Quantum Oscillations, Magnetotransport and the Fermi Surface of cuprates Cyril PROUST

Similar documents
Impact of charge order on the electronic properties of underdoped cuprates Cyril PROUST

Fermi Surface Reconstruction and the Origin of High Temperature Superconductivity

Topology, quantum entanglement, and criticality in the high temperature superconductors

Thermodynamic phase diagram of static charge order in underdoped YBa 2 Cu 3 O y

Phase diagram of the cuprates: Where is the mystery? A.-M. Tremblay

Phenomenology of High Tc Cuprates II. Pseudogap in Underdoped Cuprates

Quantum Oscillations in underdoped cuprate superconductors

Quantum criticality in the cuprate superconductors. Talk online: sachdev.physics.harvard.edu

Amalia Coldea. c/a. Oxford University. KITP, Santa Barbara, Jan

LETTER. Change of carrier density at the pseudogap critical point of a cuprate superconductor

F. Rullier-Albenque 1, H. Alloul 2 1

YBCO. CuO 2. the CuO 2. planes is controlled. from deviation from. neutron. , blue star for. Hg12011 (this work) for T c = 72

Quantum Melting of Stripes

Low energy excitations in cuprates: an ARPES perspective. Inna Vishik Beyond (Landau) Quasiparticles: New Paradigms for Quantum Fluids Jan.

A Twisted Ladder: Relating the Iron Superconductors and the High-Tc Cuprates

High-T c superconductors

Florida State University. University of Florida

The cuprate phase diagram: insights from neutron scattering and electrical transport. Mun Chan University of Minnesota, Minneapolis

ARPES studies of cuprates. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016

The Nernst effect in high-temperature superconductors

High-T c superconductors. Parent insulators Carrier doping Band structure and Fermi surface Pseudogap and superconducting gap Transport properties

The Hubbard model in cold atoms and in the high-tc cuprates

Nernst effect in high T c superconductors

Dirac fermions in Graphite:

What's so unusual about high temperature superconductors? UBC 2005

From the pseudogap to the strange metal

High Tc cuprates: Recent insights from X-ray scattering

Oliver Portugall Laboratoire National des Champs Magnétiques Intenses (LNCMI) Toulouse & Grenoble, France

Probing the Electronic Structure of Complex Systems by State-of-the-Art ARPES Andrea Damascelli

The Current Experimental Status of the High-Tc Problem. R. L. Greene

Anomalous quantum criticality in the electron-doped cuprates

Quantum matter without quasiparticles: SYK models, black holes, and the cuprate strange metal

Emergent light and the high temperature superconductors

arxiv: v2 [cond-mat.str-el] 26 Feb 2010

Supplementary Figures

Anomalous Nernst effect from a chiral d-density-wave state in underdoped cuprate superconductors

Can superconductivity emerge out of a non Fermi liquid.

High-eld normal-state magnetotransport properties of electron-doped cuprate superconductors

The High T c Superconductors: BCS or Not BCS?

ɛ(k) = h2 k 2 2m, k F = (3π 2 n) 1/3

Direct observation of competition between superconductivity and charge density wave order in YBa 2 Cu 3 O y

Emergent gauge fields and the high temperature superconductors

Generic strange-metal behaviour of overdoped cuprates

Quantum-Criticality in the dissipative XY and Ashkin-Teller Model: Application to the Cuprates and SIT..

Quantum phase transitions of insulators, superconductors and metals in two dimensions

Theoretical Study of High Temperature Superconductivity

The phase diagram: the pseudogap regime. of T c.

arxiv: v2 [cond-mat.supr-con] 9 Feb 2016

A New look at the Pseudogap Phase in the Cuprates.

Correlatd electrons: the case of high T c cuprates

Perimeter Institute January 19, Subir Sachdev

Quantum dynamics in many body systems

Planes, Chains, and Orbits: Quantum Oscillations and High Magnetic Field Heat Capacity in Underdoped YBCO

arxiv:cond-mat/ v1 [cond-mat.supr-con] 28 May 2003

Superconductivity and Electron Correlations in Ruthenates

Universal Features of the Mott-Metal Crossover in the Hole Doped J = 1/2 Insulator Sr 2 IrO 4

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT).

