Cosmic Ray detection with spaceborne detectors

Similar documents
Silicon Detectors for the Search of Cosmic Antimatter and Dark Matter

Search for exotic process with space experiments

Dark Matter. Evidence for Dark Matter Dark Matter Candidates How to search for DM particles? Recent puzzling observations (PAMELA, ATIC, EGRET)

Status and perspectives of PAMELA experiment for indirect dark matter search

Results from the PAMELA Space Experiment

Dark matter: summary

Antiparticle detection in space for dark matter search: the PAMELA experiment.

The positron and antiproton fluxes in Cosmic Rays

Spectra of Cosmic Rays

PHY326/426 Dark Matter and the Universe. Dr. Vitaly Kudryavtsev F9b, Tel.:

Monthly Proton Flux. Solar modulation with AMS. Veronica Bindi, AMS Collaboration

New results from the AMS experiment on the International Space Station. Henning Gast RWTH Aachen

The Mystery of Dark Matter

Antimatter in Space. Mirko Boezio INFN Trieste, Italy. PPC Torino July 14 th 2010

Dennis Silverman UC Irvine Physics and Astronomy Talk to UC Irvine OLLI May 9, 2011

Antimatter and DM search in space with AMS Introduction. 2 Cosmology with Cosmic Rays

DARK MATTER SEARCHES WITH AMS-02 EXPERIMENT

The PAMELA Satellite Experiment: An Observatory in Space for Particles, Antiparticles and Nuclei in the Cosmic Rays

Implication of AMS-02 positron fraction measurement. Qiang Yuan

Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics. PAMELA MissioN 17 December 2010 Prepared by FatiH KAYA

Dark Matter ASTR 2120 Sarazin. Bullet Cluster of Galaxies - Dark Matter Lab

The High-Energy Interstellar Medium

Cosmic Ray Physics with the Alpha Magnetic Spectrometer

Recent developments in the understanding of Dark Matter

Axion Searches Overview. Andrei Afanasev The George Washington University Washington, DC

DIETRICH MÜLLER University of Chicago SLAC SUMMER INSTITUTE 2011

Project Paper May 13, A Selection of Dark Matter Candidates

Dark Matter Searches with AMS-02. AMS: Alpha Magnetic Spectrometer

Propagation in the Galaxy 2: electrons, positrons, antiprotons

Indirect Search for Dark Matter with AMS-02

Cosmologists dedicate a great deal of effort to determine the density of matter in the universe. Type Ia supernovae observations are consistent with

Dark Matter Models. Stephen West. and. Fellow\Lecturer. RHUL and RAL

USC Engineering Honors Colloquium 26 April Rene A. Ong (UCLA)

The phenomenon of gravitational lenses

PoS(IDM2010)013. Antiproton and Electron Measurements and Dark Matter Searches in Cosmic Rays. Piergiorgio Picozza.

Dark Matter and Dark Energy components chapter 7

Indirect Dark Matter search in cosmic rays. F.S. Cafagna, INFN Bari

AST1100 Lecture Notes

Sep. 13, JPS meeting

Experimental review of high-energy e e + and p p spectra

PAMELA satellite: fragmentation in the instrument

Antimatter and dark matter: lessons from ballooning.

Limits on Antiprotons in Space from the Shadowing of Cosmic Rays by the Moon

Dark Matter -- Astrophysical Evidences and Terrestrial Searches

Astro-2: History of the Universe. Lecture 5; April

Justin Vandenbroucke (KIPAC, Stanford / SLAC) for the Fermi LAT collaboration

Figure 1: The universe in a pie chart [1]

Astro2020 Science White Paper Prospects for the detection of synchrotron halos around middle-age pulsars

Dr. John Kelley Radboud Universiteit, Nijmegen

the CTA Consortium represented by Aldo Morselli

Modified Gravity (MOG) and Dark Matter: Can Dark Matter be Detected in the Present Universe?

Clusters of Galaxies Groups: Clusters poor rich Superclusters:

Introduction to Cosmic Rays Data Analysis Issues. Nicola De Simone INFN and University of Rome Tor Vergata

DARK MATTER. Martti Raidal NICPB & University of Helsinki Tvärminne summer school 1

Testing a DM explanation of the positron excess with the Inverse Compton scattering

Clusters of Galaxies Groups: Clusters poor rich Superclusters:

Astrophysical issues in the cosmic ray e spectra: Have we seen dark matter annihilation?

Galactic Diffuse Gamma-Ray Emission

Introduction to Class and Dark Matter

Interstellar gamma rays. New insights from Fermi. Andy Strong. on behalf of Fermi-LAT collaboration. COSPAR Scientific Assembly, Bremen, July 2010

a Payload for Antimatter Matter Exploration and Light nuclei Astrophysics

High and low energy puzzles in the AMS-02 positron fraction results

Evaluation of Galactic Cosmic Rays Models Using AMS2 Data. Francis F. