONS

Classical Fourier Analysis

van Rooij, Schikhof: A Second Course on Real Functions

MULTIVARIABLE CALCULUS, LINEAR ALGEBRA, AND DIFFERENTIAL EQUATIONS

Calculus from Graphical, Numerical, and Symbolic Points of View, 2e Arnold Ostebee & Paul Zorn

MATH 104 : Final Exam

Topics Covered in Calculus BC

Elementary Point-Set Topology

Notes on Integrable Functions and the Riesz Representation Theorem Math 8445, Winter 06, Professor J. Segert. f(x) = f + (x) + f (x).

Units. Year 1. Unit 1: Course Overview

PROBLEMS. (b) (Polarization Identity) Show that in any inner product space

Mathematics Syllabus UNIT I ALGEBRA : 1. SETS, RELATIONS AND FUNCTIONS

Math 209B Homework 2

Advanced Calculus of a Single Variable

Non-trivial non-archimedean extension of real numbers. Abstract

Introduction to the Mathematics of Medical Imaging

Metrics, Norms, Inner Products, and Operator Theory

UNIVERSITY OF NORTH ALABAMA MA 110 FINITE MATHEMATICS

Contents. 1 Preliminaries 3. Martingales

Classes of Linear Operators Vol. I

II - REAL ANALYSIS. This property gives us a way to extend the notion of content to finite unions of rectangles: we define

Mathematics (MA) Mathematics (MA) 1. MA INTRO TO REAL ANALYSIS Semester Hours: 3

7: FOURIER SERIES STEVEN HEILMAN

Solutions Manual for: Understanding Analysis, Second Edition. Stephen Abbott Middlebury College

Fundamentals of Differential Geometry

Undergraduate Texts in Mathematics. Editors J. H. Ewing F. W. Gehring P. R. Halmos

Notions such as convergent sequence and Cauchy sequence make sense for any metric space. Convergent Sequences are Cauchy

Math General Topology Fall 2012 Homework 11 Solutions

Mathematics 324 Riemann Zeta Function August 5, 2005

BASIC EXAM ADVANCED CALCULUS/LINEAR ALGEBRA

Lebesgue Measure on R n

Mathematical Methods for Engineers and Scientists 1

Foundations of Analysis. Joseph L. Taylor. University of Utah

Theorem 2.1 (Caratheodory). A (countably additive) probability measure on a field has an extension. n=1

Metric Spaces and Topology

Lebesgue Measure on R n

MTG 5316/4302 FALL 2018 REVIEW FINAL

FINITE-DIMENSIONAL LINEAR ALGEBRA

Chapter 2 Metric Spaces

Some Background Material

E. DiBenedetto, Syllabus for Analysis D-12, Chapters I VI (Chapters VII and VIII form a short monographic course)

Lebesgue Measure. Dung Le 1

i. v = 0 if and only if v 0. iii. v + w v + w. (This is the Triangle Inequality.)

Homework in Topology, Spring 2009.

Based on the Appendix to B. Hasselblatt and A. Katok, A First Course in Dynamics, Cambridge University press,

Transcription:

Contents 1 Real Numbers: The Basics... 1 1.1 Notation... 1 1.2 Natural Numbers... 4 1.3 Integers... 5 1.4 Fractions and Rational Numbers... 10 1.4.1 Introduction... 10 1.4.2 Powers and Radicals of Rational Numbers... 11 1.5 Base Representation... 14 1.5.1 The Expansion of a Natural Number in Base b... 15 1.5.2 The Expansion of a Rational Number in Base b... 15 1.6 Real Numbers... 18 1.6.1 The Definition of a Real Number... 18 1.6.2 The Expansion of a Real Number in Base b... 21 1.6.3 The Extended Real Number System, Intervals... 24 1.6.4 Order Properties and the Completeness of R... 25 1.7 Cardinality of Sets... 30 1.7.1 Basics on Cardinality... 30 1.7.2 Cardinality of Z and Q... 34 1.7.3 Cardinality of R... 35 1.7.4 Cardinality of the Set of Real Functions... 38 1.8 Topology of R... 38 1.8.1 Introduction. Open and Closed Sets... 38 1.8.2 Neighborhoods, Closure, Interior... 42 1.8.3 Topology on a Subset... 46 1.8.4 Compactness... 47 1.8.5 Connectedness and Related Concepts... 50 1.9 The Baire Category Theorem in R... 54 2 Sequences and Series... 57 2.1 Approximation by Rational Numbers... 57 2.2 Sequences... 61 2.2.1 Basics on Sequences... 61 xi

