Asymmetry of Endofullerenes with Silver Atoms

Similar documents
Elements and the Periodic Table

The Boron Buckyball has an Unexpected T h Symmetry

On calculations of dipole moments of HCl + and DCl + molecular ions. V.S. Gurin 1, M.V. Korolkov 2

Hints on Using the Orca Program

Theoretical Chemistry - Level II - Practical Class Molecular Orbitals in Diatomics

CHEMICAL INTERACTIONS BETWEEN CARBON SUBSTRATES AND METAL ATOMS

Atom-molecule molecule collisions in spin-polarized polarized alkalis: potential energy surfaces and quantum dynamics

Periodic Trends in Properties of Homonuclear

Heidelberg Molecular Modelling Summer School The Challenges of Transition Metal Systems

Electronic band structure and magnetic states of zigzag graphene nanoribbons: quantum chemical calculations

IFM Chemistry Computational Chemistry 2010, 7.5 hp LAB2. Computer laboratory exercise 1 (LAB2): Quantum chemical calculations

Exercise 1: Structure and dipole moment of a small molecule

Electronic communication through molecular bridges Supporting Information

Exam 4 Review. Exam Review: A exam review sheet for exam 4 will be posted on the course webpage. Additionally, a practice exam will also be posted.

Electronic structure of correlated electron systems. Lecture 2

Calculation of Ionization Energy and Electron Affinity of Molecule of Hydro- and Fluorinefullerenes C 60 H(F) n (0 n 60)

Spectroscopic studies ofthe electrical structure oftransition metal and rare earth complex oxides

LUMO + 1 LUMO. Tómas Arnar Guðmundsson Report 2 Reikniefnafræði G

Because light behaves like a wave, we can describe it in one of two ways by its wavelength or by its frequency.

The successful wavefunction can be written as a determinant: # 1 (2) # 2 (2) Electrons. This can be generalized to our 2N-electron wavefunction:

Electronic shells or molecular orbitals: Photoelectron spectra of Ag n clusters

Light. Light (con t.) 2/28/11. Examples

WANG Bingwu, XU Guangxian & CHEN Zhida

Electronic structures of one-dimension carbon nano wires and rings

ELECTRONIC STRUCTURE OF MAGNESIUM OXIDE

Journal of Chemical and Pharmaceutical Research

(b) The wavelength of the radiation that corresponds to this energy is 6

Theoretical simulation of Nanoclustersm (2)

Introduction to computational chemistry Exercise I: Structure and electronic energy of a small molecule. Vesa Hänninen

Chemistry 4560/5560 Molecular Modeling Fall 2014

Journal of Theoretical Physics

Fig. 2. Growth process of a Ni attached cluster NiC 50.

5.80 Small-Molecule Spectroscopy and Dynamics

Be H. Delocalized Bonding. Localized Bonding. σ 2. σ 1. Two (sp-1s) Be-H σ bonds. The two σ bonding MO s in BeH 2. MO diagram for BeH 2

Journal of Theoretical Physics

Optimized interaction parameters for metal-doped endohedral fullerene

Quantum Mechanics/Trends Lab

Bonding forces and energies Primary interatomic bonds Secondary bonding Molecules

CHAPTER 8 Introduction to Optical Atomic Spectrometry

Periodic Table. Metalloids diagonal between metals and nonmetals. Have metallic and non-metallic properties

New Volleyballenes: Y 20 C 60, La 20 C 60, and Lu 20 C 60

ν + = e2 qq φ = 36.9,andθ = Pankratov [4] obtained ν 0 = ν + ν = e2 qq φ = 34.1, and θ = Boogaarts et al. [5]

ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY

The Gutzwiller Density Functional Theory

Chapter 8. Periodic Properties of the Element

Relativistic effects in Ni II and the search for variation of the fine. structure constant. Abstract

7. What is the likeliest oxidation number of an element located in Period 3 and Group 16? a. +2 b. +3 c. -3 d The amount of energy required to

Lecture B6 Molecular Orbital Theory. Sometimes it's good to be alone.

