Semilattices of Rectangular Bands and Groups of Order Two.

Similar documents
A CHARACTERIZATION OF ADDITIVE DERIVATIONS ON VON NEUMANN ALGEBRAS

FACTORIZATION IN KRULL MONOIDS WITH INFINITE CLASS GROUP

12 MATH 101A: ALGEBRA I, PART C: MULTILINEAR ALGEBRA. 4. Tensor product

More metrics on cartesian products

Problem Do any of the following determine homomorphisms from GL n (C) to GL n (C)?

SL n (F ) Equals its Own Derived Group

Affine transformations and convexity

( 1) i [ d i ]. The claim is that this defines a chain complex. The signs have been inserted into the definition to make this work out.

An Introduction to Morita Theory

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

P.P. PROPERTIES OF GROUP RINGS. Libo Zan and Jianlong Chen

REDUCTION MODULO p. We will prove the reduction modulo p theorem in the general form as given by exercise 4.12, p. 143, of [1].

Appendix B. Criterion of Riemann-Stieltjes Integrability

Linear, affine, and convex sets and hulls In the sequel, unless otherwise specified, X will denote a real vector space.

DIFFERENTIAL FORMS BRIAN OSSERMAN

28 Finitely Generated Abelian Groups

NOTES FOR QUANTUM GROUPS, CRYSTAL BASES AND REALIZATION OF ŝl(n)-modules

COMPLEX NUMBERS AND QUADRATIC EQUATIONS

The Pseudoblocks of Endomorphism Algebras

A CHARACTERISATION OF VIRTUALLY FREE GROUPS

ALGEBRA MID-TERM. 1 Suppose I is a principal ideal of the integral domain R. Prove that the R-module I R I has no non-zero torsion elements.

APPENDIX A Some Linear Algebra

Foundations of Arithmetic

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal

MATH 241B FUNCTIONAL ANALYSIS - NOTES EXAMPLES OF C ALGEBRAS

Math 101 Fall 2013 Homework #7 Due Friday, November 15, 2013

A Note on \Modules, Comodules, and Cotensor Products over Frobenius Algebras"

On the partial orthogonality of faithful characters. Gregory M. Constantine 1,2

The Order Relation and Trace Inequalities for. Hermitian Operators

The probability that a pair of group elements is autoconjugate

Graph Reconstruction by Permutations

ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EQUATION

REAL ANALYSIS I HOMEWORK 1

arxiv: v1 [math.co] 1 Mar 2014

Erdős-Burgess constant of the multiplicative semigroup of the quotient ring off q [x]

CHAPTER 4. Vector Spaces

Christian Aebi Collège Calvin, Geneva, Switzerland

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0

Ali Omer Alattass Department of Mathematics, Faculty of Science, Hadramout University of science and Technology, P. O. Box 50663, Mukalla, Yemen

FINITELY-GENERATED MODULES OVER A PRINCIPAL IDEAL DOMAIN

Polynomials. 1 More properties of polynomials

LECTURE V. 1. More on the Chinese Remainder Theorem We begin by recalling this theorem, proven in the preceeding lecture.

SUPER PRINCIPAL FIBER BUNDLE WITH SUPER ACTION

BOUNDEDNESS OF THE RIESZ TRANSFORM WITH MATRIX A 2 WEIGHTS

New York Journal of Mathematics. Characterization of matrix types of ultramatricial algebras

The Jacobsthal and Jacobsthal-Lucas Numbers via Square Roots of Matrices

2.3 Nilpotent endomorphisms

Subset Topological Spaces and Kakutani s Theorem

Restricted Lie Algebras. Jared Warner

Smarandache-Zero Divisors in Group Rings

Fixed points of IA-endomorphisms of a free metabelian Lie algebra

Randić Energy and Randić Estrada Index of a Graph

COMBINATORIAL IDENTITIES DERIVING FROM THE n-th POWER OF A 2 2 MATRIX

College of Computer & Information Science Fall 2009 Northeastern University 20 October 2009

MATH CLASS 27. Contents

Week 2. This week, we covered operations on sets and cardinality.