xii Contents 2.2.2 Two Particular Sequences: Arithmetic and Geometric Progressions... 69 2.3 More on Sequences... 70 2.4 Series... 73 2.4.1 Introduction... 73 2.4.2 General Criteria for Convergence of Series... 77 2.4.3 Series of Nonnegative Terms... 78 2.4.4 Series of Arbitrary Terms... 81 2.4.5 Rearrangement of Series... 84 2.4.6 Double Sequences and Double Series... 91 2.4.7 Product of Series... 97 2.5 The Euler Number e... 99 2.6 Infinite Products... 105 3 Measure... 109 3.1 Measure... 109 3.1.1 The Lebesgue Outer Measure... 109 3.1.2 The Class of Lebesgue Measurable Sets and the Lebesgue Measure... 114 3.1.3 Approximating Measurable Sets... 122 3.1.4 The Lebesgue Inner Measure... 123 3.1.5 The Cantor Ternary Set... 126 3.1.6 A Nonmeasurable Set... 130 3.1.7 Sequences of Sets... 132 4 Functions... 135 4.1 Functions on Real Numbers... 135 4.1.1 Introduction... 135 4.1.2 The Limit of a Function... 140 4.1.3 Continuous Functions... 147 4.1.4 Differentiable Functions... 160 4.2 Optimization and the Mean Value Theorem... 165 4.3 Algebra of Derivatives... 171 4.4 The Trigonometric Functions... 177 4.5 Finer Analysis of Continuity and Differentiability... 183 4.5.1 Differentiability of the Inverse Mapping... 183 4.5.2 Inverse Goniometric Functions... 184 4.5.3 Monotone Functions... 186 4.5.4 Measurable Functions... 189 4.5.5 Differentiability of Monotone Functions... 196 4.5.6 Functions of Bounded Variation... 201 4.5.7 Absolutely Continuous Functions and Lipschitz Functions 206 4.5.8 Examples... 211 4.5.9 The Intermediate Value Property II... 213

Contents xiii 5 Function Convergence... 215 5.1 Function Sequences... 215 5.1.1 Pointwise and Almost Everywhere Convergence... 215 5.1.2 Uniform Convergence... 219 5.1.3 Convergence in Measure... 237 5.1.4 Local Approximation by Polynomials... 238 5.2 Function Series... 250 5.2.1 Power Series... 250 5.2.2 The Taylor Series... 258 5.2.3 The Exponential and the Logarithmic Functions... 263 5.2.4 The Hyperbolic Functions... 273 5.2.5 The Trigonometric Functions... 274 5.2.6 The Binomial Series... 279 6 Metric Spaces... 283 6.1 Basics... 283 6.2 Mappings Between Metric Spaces... 289 6.3 More Examples (Continued)... 293 6.4 Tietze s Extension Theorem... 294 6.5 Complete Metric Spaces and the Completion of a Metric Space... 296 6.6 Separable Metric Spaces... 302 6.7 Polish Spaces... 306 6.8 Compactness in Metric Spaces... 312 6.8.1 Compact Metric Spaces... 312 6.8.2 Total Boundedness... 317 6.8.3 Continuous Mappings on Compact Spaces... 323 6.8.4 The Lebesgue Number of a Covering... 325 6.8.5 The Finite Intersection Property. Pseudocompactness... 326 6.9 The Baire Category Theorem Continued... 327 6.9.1 The Baire Category Theorem in the Context of Metric Spaces... 327 6.9.2 Some Applications of the Baire Category Theorem... 329 6.10 The Arzelà Ascoli Theorem... 332 6.11 Metric Fixed Point Theory... 333 6.11.1 The Banach Contraction Principle... 335 6.11.2 Continuity of the Fixed Point... 337 7 Integration... 339 7.1 The Riemann Integral... 339 7.1.1 Introduction... 339 7.1.2 The Definition of the Riemann Integral... 342 7.1.3 Properties of the Integral... 350 7.1.4 Functions Defined by Integrals... 355