Lecture 4: Band theory

Magnetic Properties: NMR, EPR, Susceptibility

Electron Configurations

Structure stability and magnetic properties of Os n B(n = 11 20) clusters

Particle Behavior of Light 1. Calculate the energy of a photon, mole of photons 2. Find binding energy of an electron (know KE) 3. What is a quanta?

Discovery of Elements. Dmitri Mendeleev Stanislao Canizzaro (1860) Modern Periodic Table. Henry Moseley. PT Background Information

3.1 Hydrogen Spectrum

need another quantum number, m s it is found that atoms, substances with unpaired electrons have a magnetic moment, 2 s(s+1) where {s = m s }

NANOGRAPHITES AND THEIR COMPOUNDS

You might find the following useful. CHEMISTRY 1A Fall 2008 EXAM 3 Key CHAPTERS 7, 8, 9 & part 10

CHAPTER STRUCTURE OF ATOM

Lecture Presentation. Chapter 8. Periodic Properties of the Element. Sherril Soman Grand Valley State University Pearson Education, Inc.

P. W. Atkins and R. S. Friedman. Molecular Quantum Mechanics THIRD EDITION

MOLECULAR-DYNAMICS SIMULATIONS OF CARBON NANOCAGE STRUCTURES: NANOBALLS AND NANOTOROIDS

arxiv:chem-ph/ v1 3 Jun 1995

1 Corresponding author:

Atoms Atoms element Atomic Structure

LABELING ELECTRONS IN ATOMS

X-Ray Photoelectron Spectroscopy (XPS)-2

Geometry and electronic structure of V-n(Bz)(m) complexes

7.2 Dipolar Interactions and Single Ion Anisotropy in Metal Ions

Charles A. Weatherford, + Kalayu G. Belay + and Gennady L. Gutsev *

Agenda & Announcements

Tight-Binding Model of Electronic Structures

Quantum Theory of Many-Particle Systems, Phys. 540

FYS-6306 QUANTUM THEORY OF MOLECULES AND NANOSTRUCTURES

Geometry and electronic structure of Vn(Bz)m complexes

Lab 2. Reactivity Series

AS VII Periodic Trends

Manuel Díaz-Tinoco and J. V. Ortiz Department of Chemistry and Biochemistry Auburn University Auburn AL Abstract

Chem 673, Problem Set 5 Due Tuesday, December 2, 2008

Professor K. Section 8 Electron Configuration Periodic Table

Chapter 6 Part 3; Many-electron atoms

Observation of charged excitons in hole-doped carbon nanotubes using photoluminescence and absorption spectroscopy

Boron Fullerenes: A First-Principles Study

Supporting Information

X-Rays from Atoms. These are called K α X-rays See table 29.1 for the energy of K α X-rays produced by some elements. Section 29.3

G. Gantefdr and W. Eberhardt Institut fiir Festkiirperforschung, Forschungszentrum Jiilich, 5170 Jiilich, Germany

CHEM J-5 June 2014

From Last Time Important new Quantum Mechanical Concepts. Atoms and Molecules. Today. Symmetry. Simple molecules.

A Rigorous Introduction to Molecular Orbital Theory and its Applications in Chemistry. Zachary Chin, Alex Li, Alex Liu

Novel Magnetic Properties of Carbon Nanotubes. Abstract

EXAM INFORMATION. Radial Distribution Function: B is the normalization constant. d dx. p 2 Operator: Heisenberg Uncertainty Principle:

Competition between Alkalide Characteristics and Nonlinear Optical Properties in OLi 3 M Li 3 O (M = Li, Na, and K) Complexes

ELECTRONIC STRUCTURE AND STABILIZATION OF C60 FULLERENES ENCAPSULATING ACTINIDE ATOM

8.6 Relaxation Processes

Study of Ozone in Tribhuvan University, Kathmandu, Nepal. Prof. S. Gurung Central Department of Physics, Tribhuvan University, Kathmandu, Nepal