Extraction of de Haas-van Alphen frequencies from electronic structure calculations

Resistivity studies in magnetic materials. Makariy A. Tanatar

Coexistence of Fermi Arcs and Fermi Pockets in High Temperature Cuprate Superconductors

Topological order in the pseudogap metal

Strongly Correlated Systems:

Physics of iron-based high temperature superconductors. Abstract

Spin-Charge Separation in 1-D. Spin-Charge Separation in 1-D. Spin-Charge Separation - Experiment. Spin-Charge Separation - Experiment

AdS/CFT and condensed matter

arxiv:cond-mat/ v1 8 Mar 1995

Quantum matter & black hole ringing

Metal-insulator transitions

Intertwined Orders in High Temperature Superconductors

What we have learned from Ba(Fe 1-x TM x ) 2 As 2 studies: empirical rules to inform theory

arxiv: v1 [cond-mat.supr-con] 2 Apr 2012

arxiv: v2 [cond-mat.mtrl-sci] 19 Aug 2010

Transport Experiments on 3D Topological insulators

Workshop on Principles and Design of Strongly Correlated Electronic Systems August 2010

New insights into high-temperature superconductivity

Magnetic-field-tuned superconductor-insulator transition in underdoped La 2-x Sr x CuO 4

Novel Magnetic Order and Excitations in the Pseudogap Phase of HgBa 2 CuO 4+

Quantum magnetism and the theory of strongly correlated electrons

Theory of the competition between spin density waves and d-wave superconductivity in the underdoped cuprates

A quantum dimer model for the pseudogap metal

Quantum bosons for holographic superconductors

Bachelor of Science (Honours): Physics and Computer Science

Electronic inhomogeneity, magnetic order & superconductivity probed by NMR in cuprates and pnictides

Topological order in quantum matter

arxiv: v5 [cond-mat.str-el] 13 Mar 2009

PDF hosted at the Radboud Repository of the Radboud University Nijmegen

Origin of the anomalous low temperature upturn in resistivity in the electron-doped cuprates.

Photo-enhanced antinodal conductivity in the pseudogap state of high T c cuprates

Correlation between scale-invariant normal state resistivity and superconductivity in an electron-doped cuprate

Universal scaling relation in high-temperature superconductors

Superconductivity in Heavy Fermion Systems: Present Understanding and Recent Surprises. Gertrud Zwicknagl

Topological order in insulators and metals

FROM NODAL LIQUID TO NODAL INSULATOR

C. C. Tsuei IBM T.J. Watson Research Center Yorktown Heights, NY 10598

Material Science II. d Electron systems

Spin correlations in YBa 2 Cu 3 O 6+x bulk vs. interface

Anisotropic Magnetic Structures in Iron-Based Superconductors

μsr Studies on Magnetism and Superconductivity

Z 2 topological order near the Neel state on the square lattice

Electron Doped Cuprates

Transcription:

Quantum Oscillations, Magnetotransport and the Fermi Surface of cuprates Cyril PROUST Laboratoire National des Champs Magnétiques Intenses Toulouse

Collaborations D. Vignolles B. Vignolle C. Jaudet J. Levallois A. Audouard L. Taillefer N. Doiron-Leyraud D. LeBœuf J-B Bonnemaison M. Nardone D. Bonn B. Ramshaw J. Day R. Liang K. Behnia W. Hardy N. Hussey A. Carrington A. Bangura J. Fletcher R. A. Cooper M. M. J. French University of St Andrews A.P. Mackenzie

Outline Introduction to quantum oscillations Quantum oscillations on both sides of the phase diagram The case for an electron pocket Cartography of the electron pocket Fermi surface reconstruction scenarios

Quantum theory E = Ez + E = h kz m + hωc n + 1 ω = c qb m c m n( E) = πv h 3/ hω Density of states c n=0 1 E hω ( n + 0.5) c 3D E n(ε ) B=0 ε / hω c ε F Oscillation of most electronic properties hω c Magnetization: de Haas-van Alphen (dhva) k z Resistivity: Shubnikov-de Haas (SdH)

ω = c eb * m Temperature / Disorder effects on quantum oscillations k B T / Quantum theory Γ = h τ Low T measurements hω c >k B T Need high quality single crystals ε F h ω > h τ c ω c τ > 1 hω c k z

Quantum theory Lifshitz-Kosevich theory (1956) R, M R T R D R S sin π F B γ F B R R R T D S = = h πq AF B X sh( X ) where X Onsager relation A F = 14.694 Tm / B m * 14.694 TDmc π = exp = exp TD = B µ B * = cos π * mbg m g b c h πk B τ Extremal area Cyclotron mass Dingle temperature (mean free path) Spin factor (spin zero) Direct measure of the Fermi surface extremal area (but number of orbits? location in k-space?)