xiv Contents 7.1.5 Some Applications of the Riemann Integral and the Arzelà Ascoli Theorem to the Theory of Ordinary Differential Equations... 363 7.1.6 Some Applications of the Riemann Integral and the Fixed Point Theory to the Theory of Ordinary Differential and Integral Equations... 367 7.1.7 Mean Value Theorems for the Riemann Integral... 370 7.1.8 Convergence Theorems for Riemann Integrable Functions 372 7.1.9 Change of Variable; Integration by Parts... 375 7.2 Improper Riemann Integrals... 381 7.3 The Lebesgue Integral... 387 7.3.1 Introduction... 387 7.3.2 Step Functions... 389 7.3.3 Upper Functions... 391 7.3.4 Lebesgue Integrable Functions... 394 7.3.5 Convergence Theorems... 396 7.3.6 Measure and Integration... 405 7.3.7 Functions Defined by Integrals... 408 7.3.8 The Space L 1... 410 7.3.9 Riemann versus Lebesgue Integrability, and the Riemann Lebesgue Criterion for Riemann Integrability. 412 7.3.10 The Fundamental Theorem of Calculus for Lebesgue Integration... 421 7.3.11 Integration by Parts... 429 7.3.12 Parametric Lebesgue Integrals... 430 8 Convex Functions... 439 8.1 Basics on Convex Functions... 439 8.2 Some Fundamental Inequalities... 449 8.2.1 Jensen s Inequality... 449 8.2.2 Using the Exponential Function... 450 8.2.3 Using Powers of x (Minkowski s and Hölder s Inequalities) 452 9 Fourier Series... 455 9.1 Introduction... 455 9.2 Some Elementary Trigonometric Identities... 456 9.3 The Fourier Series of 2π-periodic Lebesgue Integrable Functions. 458 9.4 The Riemann Lebesgue Lemma... 463 9.5 The Partial Sums of a Fourier Series and the Dirichlet Kernel... 464 9.6 Convergence of the Fourier Series... 467 9.6.1 Pointwise Convergence of the Fourier Series... 467 9.6.2 Cesàro Convergence of the Fourier Series... 475 9.6.3 Uniform Convergence of the Fourier Series... 478 9.6.4 Convergence of the Fourier Series in 1... 479 9.6.5 Mean Square Convergence of the Fourier Series... 482 9.7 The Fourier Integral... 482

Contents xv 10 Basics on Descriptive Statistics... 487 10.1 Discrete Probability... 487 10.1.1 Introduction... 487 10.1.2 Random Variables... 489 10.1.3 Products of Discrete Probability Spaces... 496 10.1.4 Inequalities... 497 10.2 Distribution Functions... 498 10.2.1 Selected Distributions of Discrete Random Variables... 498 10.2.2 Continuous Random Variables and Their Distribution Functions... 501 11 Excursion to Functional Analysis... 505 11.1 Real Banach Spaces... 506 11.1.1 Spaces with a Norm (Normed Spaces, Banach Spaces)... 506 11.1.2 Operators I... 509 11.1.3 Finite-Dimensional Banach Spaces... 512 11.1.4 Infinite-Dimensional Banach Spaces... 521 11.1.5 Operators II... 524 11.1.6 Finite-Rank and Compact Operators... 524 11.1.7 Sets of Operators... 525 11.2 Three Basic Principles of Linear Analysis... 526 11.2.1 Extending Continuous Linear Functionals... 526 11.2.2 Bounded Sets of Operators... 544 11.2.3 Continuity of the Inverse Operator... 545 11.3 Complex Banach Spaces... 547 11.3.1 The Associated Real Normed Space... 547 11.3.2 Operators... 547 11.3.3 Linear Functionals... 548 11.3.4 Supporting Functionals and Differentiability... 549 11.3.5 Basic Results in the Complex Setting... 549 11.4 Spaces with an Inner Product (Pre-Hilbertian and Hilbert Spaces). 550 11.4.1 Basic Hilbert Space Theory... 551 11.4.2 An Application to the Uniform Convergence of the Fourier Series... 567 11.4.3 Complements to Hilbert Spaces... 569 11.5 Spectral Theory... 574 11.6 Pointwise Topology and Product Spaces... 578 11.7 Excursion to Nonlinear Functional Analysis... 584 11.7.1 Variational Principles... 584 11.7.2 More on Differentiability of Convex and Lipschitz Functions... 587 11.7.3 More on Fixed Point Theorems... 593 11.8 An Application: Periodic Distributions... 594 11.8.1 Introduction... 594 11.8.2 The Basic Idea... 594