5 The Rational Canonical Form

Beyond Zudilin s Conjectured q-analog of Schmidt s problem

The internal structure of natural numbers and one method for the definition of large prime numbers

ON THE EXTENDED HAAGERUP TENSOR PRODUCT IN OPERATOR SPACES. 1. Introduction

International Journal of Algebra, Vol. 8, 2014, no. 5, HIKARI Ltd,

Homework 1 Lie Algebras

A New Refinement of Jacobi Method for Solution of Linear System Equations AX=b

DONALD M. DAVIS. 1. Main result

A FINITE TO ONE OPEN MAPPING PRESERVES SPAN ZERO

An application of non-associative Composition-Diamond lemma

Fully simple singularities of plane and space curves

Determinants Containing Powers of Generalized Fibonacci Numbers

On the smoothness and the totally strong properties for nearness frames

On the set of natural numbers

ON GENERA OF LEFSCHETZ FIBRATIONS AND FINITELY PRESENTED GROUPS

EXTENSIONS OF STRONGLY Π-REGULAR RINGS

9 Characteristic classes

Perron Vectors of an Irreducible Nonnegative Interval Matrix

Volume 18 Figure 1. Notation 1. Notation 2. Observation 1. Remark 1. Remark 2. Remark 3. Remark 4. Remark 5. Remark 6. Theorem A [2]. Theorem B [2].

Games of Threats. Elon Kohlberg Abraham Neyman. Working Paper

find (x): given element x, return the canonical element of the set containing x;

Homework Notes Week 7

Math 261 Exercise sheet 2

On some variants of Jensen s inequality

DIFFERENTIAL SCHEMES

Difference Equations

h-analogue of Fibonacci Numbers

Representation theory and quantum mechanics tutorial Representation theory and quantum conservation laws

Exercise Solutions to Real Analysis

Homotopy Type Theory Lecture Notes

A CLASS OF RECURSIVE SETS. Florentin Smarandache University of New Mexico 200 College Road Gallup, NM 87301, USA

where a is any ideal of R. Lemma 5.4. Let R be a ring. Then X = Spec R is a topological space Moreover the open sets

THERE ARE NO POINTS OF ORDER 11 ON ELLIPTIC CURVES OVER Q.

Perfect Competition and the Nash Bargaining Solution

Neutrosophic Bi-LA-Semigroup and Neutrosophic N-LA- Semigroup

Lorentz Group. Ling Fong Li. 1 Lorentz group Generators Simple representations... 3

Coordinate-Free Projective Geometry for Computer Vision

20. Mon, Oct. 13 What we have done so far corresponds roughly to Chapters 2 & 3 of Lee. Now we turn to Chapter 4. The first idea is connectedness.

REGULAR POSITIVE TERNARY QUADRATIC FORMS. 1. Introduction

ON THE JACOBIAN CONJECTURE

arxiv: v1 [math.ra] 26 Oct 2011

THE FUNDAMENTAL THEOREM OF CALCULUS FOR MULTIDIMENSIONAL BANACH SPACE-VALUED HENSTOCK VECTOR INTEGRALS

A note on almost sure behavior of randomly weighted sums of φ-mixing random variables with φ-mixing weights

Maximizing the number of nonnegative subsets

Transcription:

1 Semlattces of Rectangular Bs Groups of Order Two R A R Monzo Abstract We prove that a semgroup S s a semlattce of rectangular bs groups of order two f only f t satsfes the dentty y y, y y, y S 1 Introducton AMS Mathematcs Subject Classfcaton (010): 18B40 Key words phrases: Semlattce of semgroups, Incluson class, Rees matr semgroup Semgroup theory has a certan symmetrc elegance that lnks t to group theory For eample, a semgroup S s a group f ( only f) for every S, S S S In addton, a semgroup S s a unon of groups f ( only f) for every S, S S[] The powerful result that a semgroup s a unon of groups f only f t s a semlattce of completely smple semgroups s so well known that ts beauty can almost be overlooked [] In ths paper we apply ths result to prove that the collecton of all semgroups that are semlattces of semgroups that are ether rectangular bs or groups of order two s a semgroup ncluson class [4] Precsely, a semgroup s a semlattce of rectangular bs groups of order two f only f t satsfes the dentty y y, y y, y S Notaton, defntons prelmnary results Defnton Let G be a group LetS I G I a non-empty set Let : I G P, wth P, j defne a product on S as follows:, a, j, b,, ap jb, denoted by p j Then S endowed wth ths product s called a Rees I matr semgroup (over the group G wth the swch matr P) The well known defnton above s repeated here because t wll be used etensvely throughout ths paper All other termnology notaton can be found n [] Other well known results that wll be used here follow Result 1 [5, Corollary IV8] A semgroup s completely smple f only f t s somorphc to a Rees matr semgroup Result [,Theorem 4] A semgroup S s a unon of groups f only f for every S, S S Result [, Theorem 46] A semgroup s a unon of groups f only f t s a semlattce Y of completely S I G Y smple semgroups Result 4 [, Proposton 1] A semlattce Y of completely smple semgroups s a semlattce of rectangular groups f only f the product of two dempotents s an dempotent Defnton We wll denote the collecton of all left zero, rght zero rectangular bs by L 0, R 0 RB respectvely that of all groups of order two by G If S s a unon of groups S then 1 wll denote the dentty element of any group to whch belongs If G s a group then the dentty element of G s