Outline Introduction to quantum oscillations Quantum oscillations on both sides of the phase diagram The case for an electron pocket Cartography of the electron pocket Fermi surface reconstruction scenarios

The overdoped case: Tl Ba CuO 6+δ Fermi surface of overdoped Tl-01 φ π 0 F = A k B Photo credit: N. Hussey Oscillation amplitude < 1% (1 mω)! B. Vignolle et al, Nature 08

The overdoped case: Tl Ba CuO 6+δ F=18100 ± 50 T Onsager relation : A = π k k F Luttinger theorem : φ π 0 F = A k k F =7.4 ± 0.05 nm -1 (65 % of the FBZ) Ak F n = = (π ) φ 0 AMRO k F =7.35 ± 0.1 nm -1 Hussey et al, Nature 03 ARPES Platé et al, PRB 05 Carrier density: n=1.3 carrier /Cu atom (n=1+p with p=0.3) Electronic specific heat: m * =5 ± 0.5 m 0 For overdoped polycristalline Tl-01: γ = 7 ± 1mJ/mol.K All the numbers are in excellent agreement with - in-field probes: AMRO, Hall effect - zero field probes: ARPES, thermodynamic el πn k 3h A B * γ el = m = 7 ± a 0.5mJ/mol.K (Loram et al, Physica C 94)

Quantum oscillations in UD YBa Cu 3 O 6.5 Shubnikov - de Haas φ π 0 F = A k de Haas van Alphen D. Vignolles Piezoresistif cantilever N. Doiron-Leyraud et al, Nature 07 Frequency : F = (540 ± 4) T Mass : m* = (1.76 ± 0.07) m 0 Closed pocket and coherent QP at low T C. Jaudet et al, PRL 08

Quantum oscillations in UD YBa Cu 4 O 8 Frequency : F = (660 ± 30) T Mass : m* = (.7 ± 0.3) m 0 A. Bangura et al, PRL 08 See also E.A Yelland et al, PRL 08

Quantum oscillations in HTSC underdoped YBa Cu 3 O 6.5 overdoped Tl Ba CuO 6+δ 4 R (mω) 0 B Aimantation (u.a.) 0-1.7 1.8 1.9.0 100 / B (T -1 ) N. Doiron-Leyraud et al, Nature 07 φ π 0 F = A k -4 1.7 1.8 1.9.0 100 / B (T -1 ) B. Vignolle et al, Nature 08

Implication of quantum oscillations YBa Cu 3 O 6.5 Frequency : F = (530 ± 0) T A k = 1.9 % of 1 st Brillouin zone Tl Ba CuO 6+δ Frequency : F = (18100 ± 50) T A k = 65 % of 1 st Brillouin zone Amplitude de Fourier (u.a.) 1.0 n=0.038 carrier/cu Χ Radical 0.5 change of the carrier density 0.0 0 1 10 15 0 5 F (kt) Γ n = F φ 0 n=1.3 carrier /Cu R H (mm 3 /C) 0 0-0 -40 Hall effect (LeBoeuf et al, Nature 07) y=6.67 0 5 50 75 100 15 150 T (K) y=6.5 Tl-01 Electron pocket C. Jaudet et al, Physica B 09

Scenarios for the Fermi surface Small Pockets LDA Doped Mott Insulator e.g. 4 nodal hole pockets Competing order e.g. FS reconstruction spin SC

Doped Mott insulator scenario four-nodal hole pockets e.g. doped Mott insulator ARPES in Na-CCOC K. Shen et al., Science (005) BUT Negative Hall effect (electron like) Luttinger theorem for D FS: Ak F n = = (π ) φ 0 YBa Cu 3 O 6.5 F = 530 T 0.15 carriers per planar Cu atom!!! (0.1) YBa Cu 4 O 8 F = 660 T n = 0.19 carriers per planar Cu atom!!! (0.14)

Scenarios for the Fermi surface Small Pockets LDA Doped Mott Insulator e.g. 4 nodal hole pockets Competing order e.g. FS reconstruction spin SC

Fermi surface reconstruction AF / d-dw order (Rice, Chakravarty) (Field induced) SDW (Sachdev, Harrison) Stripes (Millis and Norman, Vojta) CDW / SDW Q=(π, π) Q=(π±δ, π) Q=(3π/4, π) Fermi surface reconstruction scenarios electron pocket at the anti-node

