Bernd Finkbeiner Date: October 25, Automata, Games, and Verification: Lecture 2

Similar documents
4 Deterministic Büchi Automata

Non Deterministic Automata. Linz: Nondeterministic Finite Accepters, page 51

Chapter 2 Finite Automata

Theory of Computation Regular Languages. (NTU EE) Regular Languages Fall / 38

Finite Automata. Informatics 2A: Lecture 3. Mary Cryan. 21 September School of Informatics University of Edinburgh

Automata Theory 101. Introduction. Outline. Introduction Finite Automata Regular Expressions ω-automata. Ralf Huuck.

Theory of Computation Regular Languages

Non-Deterministic Finite Automata. Fall 2018 Costas Busch - RPI 1

Lecture 08: Feb. 08, 2019

a,b a 1 a 2 a 3 a,b 1 a,b a,b 2 3 a,b a,b a 2 a,b CS Determinisitic Finite Automata 1

CS:4330 Theory of Computation Spring Regular Languages. Equivalences between Finite automata and REs. Haniel Barbosa

Deterministic Finite Automata

Non Deterministic Automata. Formal Languages and Automata - Yonsei CS 1

Good-for-Games Automata versus Deterministic Automata.

On Determinisation of History-Deterministic Automata.

Fundamentals of Computer Science

Finite Automata. Informatics 2A: Lecture 3. John Longley. 22 September School of Informatics University of Edinburgh

Non-deterministic Finite Automata

Converting Regular Expressions to Discrete Finite Automata: A Tutorial

Anatomy of a Deterministic Finite Automaton. Deterministic Finite Automata. A machine so simple that you can understand it in less than one minute

Non-Deterministic Finite Automata

Languages & Automata

Formal Language and Automata Theory (CS21004)

Speech Recognition Lecture 2: Finite Automata and Finite-State Transducers. Mehryar Mohri Courant Institute and Google Research

1 Nondeterministic Finite Automata

Worked out examples Finite Automata

CHAPTER 1 Regular Languages. Contents

Finite Automata-cont d

More on automata. Michael George. March 24 April 7, 2014

AUTOMATA AND LANGUAGES. Definition 1.5: Finite Automaton

CHAPTER 1 Regular Languages. Contents. definitions, examples, designing, regular operations. Non-deterministic Finite Automata (NFA)

Chapter Five: Nondeterministic Finite Automata. Formal Language, chapter 5, slide 1

Introduction to ω-autamata

CS 267: Automated Verification. Lecture 8: Automata Theoretic Model Checking. Instructor: Tevfik Bultan

Non-deterministic Finite Automata

Speech Recognition Lecture 2: Finite Automata and Finite-State Transducers

CSCI 340: Computational Models. Kleene s Theorem. Department of Computer Science

Regular expressions, Finite Automata, transition graphs are all the same!!

Let's start with an example:

80 CHAPTER 2. DFA S, NFA S, REGULAR LANGUAGES. 2.6 Finite State Automata With Output: Transducers

Java II Finite Automata I

Finite-State Automata: Recap

Harvard University Computer Science 121 Midterm October 23, 2012

CS 275 Automata and Formal Language Theory

Minimal DFA. minimal DFA for L starting from any other

CS 311 Homework 3 due 16:30, Thursday, 14 th October 2010

Probabilistic Model Checking Michaelmas Term Dr. Dave Parker. Department of Computer Science University of Oxford

CS375: Logic and Theory of Computing

Lecture 9: LTL and Büchi Automata

Chapter 1, Part 1. Regular Languages. CSC527, Chapter 1, Part 1 c 2012 Mitsunori Ogihara 1

Formal Methods in Software Engineering

Myhill-Nerode Theorem

11.1 Finite Automata. CS125 Lecture 11 Fall Motivation: TMs without a tape: maybe we can at least fully understand such a simple model?

1. For each of the following theorems, give a two or three sentence sketch of how the proof goes or why it is not true.

CS375: Logic and Theory of Computing

CMPSCI 250: Introduction to Computation. Lecture #31: What DFA s Can and Can t Do David Mix Barrington 9 April 2014

3 Regular expressions

CS 301. Lecture 04 Regular Expressions. Stephen Checkoway. January 29, 2018

NFAs and Regular Expressions. NFA-ε, continued. Recall. Last class: Today: Fun:

Designing finite automata II

Assignment 1 Automata, Languages, and Computability. 1 Finite State Automata and Regular Languages

CS103B Handout 18 Winter 2007 February 28, 2007 Finite Automata

Regular Expressions (RE) Regular Expressions (RE) Regular Expressions (RE) Regular Expressions (RE) Kleene-*

1.3 Regular Expressions

Convert the NFA into DFA

Formal Languages and Automata

Nondeterministic Biautomata and Their Descriptional Complexity

Today s Topics Automata and Languages

Automata and Languages

Types of Finite Automata. CMSC 330: Organization of Programming Languages. Comparing DFAs and NFAs. Comparing DFAs and NFAs (cont.) Finite Automata 2

Homework 4. 0 ε 0. (00) ε 0 ε 0 (00) (11) CS 341: Foundations of Computer Science II Prof. Marvin Nakayama

Deterministic Finite-State Automata

Section: Other Models of Turing Machines. Definition: Two automata are equivalent if they accept the same language.

Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2018

Some Theory of Computation Exercises Week 1

CDM Automata on Infinite Words

CISC 4090 Theory of Computation

Talen en Automaten Test 1, Mon 7 th Dec, h45 17h30

CMSC 330: Organization of Programming Languages

Formal languages, automata, and theory of computation

CMSC 330: Organization of Programming Languages. DFAs, and NFAs, and Regexps (Oh my!)

1.4 Nonregular Languages

Chapter 4 Regular Grammar and Regular Sets. (Solutions / Hints)

Types of Finite Automata. CMSC 330: Organization of Programming Languages. Comparing DFAs and NFAs. NFA for (a b)*abb.

Nondeterminism. Nondeterministic Finite Automata. Example: Moves on a Chessboard. Nondeterminism (2) Example: Chessboard (2) Formal NFA

Coalgebra, Lecture 15: Equations for Deterministic Automata

Automata, Games, and Verification

CS 330 Formal Methods and Models

Name Ima Sample ASU ID

Lexical Analysis Finite Automate

CS415 Compilers. Lexical Analysis and. These slides are based on slides copyrighted by Keith Cooper, Ken Kennedy & Linda Torczon at Rice University

DFA Minimization and Applications

Closure Properties of Regular Languages

5.1 Definitions and Examples 5.2 Deterministic Pushdown Automata

Prefix-Free Subsets of Regular Languages and Descriptional Complexity

Kleene s Theorem. Kleene s Theorem. Kleene s Theorem. Kleene s Theorem. Kleene s Theorem. Kleene s Theorem 2/16/15

In-depth introduction to main models, concepts of theory of computation:

State Minimization for DFAs

This lecture covers Chapter 8 of HMU: Properties of CFLs

Lecture 09: Myhill-Nerode Theorem

Transcription:

Bernd Finkeiner Dte: Octoer 25, 2012 Automt, Gmes, nd Verifiction: Lecture 2 2 Büchi Automt Definition1 AnondeterministicBüchiutomtonAoverlphetΣistuple(S,I,T,F): S : finitesetof sttes I S:susetof initilsttes T S Σ S : setof trnsitions F S : susetof cceptingsttes Now we define how Büchi utomton uses n infinite word s input. Notice tht we do not refer to cceptnce in this definition. Definition2 A run of nondeterministic Büchi utomtonaon n infinite input word α = σ 0 σ 1 σ 2...isninfinitesequenceofsttess 0,s 1,s 2,...suchthtthefollowinghold: s 0 I forll i ω,(s i,σ i,s i+1 ) T Exmple: A D B C In the utomton shown the set of sttes re S={A,B,C,D}, the initil set of sttes re I= {A} (indicted with pointing rrow with no source), the trnsitions T={(A,,B),(B,,C), (C,,D),(D,,A)}rethereminingrrowsinthedigrm,ndthesetofcceptingsttesis F ={D}(doule-lined stte circle). Oninput...theBüchiutomtonshownhsonlytherun: ABCDABCDABCD...