xvi Contents 11.8.3 The Basic Definitions... 595 11.8.4 Derivatives of Periodic Distributions... 600 11.8.5 Convergence in PD... 602 11.8.6 Fourier Analysis... 602 11.9 Concluding Remarks to Chapter 11... 612 12 Appendix... 617 12.1 The Set of Natural Numbers... 617 12.2 Integer Numbers... 619 12.3 Rational Numbers... 620 12.4 Real Numbers... 621 12.4.1 The Constructive Approach... 621 12.4.2 The Axiomatic Approach... 623 12.5 The Complex Number System... 626 12.6 Ordering and Choice. Three Fundamental Principles in Set Theory 627 12.6.1 Definitions... 627 12.6.2 Examples... 629 12.6.3 Three Basic Principles... 629 13 Exercises... 631 13.1 Numbers... 631 13.1.1 Set-Theoretical Notations... 631 13.1.2 Natural Numbers... 632 13.1.3 Fractions... 634 13.1.4 Base Representation... 634 13.1.5 Real Numbers... 635 13.1.6 Cardinality of Sets and Ordinal Numbers... 637 13.1.7 Topology of R... 651 13.2 Sequences and Series... 653 13.2.1 Approximation by Rational Numbers... 653 13.2.2 Sequences... 653 13.2.3 Series... 659 13.2.4 The Euler Number e... 664 13.3 Measure... 665 13.3.1 The Lebesgue Outer Measure... 665 13.3.2 The Class of Lebesgue Measurable Sets and the Lebesgue Measure... 665 13.3.3 The Cantor Ternary Set... 668 13.3.4 A Nonmeasurable Set... 669 13.3.5 Sequences of Sets... 669 13.4 Functions... 670 13.4.1 Functions on Real Numbers... 670 13.4.2 Optimization and the Mean Value Theorem... 692 13.4.3 The Trigonometric Functions... 695 13.4.4 Finer Analysis of Continuity and Differentiability... 700

Contents xvii 13.4.5 Function Convergence... 711 13.4.6 Function Series... 720 13.4.7 Metric Spaces... 723 13.5 Integration... 743 13.5.1 The Riemann Integral... 743 13.5.2 Review of Some Frequently used Techniques for calculating Antiderivatives... 756 13.5.3 Improper Riemann Integral... 770 13.5.4 Notes on Vector-Valued Riemann Integration... 772 13.5.5 The Lebesgue Integral... 775 13.5.6 Convex Functions... 792 13.6 Fourier Series... 796 13.7 Basics on Descriptive Statistics... 800 13.8 Excursion to Functional Analysis... 801 13.8.1 Banach Spaces... 801 13.8.2 Operators... 805 13.8.3 Finite-Dimensional Spaces... 810 13.8.4 Infinite-Dimensional Spaces... 811 13.8.5 Operators II... 813 13.8.6 Three Principles of Linear Analysis... 816 13.8.7 Spaces with an Inner Product (Pre-Hilbertian and Hilbert spaces)... 823 13.8.8 Spectral Theory... 825 13.8.9 Pointwise Topology and Product Spaces... 826 13.8.10 Periodic Distributions... 827 References... 831 Author Index... 835 General Index... 839 Symbol Index... 861

http://www.springer.com/978-3-319-12480-3