Conventional 14 C Age ± error (y BP) Material Dated. 3 Squirrel R GSC-6321 basal woody peat 3010 ± (1)

Similar documents
DATA REPOSITORY ITEM FOR: Expansion of alpine glaciers in Pacific North America in the first millennium A.D.

Paleoecological and Carbon Accumulation Dynamics of a Fen Peatland in the Hudson Bay Lowlands, Northern Ontario, from the Mid-Holocene to Present

Permafrost and peatland carbon sink capacity with increasing latitude

Long-Term Patterns of Coastal Response to Changing Land Use and Climate: Examples from the Atlantic and Gulf Coastal Plains

7.5 to ca./< 4 ka >7.5 & ca./< 4 ka

Grade 9 Social Studies Canadian Identity. Chapter 2 Review Canada s Physical Landscape

Landform Regions of Canada

SUPPLEMENTARY INFORMATION

Extent of Periglacial = Global Permafrost Permafrost: Soil and/or rock where temperatures remain below 0 degrees C for 2 or more years.

Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and

CANADA S LANDFORM REGIONS

The elevations on the interior plateau generally vary between 300 and 650 meters with

Proxy-based reconstructions of Arctic paleoclimate

Extended abstract No. 281 PEAT INCREMENT IN THE OLD MIRES OF THE GREEN BELT OF FENNOSCANDIA IN KUHMO - KOSTAMUS WATERSHED AREA

Preliminary report on ice-flow history, deglacial chronology, and surficial geology, Foxe Peninsula, southwest Baffin Island

Lake Levels and Climate Change in Maine and Eastern North America during the last 12,000 years

Chronology, Paleoecology and Stratigraphy of Late Pleistocene Sediments from the Hudson Bay Lowlands, Canada

Social Studies 9 UNIT 2 GEOGRAPHIC INFLUENCES ON IDENTITY: PLACE AND PEOPLE

EQ: Discuss main geographic landforms of the U.S. & Canada and examine varied landforms in relation to their lifestyles.

Moosehead Lake and the Tale of Two Rivers

GEOCHEMISTRY OF LOESS ON LONG ISALAND Vesna Kundić and Gilbert N. Hanson Department of Geosciences Stony Brook University

Late Quaternary changes in the terrestrial biosphere: causes and consequences

Markville. CGC 1DL/PL Geography. Geography of Canada. Natural Environment Unit Test

Evidence for distribution and thickness of Athens Sub-episode and older sediments in Ottawa County, Michigan

A. S. Dyke Terrain Sciences Division, Geological Survey of Canada, Ottawa, Ontario, Canada. Short title: ARCTIC CLIMATE VARIABILITY DURING HOLOCENE

UNRAVELING THE HISTORY OF A LANDSCAPE: Using geomorphology, tephrochronology, and stratigraphy. Photo by: Josh Roering

Records of climate and vegetation change over time in an area are found from many

Surficial geology and geomorphology of southern Hall Peninsula,

The Pennsylvanian. Climate gone wild

Chapter 6, Part Colonizers arriving in North America found extremely landscapes. It looked different to region showing great.

ACKNOWLEDGMENTS. A. Oklahoma

QUATERNARY AND GLACIAL GEOLOGY

Carbon accumulation in peatlands of West Siberia over the last 2000 years

The Montauk Peninsula: Data and Preliminary Interpretations of the Ditch Plains Area Introduction

The Holocene.

(Dis)Assembly of the Great Lakes Forests

Test 2. Field Trips. BRING LUNCH & drink. Bathrooms few & far between. In lieu of lab on 24th and 26 th March

THE PALEOENVIRONMENTAL SEQUENCE OF THE MIRADOR BASIN IN PETÉN. David Wahl Thomas Schreiner Roger Byrne

7.3 Paleoenvironmental History of Jamaica Bay Marshes, New York

ACTIVE LAYER MONITORING IN NORTHERN WEST SIBERIA

Changes in the Bathymetry and Volume of Glacial Lake Agassiz between 9200 and CyrB.P.