Determinism is property of mchines tht cn only rect in unique wy to their input. The following definition mkes this cler for Büchi utomt. Definition 3 A Büchi utomton A is deterministic when T is prtil function(with respect to the next input letter nd the current stte): σ Σ, s,s 0,s 1 S.(s,σ,s 0 ) T nd(s,σ,s 1 ) T s 0 = s 1 nd I is singleton. (By Büchi utomton we usully men nondeterministic Büchi utomton.) Definition4 Theinfinitysetofninfiniteword α Υ ω oversomelphet Υ isthesetin(α)= {υ Υ i j. j i ndα(j)=υ} Definition5 ABüchiutomtonAcceptsninfinitewordαif: thereisrunr=s 0 s 1 s 2...ofαonA r isccepting: In(r) F The lnguge recognized y Büchi utomton A is defined s follows: L(A)={α Σ ω Acceptsα} Exmple: The utomton from the previous exmple hs the lnguge{...}. Comment: A deterministic Büchi utomtona=(s,i,t,f) defines prtil function 1 from Σ ω tosetofrunsr S ω. Definition6 An ω-lnguge L is Büchi recognizle if there is Büchi utomtonasuch tht L(A)=L. Exmple:Thesingletonω-lngugeL={σ}withσ=...isnotBüchirecognizle. (Note tht ll finite lnguges of finite words re NFA-recognizle. Anlog result does not hold for Büchi-utomt) SupposethereisBüchiutomtonAwithL(A)=L. Letr=s 0 s 1...encceptingrunonσ. SinceF isfinite,thereexists k,k ωwith k<k nds k = s k F. r = r 0...r k 1(r k...r k 1) ω isncceptingrunon σ = σ(0)...σ(k 1)(σ(k)...σ(k 1)) ω. Hence,σ L(A). Contrdiction. Definition 7 A Büchi utomton is complete if its trnsition reltion contins function: s S,σ Σ. s S.(s,σ,s ) T 1 Aprtilfunctionisfunctionthtisnotdefinedonlloftheelementsofitsdomin.

Theorem1 For every Büchi utomtona, there is complete Büchi utomtona such tht L(A)=L(A ). WedefineA intermsofthecomponentss,i,t,f ofa: S = S {f} f new I = I T = T {(s,σ, f) / s.(s,σ,s ) T} {(f,σ, f) σ Σ} F = F The runs ofa re superset of those ofasince we hve dded sttes nd trnsitions. Furthermore, on ny infinite input word α the ccepting runs ofanda correspond, ecusenyrunthtreches f stysin f,ndsince f/ F,suchrunisnotccepting. Exmple: Completing the utomton from the previous exmples we otin the following utomton: A B D f C, Unless we specify otherwise, we will only consider complete utomt when we prove results. Comment:AcompletedeterministicBüchiutomtonA=(S,I,T,F)myeviewedstotl functionfrom Σ ω to S ω. Acomplete(possilynondeterministic)Büchiutomtonproducest lestonerunforeveryσ ω inputword. 3 ω-regulr Lnguges Definition 8 The ω-regulr expressions re defined s follows. IfRisnregulrexpressionwhereε/ L(R), thenr ω isnω-regulrexpression. L(R ω )=L(R) ω wherel ω ={u 0 u 1... u i L, u i >0forll i ω}forl Σ.