Doped Quantum Sized Gold Nanoclusters

CHEM 2010 Symmetry, Electronic Structure and Bonding Winter Numbering of Chapters and Assigned Problems

EXAM INFORMATION. Radial Distribution Function: B is the normalization constant. d dx. p 2 Operator: Heisenberg Uncertainty Principle:

Ferroelectricity, Magnetism, and Multiferroicity. Kishan K. Sinha Xu Lab Department of Physics and astronomy University of Nebraska-Lincoln

Plan of the lectures

Transcription:

Asymmetry of Endofullerenes with Silver Atoms V.S. Gurin Physico-Chemical Research Institute, Belarusian State University Leningradskaja str., 14, Minsk, 220080, BELARUS; E-mail: gurin@bsu.by; gurinvs@lycos.com Abstract A series of endofullerenes Ag@C 60 with different symmetry are calculated at ab initio level. The lowest energy structure is completely asymmetrical one (C 1 ), in which the endo-atom has noticeably off-centre position. The symmetrical structures are less stable. Silver atom in the Ag@C 60 (C 1 ) endofullerene has the low negative charge and high spin density. 1. Introduction Endohedral fullerenes, M x @C 60, are of interest as species in which interaction of metal and carbon atoms occurs in the unique manner since an atom is confined by the carbon cage [1,2]. The geometrical confinement effect may not be a priori combined with a chemical bonding, though in the case of atoms of typical metals inside C 60 (and higher C n ) the bonding is really takes place [3,4]. The endofullerenes are rather different both in chemical and physical properties as compared with corresponding exo-counterparts as well bare metal atoms and C 60 molecules without metals. An atom inside of the fullerene cage can provide a profound effect upon electronic properties and geometry, and both M atom and C 60 form new chemical species. The stable C 60 molecule with closed electronic shell is not very active reagent for metal atoms, while the higher fullerenes C 70, C 82, C 84, etc. are more reactive. A rich diversity of endostructures exists with the higher fullerenes, however the problem with C 60 is of special interest in connection with high symmetry of the bare C 60 molecule and its easier availability in production to design some novel materials and advanced devices.

More frequent cases of endofullerenes are known with active metals (alkali, earth-alkali and rare earth elements) [1-4], however, many other atoms may exist inside fullerene cages also. Silver as possible endoatom has been proposed in few recent works [5,6], though an experimental confirmation was not found to date yet to our best knowledge. However, it is not only academic interest can be for the extension of the circle of possible metals inside C 60, but also their physical properties are expected to be of interest since metal atoms and clusters those are instable in environment can be kept within fullerene cages. We emphasize here the spin properties of Ag@C 60 and study the effect of asymmetry in geometry of these species. The asymmetry of M@C 60 which occurs for the cases with various metals appears to be rather challenged feature of endofullerenes. The principal concept of bonding of metals within fullerenes is the electron donation mechanism [3]. Chemical elements with easy capability to produce endohedral fullerenes commonly have the low ionization energy, that is typical for atoms of active metals. The typical non-metals with no pronounced electron-donor ability, e.g., nitrogen, phosphorous, rare gases can also produce stable endofullerenes [7], in which an interaction of endoatoms with the carbon cage is weak. Silver has the ionization energy 7.6 ev that is very close to the known value of C 60 [8] and does not fit the above rule for active metals. Meanwhile, the geometrical factor of confinement to produce M@C 60 with M=Ag remains to be significant, and size of silver atoms does not provide any restriction for ~7 Å C 60 cage. The high symmetry of molecule C 60 (I h ), at the first sight, proposes any single atom located in the symmetry centre of the icosahedron that is correspond to this C 60 geometry. However, this intuitive prediction did not true in general case, and in the present work we study the deviations for Ag@C 60 models. For the cases of another elements those also provide asymmetrical (off-centre) position of endoatoms, Na, Li, Cu, Be, etc, the situation with asymmetry effect can be qualitatively similar and will be studie in future.