Facies Reconstruction of a Late Pleistocene Cypress Forest Discovered on the Northern Gulf of Mexico Continental Shelf

Terms. divide headwaters tributary fall line fishery

Mudanças paleo-hidrológicas, cronologia de eventos e dinâmica sedimentar no Quaternário da Bacia do Pantanal

Stratigraphy of three exploratory oil-well cores in the Hudson Bay Lowland, northeastern Manitoba (parts of NTS 54B10, F8, G1) by M.P.B.

The Impact of Changing Winds on Estuarine Evolution, Copano Bay, TX

PUBLICATIONS Report of Activities

Unit 2. United States Physical Geography

PUBLICATIONS. Global Biogeochemical Cycles. The stoichiometry of carbon and nutrients in peat formation RESEARCH ARTICLE 10.

PROGRESS IN 3D GEOLOGICAL MAPPING IN THE EASTERN PRAIRIES OF CANADA AND THE USA

Sensitivity of Northern Peatland Carbon Dynamics to Holocene Climate Change

TR Technical Report. A coupled regolith-lake development model applied to the Forsmark site. Lars Brydsten, Mårten Strömgren Umeå University

Using High-Resolution Airphotos for Assessing Landscape Change. Torre Jorgenson

Final Report on Development of Deep Aquifer Database and Preliminary Deep Aquifer Map

Landforms in Canada. Canada is made up of three dis;nct types of landforms: Canadian Shield Highlands Lowlands

Reference: climate data for Prince George and other locations at the back of this handout

Late Quaternary Vegetation And Climate Change In The Panama Basin: Palynological Evidence From Marine Cores ODP 677B And TR [An Article From:

GSA DATA REPOSITORY

Global Patterns Gaston, K.J Nature 405. Benefit Diversity. Threats to Biodiversity

Through their research, geographers gather a great deal of data about Canada.

Tropical Moist Rainforest

Centre for Archaeological Research, University of Auckland, Private Bag 92019, Auckland, New Zealand.

C) use of nuclear power D) number of volcanic eruptions

Boreal Forests. Boreal, Canadian Rockies, Alberta. Taiga, Siberia

CLIMATE CHANGE, CATASTROPHE AND THE TIDES OF HISTORY. 1. CLIMATE THE LONG VIEW.

Geomorphology Of The Chilliwack River Watershed Landform Mapping At North Cascades National Park Service Complex, Washington By National Park Service

A SURVEY OF HYDROCLIMATE, FLOODING, AND RUNOFF IN THE RED RIVER BASIN PRIOR TO 1870

What is the future of Amazon

Criteria for delineating a new boundary for the Fisher Bay Park Reserve, Manitoba

Near-surface permafrost aggradation in Northern Hemisphere peatlands shows regional and global trends during the past 6000 years

PALEO- CLIMATE MODULE

Back on the horse: Recent developments in archaeological and palaeontological research in Alberta. 1. Introduction

Development of the Global Environment

Guide to the Henry Paul Hansen Papers, Series Outline

The Cassiar Mountains

Effect of mine dewatering on peatlands of the James Bay Lowland: the role of bioherms

TOPOGRAPHIC RELIEF MAP of NYS. LANDFORMS of NYS. Landforms. Creation of NYS Landforms 9/22/2011

Air sea temperature decoupling in western Europe during the last interglacial glacial transition

Plate-boundary earthquakes and tsunamis of the past 5500 yr, Sixes River estuary, southern Oregon

6. What has been the most effective erosive agent in the climate system? a. Water b. Ice c. Wind

PHYTOG~EOGRAPHICAL REGIONS OF LABRADOR

BAKER LAKE. Strlalton direction known,unknown, locollon ot centre of sfoff ml

HOLOCENE FIRE RECONSTRUCTIONS FROM THE NORTHWESTERN U.S.: AN EXAMINATION AT MULTIPLE TIME SCALES

Education Brown University Geological Sciences Ph.D., 2001 Brown University Geological Sciences Sc.M., 1997 The Colorado College Geology B.A.

HIGH-RESOLUTION 14C DATING OF ORGANIC DEPOSITS USING NATURAL ATMOSPHERIC 14C VARIATIONS

Postglacial climate, disturbance and permafrost peatland dynamics on the Seward Peninsula, Western Alaska

Use of SWAT to Scale Sediment Delivery from Field to Watershed in an Agricultural Landscape with Depressions

HIGH-PRECISION INTERCOMPARISON AT ISOTRACE

A Perspective on a Three Dimensional Framework for Canadian Geology

Sutherland et al: Glacial chronology, NZ

2/23/2009. Visualizing Earth Science. Chapter Overview. Deserts and Drylands. Glaciers and Ice Sheets

Supplement of Eastern Andean environmental and climate synthesis for the last 2000 years BP from terrestrial pollen and charcoal records of Patagonia


DATING OF CALCAREOUS TUFA FROM DIFFERENT ENVIRONMENTS

Supplementary Figure 1. New downcore data from this study. Triangles represent the depth of radiocarbon dates. Error bars represent 2 standard error

Holocene dune reactivation along the northern Curonian Spit: geological, paleoecological, and archaeological implications

Evidence for Permafrost on Long Island

Climate Change. Unit 3

Listing of Sessions per INQUA Commission

Guido Grosse in collaboration with Katey Walter, Lawrence Plug, Vladimir Romanovsky, Mary Edwards, Lee Slater, Meghan Tillapaugh and Melanie Engram

Transcription:

Table 1. Location, basal date, and areal carbon mass of peat cores located in the Hudson Bay Lowlands, Canada (HBL), sorted by latitude. All conventional 14 C dates were re-calibrated with the IntCal09 calibration curve 25. New HBL basal peat dates (n=33) contributed by the authors, appear in bold. Note: *Basal peat depth not identified in reference. **Carbon content determined via loss-on-ignition, at a level of 48 % carbon. ***Areal carbon mass determined by direct measurement of complete peat profiles (n=38), including samples (N) 10, 12, 40-44, 52-62, 64-66, 68-71, 83-86, 89-92, 101, 102, 106, 128. If peat physical data were not available (n=62), total carbon mass was estimated using a regression model (see methods). N 3 Squirrel R 50.07-83.88 173 278 GSC-6321 basal woody peat 3010 ± 60 3210 3010-3360 68 (1) 7 Harricana R 50.70-79.33 59 276 Qu-498 wood base of peat 4200 ± 120 4720 4420-5210 88 (2) 8 Birthday R 50.70-79.33 59 218 Y-1164 basal peat 4110 ± 100 4640 4320-4860 87 (3) 9 Birthday R 50.72-79.33 50 200 GSC-1493 basal peat 3920 ± 130 4350 3980-4810 83 (4) 10 KR3A** 50.74-84.60 123 271 UGAMS-12713 wood fragments 6020 ± 30 6860 6760-6950 126 Current Study 12 PL101 50.94-80.33 45 264 UGAMS-12711 2840 ± 30 2950 2870-3060 109 Current Study 13 Old Man bog 51.03-84.53 97 420 XXX-06b basal peat 5980 ± 100 6830 6570-7160 115 (5) 14 Oldman bog-8502 51.07-84.50 99 445 Beta-42381 basal peat 5920 ± 90 6750 6500-6960 114 (6) 15 Jaab L site 51.15-83.05 108 353 WAT-2571 basal peat 5560 ± 110 6360 6030-6640 109 (7) 17 Sesi M. SWF-8506A 51.23-83.03 102 149 Beta-54594 basal peat 5200 ± 60 5970 5760-6180 104 (6) 18 Sesi-bog-9204 51.25-83.33 90 220 Beta-64909 basal peat 5220 ± 90 6000 5750-6260 104 (6) 19 Sesi-bog-INT-9205 51.27-83.30 86 234 Beta-66732 basal peat 5260 ± 70 6050 5910-6260 105 (6) 20 Rupert R 51.36-78.43 46 116 GSC-5018 basal peat 5370 ± 70 6150 5960-6290 106 (8) 21 Rupert R 51.36-78.43 46 184 GSC-5019 basal peat 5830 ± 70 6640 6450-6790 112 (8) 22 Rupert R 51.37-78.43 46 187 GSC-5016 basal peat 5350 ± 60 6130 5990-6280 106 (8) 23 Rupert R 51.37-77.75 119 300 Qu-494 wood base of peat 5920 ± 100 6750 6490-7000 114 (2) 24 Rupert R 51.37-77.75 119 301 Qu-493 basal peat 5020 ± 100 5770 5590-5990 101 (9) 25 Albany Forks 51.38-84.80 162 412 GSC-831 basal peat 7140 ± 170 7970 7670-8320 129 (10)