1 denoted by 1 or 1 G Also f s an element of a semgroup S then 1 or denotes the nverse of n G any subgroup G of S A rectangular group s the drect product of a rectangular b a group Note that f an element of a semgroup belongs to two groups, G H, then 1 1 1 1 1 1 1 1 1 1, therefore1 s well-defned G H G H G G G H H H 1 1 1 1 1 1 1 1 Smlarly, 1G 1H 1G 1H 1 s well-defned so G G G H G H H H Defnton [4] An ncluson class of semgroups s a collecton of all semgroups that satsfy a gven set of k number of nclusons as follows: (1),,, n,,, 1 m1 (),,, n,,, 1 m (k),1,,,,,,1,,,,, W w w w t t t T ; 1 1,1 1, 1, 1,1 1, 1, 1 W w w w t t t T ; ;,1,,,1,, W w w w t t t T, where the w s the t s are semgroup words over k k k k n1 k k k mk k some alphabet Notaton We wrte [ W1 T1 ; W T ;; Wk Tk ] to denote the ncluson class determned by the set W T 1,,, k, S then we wrte f of nclusons If S s a semlattce < f Defnton A semgroup S s a semlattce f S[ ; y y ] A semlattce S s a chan f, S mples, Defnton A semgroup S s a semlattce Y of semgroups S Y S Y, Y,S S S for every f S s a dsjont unon of the Some ncluson classes of semlattces of rectangular bs groups of order two Theorem 1 The followng statements are equvalent: 1 S[ y, y ] S s a chan Y of semgroups S Y (1) S RB G Y, () for any <, Y () for any <, Y where any S, y S, y y wth S G, S 1

Proof: 1 Let S[ y, y ] Then clearly, S[ therefore, by Result, S s a semlattce Y of completely smple semgroupss Y Let S y S, Y ] so by Result, S s a unon of groups, Then ether (a) y yy y or (b) y yy or (c) y y yy y or (d) y y yy In cases (a) (d), So f then ether case (b) or (c) holds Therefore, mples that ether or Hence,Y s a chan We now show that S RB G Y Each S I G Y Then let, g, y j, h,, where ether j or G Now (b), (c) (d) all mply that j Thus, (a) holds Now so 1 Assume that ether I 1 or 1 where g h are arbtrary elements of 1 So, g,, gp g,, p, Hence, gp g p 1 Let g be an arbtrary element of G Snce g was arbtrary we can let g g p 1 Then p g p p g p hence g s the dentty element of G therefore G G Hence, G 1 1 1 1 s abelan p p Now (a) holds so y So, g,, gphpg, therefore g gphpg 1 p j hp g Settng g 1G h gves G 1 p p Therefore G 1 Ths mpless RB Now f But G s abelan so then the mappng I As shown two paragraphs above, G G so S G so (1) s vald Now assume that, Y 1 1 Then 1 yy 1 1 If S G y g gp hp g g p p h h 1 g, g p, s an somorphsm between G S We have therefore shown that S RB G Y let S y S Then (b) holds so y yy thens s commutatve so 1 1 1 yy 1y1 11 y 1 y z 1 z z yz 1 Therefore S y y y y y y y y y y y y However, f z S vald) If S z RB then1 y yy y y then so 1 y y (We have shown that () s Also, from (b), y y yy y y Hence, y y We have shown that () s vald ths completes the proof of (1 ) 1 Assume thats s a chan Y of semgroups S Y We wsh to show that y, y for any, y S SnceS RB G Y where (1), () () n Theorem 1 are vald, we can assume that

4 Case 1 Suppose that < S G Case Suppose that < S Case If < S Case 4 As n the proof of case, < S We have therefore shown that y, y Then by (), S so y S RB Then G then, by (), S y Therefore, ys y y yy y y y y y y Theorem 1 Note that we have shown that anys[ y, y y y y y RB mples yy y Then, completng the proof of ( 1) Ths completes the proof of ] s a chan Y of rectangular bs, ecept possbly f Y has a mamal element S G wth S >1 The queston arses as to whether the collecton of chans of semgroups that are ether rectangular bs or groups of order s an ncluson class In Theorem 5 below we prove ths queston n the affrmatve when the word chan s replaced by semlattce Theorem The followng statements are equvalent: 1 S[ y y, y ] S s a semlattce Y of semgroups S Y (1) S R G Y, 0 where () < S G mples S 1 () S S mpless 1,, (4) for each Y S there s a mappng :S S such that for any Y, S / :S S s a homomorphsm, satsfyng (41) f S G then for any g S y, S, g 1 g y on S, (4) f,, Y S R0 then y y y on S (4) for every S y S, y y y Proof: 1 Assume that S[ y y, y ] Frst we wll prove thats[ y y ] Let, y S Then ether (a) y y yy or (b) y y yy y or (c) y y yy or (d) y y yy y Note that snces[ y y, y ], y y, y So n each case we can assume that y y Case (a): y yy y y y yy y y y y 9 6 4

5 Case (b): y y y y yy y Case (c): y y y yy yy But then y mples y y y y Case (d): y yy y y y y y y By Results, S s a semlattce Y of completely smple semgroups S Y product of two dempotents of S s an dempotent Let e, f ES Then efe f, fe ef eefe efe f ES If efe fe thenef efe f fef e, ef Hence ef ef f ef Now by Result 4, y so We now show that the If efe f then So we can assume thatef e ths completes the proof that the product of two dempotents s dempotent S s a semlattce Y of rectangular groupss Y S LG R s ether a rght-zero semgroup or a group of order two Let, y S wth, g, y j, h, Then y y, y We have shown that an arbtrary rectangular group component of We want to show now that each so j So S s a rght group G R S G R Note that, snce we have already shown above that y y satsfes g g 1, g 1 ghg h g, h G, G G so G s commutatve Now let g g, r g, s G R, wth r s g 1 So ether R 1 For Y we defnes S : S y Then g, r g, r g, s g, r g, s, g, r Therefore or G 1 Hence G R s ether a rght-zero semgroup or a group of order Let, y S wth S y S We show that S S Frst note that S s a null etenson of a unon of groups From the proof of Theorem 5 [1], y y S S y It s then straghtforward to show that (1) y y1 y1 y 1 y1 y 1 1 [ ], wth1 y y S 1 S y Assume that y S that Then, snce S s a semlattce of the semgroups S Y, t follows from (1) Note that S y S Therefore ThereforeS s a semlattce of the semgroupss Y we have proved part (1) of Theorem y y y, whch mples that It s straghtforward to show thats S Thus,

6 Suppose now that, S S S y G so 1 G y S Suppose that S S Let S of Theorem y Then y y, y ThereforeS 1 We proceed wth the proof of part (4) For any / S :S S, because y y y y S S R 0 then so y y But Ths proves part () of Theorem Then by hypothess y y, so 1 Ths proves part () S we defne :S S S S as y y y S Lety, z S If Note that yz y z y z yz z z y z z y z y z y z Suppose that S G that If yz, y, z S 1 then ether < or < so, by (), S 1 so / S s a homomorphsm so Ths mples We can therefore assume that S S S G Snce, by 4 hypothess,,, 1 Then, y z y z yz yz so / S s a homomorphsm n any case Ths proves (4) LetS G, g S,1 1 g, y, z S 4 4 y z yzy y yz y yz y yz y z y z 1z 1z1 1 z Theng gg g11g g 11 11 1 Also, 4 z z 1z 1z1 1 1z 1 1z 1z z z z z 1z1 1z Hence, ths proves (41) Let g 1 g y,, Y S R0 Suppose S, y S z S Then z z y z y yzy yzy yzyy zy zy yzy zy y y y yy yz yzy yzy z Ths proves (4) y Fnally, (4) follows from the fact that y y Ths completes the proof of1 1 Assume that the hypotheses of the only f part of Theorem are vald We frst show that the product defned s assocatve Let S, y S, z S Usng (4) we need to show that: z y y z z y z y y y y z z y However, snce by (4) z are homomorphsms on S S respectvely, ths equaton becomes: () z z yz y yz z y, y y y z z y

7 wth by (4) agan -- each of the 6 terms an element of (4 ), z y z y y z, equaton () s vald n ths case S IfS R0 then, snce by hypothess So we can assume thats G We can therefore assume that, or else there ests,, such that <, whch mples S 1 [Ths would mply that equaton vald] But f then, by (41 ), each sde of equaton equals, z y, so Now we need to prove that for S y S, y y, y y y y y y We can assume, therefore, thats G 1 1 1 s s vald If S R0 then, sncey, y S, If then ether < or < In ether casey, y S 1 so y y We can assume therefore that We can also assume that y S y y S G, snce y Also, 1 Hence, y y y1 y So the proof of Theorem s complete Corollary The followng statements are equvalent: 1 S s a semlattcey of semgroupss Y (11) S R G Y, 0 (1), Y, S G, or else by (),y, y S 1 Note that S s an abelan group Therefore, y y y y y y Ths completes the proof thats[ y y, y where mples S 1 (1) there s a collecton of mappngs :S S / S (a) for, Y each / S :S S s a homomorphsm, ] satsfyng the followng propertes: (b),, Y, S, y S S R mply 0 y y y on S y (c) fs G y y, y ; ] S[, S then 1 y on S

8 Theorem 4 The followng statements are equvalent: 1 S s a semlattcey of semgroupss Y S[ y y y y, ; ] wths R 0 G Proof:1 For any R0 G, therefores[ ] Suppose that S y S then y y y y y If S R0 Suppose thats G Then, y y yy y y yy y y y 1 y yy 1 y yy 1 y 1 y y y1 y1y y y Also, y y y yy y y 1 1 1 1 1 1 1 Then, 1 1 We have proved therefore that S[ y y, y y ] [ y y, y y ] y y y y y y y S[ 1 Ife, f ES, Y ] Hence, then, snce efe fe, fef, ef ef ef efe f ef fe f, ef fef f ef It then follows from Results 1, thats s a semlattcey of rectangular groupss Y LetS L G R y y, y y ] mples L 1 so The fact thats[ ], G [ ] G G,,,,,,,, S G R SnceS[ g, r, y h, s S Then Let y ghg r h r hg r h g h s hg r h s So R 1mples G 1 Thus, ether R 1or G 1 SoS R0 G, whch s what we needed to prove Ths completes the proof of Theorem 4 Theorem 5: The followng statements are equvalent: 1 S s a semlattce Y of semgroups S Y wth S RB G Y S[ y y y y, ; ] Proof: 1 Clearly, for any S Let, Y wth S y S IfS RB then y y y y y yy y So we can assume thats G y 1 y1y 1y y 1y y 1 y 1 Then y 1 1 1 y 1 1y 1 y 1 y 1 y Therefore, 1 y y 4 Then, y y y y y y yy yy y y y y 4 4 4 1y y y y y 1 y1 1 y 1 y y y y y1 1y1 1y y y Hence, S[ yy, y y ; ] 1 SnceS[ ], by Results, S s a semlattce of completely smple semgroups

9 We now show that the product ef of the dempotents e f s dempotent We have,,, 5 6 efefe efe fef efe efe fef efe fef efe fef ef e fe f efe fe f If efefe efe thenef efe f efefe f ef ef So we can assume that Then, efefe fe f fe f e fe fe fe f f efefe f ef ef Therefore,ef e fe f eef f ef groupss G E Y,where E RB Y efefe fe f So by Result, S s a semlattce Y of rectangular F Y let, y S wth 1,, y h, j, of G, j, are arbtrary elements of E Then, where h s an arbtrary element y h,, y, y y h,,, h, j, So ether E has only one element or h h for every h G HenceS s somorphc to G or to E In the former case, snce S[ ], G G Ths completes the proof of Theorem 5 References [1] Clarke, GT, Monzo, RAR,: A Generalsaton of the Concept of an Inflaton of a Semgroup Semgroup Forum 60, 17-186 (000) [] Clfford, AH: The Structure of Orthodo Unons of Groups Semgroup Forum, 8-7 (1971) [] Clfford, AH, Preston, GB: The Algebrac Theory of Semgroups Math Surveys of the Amercan Math Soc, vol 1 Am Math Soc, Provdence (1961) [4] Monzo, RAR: Further results n the theory of generalsed nflatons of semgroups Semgroup Forum 76 540-560 (008) [5] Petrch, M: Introducton to Semgroups Charles E Merrll Publshng Company Columbus, Oho (197)