IfRisregulrexpressionndU isnω-regulrexpression, thenr U isnω-regulrexpression. L(R U)=L(R) L(U) wherel 1 L 2 ={r u r L 1,u L 2 }forl 1 Σ,L 2 Σ ω. IfU 1 ndu 2 reω-regulrexpressions, thenu 1 +U 2 isnω-regulrexpression. L(U 1 +U 2 )=L(U 1 ) L(U 2 ). Definition9 An ω-regulr lnguge is finite union of ω-lnguges of the form U V ω where U,V Σ reregulrlnguges. Theorem2 IfL 1 ndl 2 rebüchirecognizle,thensoisl 1 L 2. LetA 1 nda 2 ebüchiutomtthtrecognizel 1 nd L 2,respectively. Weconstructn utomtona forl 1 L 2 : S = S 1 S 2 (w.l.o.g. wessumes 1 S 2 = ); I = I 1 I 2 ; T = T 1 T 2 ; F = F 1 F 2. L(A ) L(A 1 ) L(A 2 ): For α L(A ), we hve n ccepting run r=s 0 s 1 s 2... of α in A. Ifs 0 S 1,thenr isncceptingrunona 1,otherwises 0 S 2 ndr isncceptingrun ona 2. L(A ) L(A 1 ) L(A 2 ): For i {1,2} nd α L(A i ), there is n ccepting run r= s 0 s 1 s 2...onA i. Therunr iscceptingforαina. Theorem3 IfL 1 ndl 2 rebüchirecognizle,thensoisl 1 L 2. WeconstructnutomtonA froma 1 nda 2 : S = S 1 S 2 {1,2} I = I 1 I 2 {1} T ={((s 1,s 2,1),σ,(s 1,s 2,1)) (s 1,σ,s 1 ) T 1,(s 2,σ,s 2 ) T 2,s 1 / F 1 } {((s 1,s 2,1),σ,(s 1,s 2,2)) (s 1,σ,s 1 ) T 1,(s 2,σ,s 2 ) T 2,s 1 F 1 } {((s 1,s 2,2),σ,(s 1,s 2,2)) (s 1,σ,s 1 ) T 1,(s 2,σ,s 2 ) T 2,s 2 / F 2 } {((s 1,s 2,2),σ,(s 1,s 2,1)) (s 1,σ,s 1 ) T 1,(s 2,σ,s 2 ) T 2,s 2 F 2 } F ={(s 1,s 2,2) s 1 S 1,s 2 F 2 } L(A )=L(A 1 ) L(A 2 ): r =(s1 0,s0 2,t0 )(s1 1,s1 2,t1 )... isrunofa oninputword σ iff r 1 = s1 0s1 1... isrunof A 1 onσ ndr 2 = s2 0s1 2...isrunofA 2 onσ.

r iscceptingiffr 1 iscceptingndr 2 isccepting. Theorem4 IfL 1 isregulrlngugendl 2 isbüchirecognizle,thenl 1 L 2 isbüchi-recognizle. LetA 1 e finite-word utomton tht recognizes L 1 nda 2 e Büchi utomton tht recognizesl 2. Weconstruct: S = S 1 S 2 (w.l.o.g. wessumes 1 S 2 = ); I ={ I 1 ifi 1 F 1 = I 1 I 2 otherwise; T = T 1 T 2 {(s,σ,s ) (s,σ, f) T 1, f F 1,s I 2 }; F = F 2. Theorem5 IfLisregulrlngugethenL ω isbüchirecognizle. LetAefinitewordutomton;letw.l.o.g. ε/ L(A). Step 1: Ensure tht ll initil sttes hve no incoming trnsitions. We modifyas follows: S = S {s new }; I ={s new }; T = T {(s new,σ,s ) (s,σ,s ) T forsomes I}; F = F. This modifiction does not ffect the lnguge of A. Step2: Addloop: S = S ;I = I ; T = T {(s,σ,s new (s,σ,s ) T nds F }; F = I. L(A ) L(A ) ω : Assumeα L(A )nds 0 s 1 s 2...isncceptingrunforαinA. Hence,s i = s new F = I forinfinitelymnyindices i: i 0,i 1,i 2,... ThisprovidesseriesofrunsinA : runs 0 s 1...s i1 1s onw 1 = α(0)α(1)...α(i 1 1)forsomes F ; runs i1 s i1 +1...s i2 1s onw 2 = α(i 1 )α(i 1 +1)...α(i 2 1)forsomes F ;

... Thisyieldsw k L(A )forevery k 1. Hence,α L(A ) ω. L(A ) L(A ) ω : Letα=w 1 w 2 w 3 Σ ω suchthtw k L(A )forll k 1. Forech k,wechoosencceptingruns0 ksk 1 sk 2...sk n k ofa onw k. Hence,s0 k I ndsn k k F forll k 1. Thus, s0...s 1 1 n 1 1s0...s 2 2 n 2 1s0...s 3 3 n 3 1... isncceptingrunonαina. Hence,α L(A ). Theorem 6(Büchi s Chrcteriztion Theorem(1962)) An ω-lnguge is Büchi recognizle iff it is ω-regulr.