2. Construction of Models and Calculation Method For C 60 endofullerenes we consider the models of different symmetry putting an endoatom at the center, but the symmetry group under calculation was I h and the subgroups allowed the offcentre shift of M (Table 1): (i) the model with I h symmetry describe perfect symmetrical endofullerene, and geometry optimization may vary only C-C distances; (ii) the models with the lower symmetry, C 2, C 3, C 5, allowing a distortion of an original geometry keeping the corresponding symmetry to attain a minimum of energy, and (iii) full asymmetrical model (C 1 point group). These cases really mean the deviations of the endoatom from the central position to any direction (C 1 ) or along the symmetry axes (C 2, C 3, C 5 ). The case (i) does not allow any shift of endoatom. There are no a priori information on preference some of the above symmetry reduction, but preliminary calculations showed that C 1 distortion from I h is quite probable with silver endoatoms. Fig. 1 depicts the undisturbed fullerene molecule and these axes, and Fig. 2 present the geometries of Ag@C 60 calculated for the above cases of the off-centre shift along the axes or an arbitrary shift (iii). Together with the possible shifts of silver endoatom, a little deformation of original C-C bonds in C 60, evidently, can take place as a result of geometry optimization with the lower symmetries. The corresponding coordinates of carbon atoms to describe initial geometry of C 60 were generated from the calculation data for C 60 with I h symmetry, and the same ones were taken in the case of C 5 symmetry. The C 3 model was obtained by the rotation at 36 degrees from the main axis and C 2 one was done by 90 degrees rotation. We use the SCF Hartree-Fock methods within MOLCAO (molecular orbitals linear combination of atomic orbitals) approach with full geometry optimization within the given symmetry groups. The ground state of C 60 is known to be a singlet, and for Ag@C 60 we consider doublet states calculated within the unrestricted Hartree-Fock method. The doublets corresponded to the lowest energy in these models. The basis functions were constructed with the 19-electronic effective core potential (ECP) for Ag and the all-electronic set of STO-3G and

6-31G quality for carbon atoms. The calculations were done with a NWChem 4.1-4.5 software [9] and the basis function were used according to data within the package. Fig. 1. Geometry of the fullerene C 60 molecule without endoatoms with the symmetry axes Table 1. Calculated data for a series of Ag@C 60 models of different symmetry Model and symmetry Min C-C Å Max C-C Å Off-centre shift in Ag@C 60, Binding energy of Ag@C 60, Effective charge of Ag, Spin density at Ag Å ev e C 60 (I h ) 1.375 1.463 Ag@C 60 (I h ) 1.40 1.54 0 <<0 0 0 Ag@C 60 (C 1 ) 1.40 1.54 0.28 9.94-0.10 0.99 Ag@C 60 (C 2 ) 1.39 1.54 0.05 4.55-0.92 0.01 Ag@C 60 (C 3 ) 1.30 1.61 0.011-13.97-0.94 0.0 Ag@C 60 (C 5 ) 1.43 1.55 0.008-4.08-1.89 1.03 3. Results and Discussion The calculation results are collected in Table 1 and used to display the geometry of models in Fig. 2. The most featured result of these calculations is the strong dependence of stability of Ag@C 60 structures on symmetry conditions. The binding energy we have defined as the difference between full electronic energy of Ag@C 60 and the separated constituents, Ag and C 60, calculated with the