26 Cheepay SFen-9211 51.38-83.37 80 127 Beta-64920 basal peat 4550 ± 70 5190 4970-5460 94 (6) 27 Cheepay bog-9212 51.38-83.37 80 127 Beta-66736 basal peat 3700 ± 70 4040 3850-4240 79 (6) 28 Albany R-8501 51.42-83.58 60 264 Beta-44537 basal peat 4810 ± 70 5530 5320-5660 98 (6) 29 Cheepay SFen-9213 51.42-83.37 81 104 Beta-64921 basal peat 3910 ± 80 4340 4090-4570 83 (6) 30 Albany Forks 51.42-84.80 162 450 GSC-885 basal peat 5820 ± 150 6640 6300-6980 112 (10) 31 Coastal fen site 51.47-80.62 9 81 WAT-2541 basal peat 1090 ± 70 1010 800-1180 40 (7) 32 Carling L site 51.50-81.67 68 258 WAT-2543 basal peat 4110 ± 70 4640 4440-4830 87 (7) 33 Interior fen site 51.51-81.88 72 125 WAT-2542 basal peat 1960 ± 70 1910 1730-2110 52 (7) 34 Kinosheo L, 300 51.55-81.83 68 98 WAT-2549 basal peat 2580 ± 80 2630 2370-2850 61 (7) 35 Kinosheo L, 100 51.55-81.83 68 98 WAT-2554 basal peat 2870 ± 80 3010 2790-3240 66 (7) 36 Kinosheo L, 200 51.55-81.83 68 138 WAT-2556 basal peat 3450 ± 70 3720 3490-3900 75 (7) 37 Kinosheo L, 300 51.55-81.83 68 218 WAT-2557 basal peat 3910 ± 70 4340 4100-4520 83 (7) 38 Kinosheo L, 390 51.55-81.83 68 265 WAT-2572 basal peat 4110 ± 80 4640 4440-4830 87 (7) 39 Kinosheo L, 490 51.55-81.83 68 253 WAT-2567 basal peat 3160 ± 70 3390 3220-3560 71 (7) 40 KJ101 51.55-81.82 68 297 UGAMS-12719 bryophyte 4100 ± 25 4610 4520-4810 130 Current Study 41 Kinosheo L Bog** 51.55-81.81 68 265 TO-4318 wood near basal 4000 ± 80 4480 4240-4810 85 (11) 42 KJ4-3 51.59-81.78 66 131 UGAMS-12717 wood fragments 3630 ± 25 3940 3870-4070 71 Current Study 43 KJ3-3 51.59-81.79 65 176 44 KJ2-3 51.59-81.76 65 246 97825 97824 wood + herb stems wood + herb stems 4170 ± 20 4720 4620-4830 80 Current Study 4130 ± 25 4860 4840-4960 99 Current Study 45 Sesi M SFen-8505A 51.62-82.28 69 166 Beta-53064 basal peat 5370 ± 80 6150 5950-6300 106 (6) 46 Belek L bog-8507a 51.62-82.28 69 236 Beta-54598 basal peat 3960 ± 60 4420 4180-4780 84 (6)