Outline Introduction to quantum oscillations Quantum oscillations on both sides of the phase diagram The case for an electron pocket Cartography of the electron pocket Fermi surface reconstruction scenarios

Hall and Seebeck coefficients y=6.5 Tl-01 Hall y=6.67 LeBoeuf et al, Nature 07 y=6.67 Seebeck Chang et al, PRL 10

Two bands model in Y48 P. Rourke et al, PRB 10

π-shift in Rxx and Rxy R xy (Ω) 0.00-0.03 0.08 1.5K.1K.5K 3K 3.5K 4.K R / R(45T) 1.4 1. 1.0 T=1.5 K R xx -R xy R xx (Ω) 0.00 30 40 50 60 C. Jaudet et al, Physica B 09 B (T) 0.8 40 45 50 55 60 B (T)

Outline Introduction to quantum oscillations Quantum oscillations on both sides of the phase diagram The case for an electron pocket Cartography of the electron pocket Fermi surface reconstruction scenarios

Angle-dependence of QO in YBa Cu 3 O 6.6 NO F β frequency! Angle dependence Temperature dependence B. Ramshaw et al, to be published in Nature Physics

Angle-dependence of QO in YBa Cu 3 O 6.6 Bilayer splitting + Warping c-axis coherence F = * 4mt eh F=90 T t ~1.3 mev (15 K)

Spin zero phenomena Staggered moments have a large component along the field direction Not compatible with a pure AF scenario! B. Ramshaw et al, to be published in Nature Physics

Location of the electron pocket c-axis Resistivity in YBCO t t ( k) = x ya 4 [ cos( k a) cos( k )] σ c = 4 e ct 4 πh m * τ c K. Takenaka et al, PRB 94 Scenario: Charge confinement in the CuO plane (ρ c as T 0)?

c-axis magnetoresistance in UD YBCO Tc=57 K Tc=61 K Tc=66 K B. Vignolle et al, unpublished

Two-band model: ( ) ( ) ( ) ( ) 0 1 ) ( B B B R R B R R B e h e h e h e e h h e h e h β α ρ µ µ µ µ µ µ µ µ µ µ ρ + + = + + + + + + = ρ c (0): extrapolated zero-field resistivity B. Vignolle et al, unpublished Extrapolation of the magnetoresistance

Temperature dependence of ρ c (0) Cross-over: Incoherence Coherence T coh =7 ± 5 K for p=0.109 Good agreement with t ~15 K from QO Sr RuO 4 3D Fermi Surface in underdoped YBCO! B. Vignolle et al, unpublished

Phase diagram 50 YBa Cu 3 O y 00 T * T (K) 150 100 T onset 50 T c T coh 0 0.05 0.10 0.15 Hole doping p B. Vignolle et al, unpublished

Electron pocket at the anti-node 1.4 T=1.5 K R xx R / R(45T) 1. 1.0 -R xy 0.8 40 45 50 55 60 B (T)

Doping dependence of QO c-axis magnetoresistance in underdoped YBa Cu 3 O y

Doping dependence of the Hall effect No sign change below p~0.08 0 R H / R H ( 100 K ) - -4-6 -8-10 p = 0.1 45 T p = 0.107 54 T p = 0.10 50 T p = 0.088 50 T p = 0.085 50 T p = 0.083 50 T p = 0.078 55 T -1 0 0 40 60 80 100 T [K] D. LeBoeuf et al, arxiv: 1009.078

Phase diagram Lifshitz transition B. Vignolle et al, unpublished

Outline Introduction to quantum oscillations Quantum oscillations on both sides of the phase diagram The case for an electron pocket Cartography of the electron pocket Fermi surface reconstruction scenarios

Lifshitz transition Spin density wave with (π, π) reconstruction 0.08 Doping Stripe scenario

Stripe scenario Only one QO frequency

Metal-insulator cross-over Stripe scenario In-plane resistivity From Y. Ando et al, PRL 04 D. LeBoeuf et al, arxiv: 1009.078

In-plane anisotropy Stripe scenario Y. Ando et al, PRL 0

Conclusion Evidence of closed and coherent FS in UD YBCO and OD Tl-01 Small pockets vs large orbit Evidence of electron pocket Reconstruction of the FS Topological change in FS: Broken symmetry If pseudogap causes reconstruction results in overdoped Tl01 argue for a QCP hidden by the SC dome Restoration of the coherence along c-axis at low T in underdoped YBCO 3D Fermi surface Fermi liquid behavior