same parameters. The positive binding energy means stability, the lower electronic energy of the bound structure, and negative one corresponds to instability. This value appeared to be of maximum for completely asymmetrical model, C 1, and this value is rather high (~10 ev), i.e. an existence of Ag@C 60 (C 1 ) may be expected at room temperature. Recently [10], Cu@C 60 endofullerene was shown to be produced by collision of evaporated C 60 molecules with copper plasma. As far as properties of copper and silver are rather close in properties we may suggest possibility of similar production of Ag-containing endofullerene. Cu@C 60 has been calculated at the same theory level [6], thus, predicting the experimental data in Ref. 10. The model of C 2 symmetry demonstrates the less stability and stronger distortion of the carbon cage. The structures of the higher symmetry, C 3, and C 5 are instable, however, they possess the lower energy than the model with the perfectly central position of silver since the geometry optimization has been done taking into account possible positions of Ag along the corresponding axes. These models show also very high value of effective charge at Ag, about 1 e that looks rather anomalously. Meanwhile, in the case of C 1 model the effective charge is quite reasonable, slightly negative, -0.1 e. The negative charge can be explained if to remember the fact that the ionization potential of Ag is close to that for C 60 (noted in Introduction). In the case of the other metal atom inside, like Na, Mg, the effective charge appear to be positive. Thus, the charge transfer between Ag and C 60 cage in the asymmetrical Ag@C 60 is not strong and reversed as compared with active metals. One of interesting aspect of endofullerene geometry is off-centre position of endoatoms. In these calculation results we can note that the maximum shift corresponds to the most stable structure. Moreover, this shift takes place not along any symmetry axis (the displacement value for three x,y,z coordinates, and the square root from the sum of Δx, Δy and Δz is given in Table 1. The structure Ag@C 60 with C 1 symmetry if featured the high spin density at silver atom, while the other models (besides C 5 ) indicate the low value for spin density. The latter is also zero for I h structure. Thus, the asymmetrical model can be proposed as spintronic element in construction of quantum devices [11]. The spin concentrated at silver atom stabilized by the case in the endofullerene, however, the magnetic features of this model can be managed externally.

Fig. 2. Geometry of four AgC 60 models calculated with different symmetry Acknowledgments The author acknowledges the support of this work due to participation in the project under the Ministry of Education of Belarus References 1. Sh. Nagase, K. Kobayashi, T. Akasaka. Endohedral metallofullerenes: new spherical cage molecules with interesting properties. Bull. Chem. Soc. Jpn., 69 (1996) 2131-2142. 2. S. Guha, K. Nakamoto, Electronic structures and spectral properties of endohedral fullerenes. Coord. Chem. Rev. 249 (2005) 1111-1132.

3. A.H.H. Chang, W.C. Ermler, R.M. Pitzer. The ground states of C 60 M and C 60 M + (M=O,F,K,Ca,Mn,Cs,Ba,La,Eu,U). J. Chem. Phys. 94 (1991) 5004-5010. 4. S. Bethune, R.D. Johnson, J.R. Salem, M.S. de Vries and C.S. Yannoni. Atoms in carbon cages: the structure and properties of endohedral fullerenes. Nature 366 (1993) 123-126. 5. V.S. Gurin. Ab initio calculation of endohedal fullerenes with copper and silver clusters - Fullerenes, Nanotubes, and carbon nanostructures, 13 Suppl. 1, 2005, 3-12. 6. V.S. Gurin. Endofullerenes with copper and silver small clusters. Int. J. Quantum Chemistry 104 (2005) 249-255. 7. J.M. Park, P. Tarakeshwar, K.S. Kim, T. Clark. Nature of the interaction of paramagnetic atoms (A=N,P,O,S) with systems and C 60 : A theoretical investigation of C 6 H 6 and endohedral fullerenes A@C 60. J. Chem. Phys. 116 (2002) 10684-10691. 8. M.S. Golden, Th. Picher, P. Rudolf. Charge transfer and bonding in endohedral fullerenes from high-energy spectroscopy. In: Fullerene-Based materials. Structures and Properties. (Ed. K.Prassides), Springer-Verlag, 2004. P. 201. 9. R. Harrison, J.A. Nichols, T.P. Straatsma, M. Dupuis et al. NWChem, Computational Chemistry Package for Parallel Computers, Version 4.5. 2004, Pacific Northwest National Laboratory, Richland, Washington 99352-0999, USA. 10. H. Huang, M. Ata and Y. Yoshimoto. Cu@C 60 formation in rf-plasma and ring-current induced magnetism of C 60. Chem. Commun. (2004) 1206-1207. 11. J. Twamley, Quantum-cellular automata quantum computing with endohedral fullerenes. Phys. Rev. A67 (2003) 052318.