47 Belec L Int 9210A 51.62-82.28 69 98 Beta-66733 basal peat 4010 ± 80 4500 4240-4810 85 (6) 48 Belec L-fen-9210B 51.62-82.28 69 109 Beta-66735 basal peat 3840 ± 70 4250 4000-4430 82 (6) 49 Wabassie bog-9214 51.72-83.63 75 209 Beta-64925 basal peat 4500 ± 90 5140 4870-5450 93 (6) 50 Blackbear-8508A 51.72-83.23 62 223 Beta-45905 basal peat 3730 ± 50 4080 3930-4240 80 (6) 51 Albany R 52.25-81.58 3 96 WAT-1504 basal peat 1350 ± 70 1270 1090-1390 44 (1) 52 D001 52.67-84.02 92 231 Beta-310877 bulk peat 5240 ± 30 5980 5920-6180 102 Current Study 53 D002 52.71-84.00 91 219 Beta-310878 bulk peat 5080 ± 30 5810 5750-5910 83 Current Study 54 D003 52.76-84.14 92 223 Beta-310879 bulk peat 5100 ± 30 5810 5750-5920 80 Current Study 55 D200 52.62-84.12 118 240 Beta-310880 bulk peat 5420 ± 30 6240 6190-6290 84 Current Study 56 D201 52.72-84.25 104 201 Beta-310881 bulk peat 4400 ± 30 4960 4870-5210 106 Current Study 57 D202 52.71-84.32 105 215 Beta-310882 bulk peat 5060 ± 30 5820 5740-5900 99 Current Study 58 D204 52.54-84.58 143 129 Beta-310883 bulk peat 2900 ± 30 3740 2950-3160 64 Current Study 59 D206 52.65-84.58 142 257 Beta-310884 bulk peat 6300 ± 30 7220 7160-7290 105 Current Study 60 VM4-5 52.70-84.18 103 286 UGAMS-11673 wood fragment 5530 ± 25 6320 6290-6400 108 Current Study 61 VM4-3 52.71-84.18 103 304 Beta-281004 conifer fragments 5890 ± 40 6710 6570-6580 122 (12) 62 VM4-1 52.71-84.19 105 311 UGAMS-12718 needles; wood 5550 ± 25 6340 6300-6400 126 Current Study 63 MS15 R2 52.71-84.17 102 254 94010 wood fragements 5745 ± 20 5640 6480-6630 100 Current Study 64 VM3-3 52.71-84.17 102 242 Beta-281777 conifer needles 5640 ± 40 6420 6320-6490 104 (13) 65 VM3-2 52.71-84.17 102 262 UGAMS-12716 wood fragments 5620 ± 25 6400 6310-6450 127 Current Study 66 VM3-5 52.71-84.17 102 232 UGAMS-11672 wood fragments 5750 ± 25 6550 6480-6640 139 Current Study 67 TS01 52.72-83.94 86 218 94011 seeds 5140 ± 20 5910 5770-5940 103 Current Study

68 VM1-3 52.72-83.94 86 210 UGAMS-12715 69 VM2-1 52.72-83.94 86 211 UGAMS-12710 herbaceous 4390 ± 20 4940 4870-5040 98 Current Study 4470 ± 25 5180 4980-5290 85 Current Study 70 VM2-3 52.72-83.94 86 207 UGAMS-11426 wood 4100 ± 30 4610 4450-4810 90 Current Study 71 VM2-5 52.72-83.94 86 180 UGAMS-11674 wood fragments 4980 ± 25 5700 5640-5850 84 Current Study 72 IB wetland 52.73-77.77 88 188 Beta-254946 basal peat 4920 ± 40 5650 5590-5730 100 (14) 73 OFL wetland 52.78-77.51 102 207 Beta-251799 basal peat 4970 ± 40 5700 5600-5880 100 (14) 74 BF 52.73-78.50 50 72 Beta-251816 Picea needles, conifer bark 110 ± 40 120 (-4)-270 29 (14) 78 Attawapaskat 53.12-85.42 117 198 GSC-31 basal peat 5670 ± 110 6470 6280-6730 110 (15) 79 Attawapiskat R 53.13-85.30 108 128 GrN-1925 basal peat 4940 ± 80 5690 5490-5900 100 (16) 80 ML201 54.24-87.74 143 235 UGAMS-12712 7350 ± 30 8160 8040-8290 108 Current Study 81 Hawley L 54.57-84.67 137 292 GSC(24)7 basal peat 5580 ± 150 6380 6000-6710 109 (17) 82 Palsa bog 54.57-84.63 113 89 BGS-6 basal peat 1897 ± 63 1840 1700-1990 51 (18) 83 HL02 54.61-84.60 85 230 UGAMS-11422 84 HL03 54.68-84.60 99 269 UGAMS-11423 4020 ± 25 4480 4420-4570 92 Current Study 2700 ± 25 3550 3290-3880 122 Current Study 85 HL04A(West) 54.75-84.53 89 93 UGAMS-11424 wood fragments 4960 ± 30 5685 5610-5740 73 Current Study 86 HL04B(East) 54.75-84.50 97 105 UGAMS-11251 wood 4400 ± 25 4960 4870-5040 73 Current Study 87 C Henrietta Maria 55.00-82.33 2 122 GSC-231 basal peat 1210 ± 130 1130 800-1360 42 (17) 88 Shagamu R 027a* 55.05-86.75 126 -- BGS-702 basal peat 4020 ± 100 4510 4240-4830 85 (19) 89 PB3-5 55.23-84.33 10 44 UGAMS-11421 stems 610 ± 20 600 550-650 22 Current Study 90 PB-SF-5 55.23-84.30 11 24 UGAMS-11670 wood fragments 1340 ± 20 1280 1190-1300 22 Current Study 91 PB2-5 55.23-84.33 10 45 UGAMS-11420 stems F 14 C=1.01 ± 0.003 Modern -- 23 Current Study

92 PB1-5 55.24-84.32 9 42 UGAMS-12714 stems 610 ± 25 600 550-650 21 Current Study 93 Shagamu R 208a * 55.35-86.70 105 -- BGS-708 basal peat 5600 ± 140 6400 6020-6730 109 (19) 94 Shagamu R 62Ca * 55.60-86.65 32 -- BGS-822 basal peat 2350 ± 100 2420 2150-2710 58 (19) 95 Shagamu R 62Ba * 55.65-86.60 23 -- BGS-709 basal peat 2060 ± 100 2040 1820-2310 54 (19) 96 Shagamu R 62Aa * 55.70-86.51 4 -- BGS-820 basal peat 800 ± 100 740 560-930 37 (19) 97 Charlebois 56.67-94.08 117 240 GSC-2760 basal peat 6280 ± 80 7200 6990-7420 120 (20) 99 Thibaudeau Stn 57.08-94.16 122 155 GSC-5213 basal peat 6240 ± 80 7150 6940-7410 119 (18) 100 Silcox 57.17-94.24 142 73 GSC-5245 basal peat 3120 ± 60 3340 3170-3470 70 (21) 101 Herchmer Bog ** 57.38-94.20 106 167 AECV-1715C basal peat 5970 ± 90 6810 6560-7150 148 (22) 102 Herchmer Fen ** 57.38-94.20 106 203 AEVC-1714 bulk peat 5580 ± 80 6373 6210-6550 105 (23) 103 Lost Moose/O'Day 57.57-94.32 113 130 GSC-5221 basal peat 4270 ± 70 4840 4580-5040 89 (21) 106 McClintock Bog ** 57.80-94.21 79 163 AECV-1718C wood 5810 ± 90 6610 6410-6840 143 (22) 108 Fletcher L 58.17-93.83 49 324 GSC-3988 basal peat 3400 ± 60 3650 3480-3830 74 (24) 123 Shagamu R 027b * 55.05-86.75 126 -- BGS-800 basal peat 5050 ± 100 5800 5600-5990 102 (19) 124 Shagamu R 208b * 55.35-86.70 105 -- BGS-801 basal peat 5270 ± 100 6060 5760-6290 105 (19) 125 Shagamu R 62Cb * 55.60-86.65 32 -- BGS-710 basal peat 2250 ± 110 2250 1950-2700 56 (19) 126 Shagamu R 62Bb * 55.65-86.60 23 -- BGS-821 basal peat 1725 ± 100 1640 1410-1870 48 (19) 127 Shagamu R 62Ab * 55.70-86.51 4 -- BGS-701 basal peat 700 ± 100 660 520-900 36 (19) 128 McLintock Fen ** 57.80-94.20 81 148 AECV-1717C basal peat 4060 ± 100 4570 4290-4840 68 (23)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Gorham, E., Lehman, C., Dyke, A., Clymo, D. & Janssens, J. -term carbon sequestration in North American peatlands. Quat. Sci. Rev. 58, 77-82, doi:10.1016/j.quascirev.2012.09.018 (2012) Dionne, J. C. Radiocarbon dates on peat and tree from the James Bay area, subarctic Quebec. Can. J. Forest Res. 9, 125-129 (1979). Stuiver, M., Deevey, E. S. & Rouse, I. Yale natural radiocarbon measurements VIII. Radiocarbon 5,312-341 (1963). Skinner, R. Quaternary stratigraphy of the Moose River basin, Ontario. (Geologic Survey of Canada, Bulletin 225, 1973). Hansen, B. C. Conifer stomate analysis as a paleoecological tool: An example from the Hudson Bay Lowlands. Can. J. Bot. 73, 244-252 (1995). Glaser, P. H., Siegel, D. I., Reeve, A. S., Janssens, J. A. & Janecky, D. R. Tectonic drivers for vegetation patterning and landscape evolution in the Albany River region of the Hudson Bay Lowlands. J. Ecol. 92, 1054-U1052, doi:10.1111/j.0022-0477.2004.00930.x (2004). Klinger, L. F., Zimmerman, P. R., Greenberg, J. P., Heidt, L. E. & Guenther, A. B. Carbon trace gas fluxes along a successional gradient in the Hudson Bay Lowland. J. Geophys. Res.-Atmos. 99, 1469-1494, doi:10.1029/93jd00312 (1994). McNeely, R. Geological Survey of Canada Radiocarbon Dates XXXIII. (Geological Survey of Canada, Current Research 2001, 2002). Dionne, J. C. Formes et phenomenes periglaciaires en Jamesie, Quebec subarctique. Geogr. Phys. Quat. 32, 187 (1978). Craig, B. G. e-glacial and postglacial history of the Hudson Bay region. (Earth Science Symposium on Hudson Bay, Geological Survey of Canada, Paper 68-53, 1969). Kettles, I. M., Garneau, M. & Jette, H. Macrofossil, pollen, and geochemical records of peatlands in the Kinosheo Lake and Detour Lake areas, northern Ontario. (Geological Survey of Canada, Bulletin 545, 2000). Bunbury, J., Finkelstein, S. A. & Bollmann, J. Holocene hydro-climatic change and effects on carbon accumulation inferred from a peat bog in the Attawapiskat River watershed, Hudson Bay Lowlands, Canada. Quat. Res. 78, 275-284, doi:10.1016/j.yqres.2012.05.013 (2012). O'Reilly, B. C., Finkelstein, S. & Bunbury, J. Pollen-derived paleovegetation reconstruction and long-term carbon accumulation at a fen site in the Attawapiskat River watershed, Hudson Bay Lowlands, Canada. Arctic, Antarctic and Alpine Research (2014). Pendea, I.F., Costopoulos, A., Nielsen, C., & Chmura, G.L. A new shoreline displacement model for the last 7 ka from eastern James Bay, Canada. Quaternary Res.73, 474-484 (2010). Dyck, W. & Fyles, J. G. Geological Survey of Canada radiocarbon dates I and II ( Geological Survey of Canada, Paper 63-21, 1963). Terasmae, J. & Hughes, O.L. Glacial retreat in the North Bay Area, Ontario. Science 131, 1444-1446 (1960). Blake, W., Dyck, W. & Fyles, J. G. Geological Survey of Canada Radiocarbon Dates IV. (Geological Survey of Canada, Paper 65-4, 1965). Railton, J. B. & Sparling, I. H. Preliminary studies on the ecology of palsa mounds in northern Ontario. Can. J. Bot. 51, 1037-1044 (1973). Protz, R., Ross, G.J., Martini, I. P. & Terasmae, J. Rate of podzolic soil formation near Hudson Bay, Ontario. Can. J. Soil Sci. 64, 31-49 (1984). Klassen, R. W. Surficial geology of north-central Manitoba. (Geological Survey of Canada, Memoir 419, 1986). Dredge, L. A. & Mott, R. J. Holocene pollen records and peatland development, northeastern Manitoba. Geogr. Phys. Quat. 7, 7-19 (2003). Kuhry, P. Palsa and peat plateau development in the Hudson Bay Lowlands, Canada: timing, pathways and causes. Boreas 37, 316-327, doi:10.1111/j.1502-3885.2007.00022.x (2008). Kuhry, P. e Holocene permafrost dynamics in two subarctic peatlands of the Hudson Bay Lowlands (Manitoba, Canada). Eurasian Soil Sci. 31, 529-534 (1998). Blake, W. Geological Survey of Canada radiocarbon dates XXV. (Geological Survey of Canada, Paper 85-7, 1986). Reimer, P. J. et al. INTCAL09 and MARINE09 radiocarbon age calibration curves, 0-50,000 years cal BP. Radiocarbon 51, 1111-1150 (2009).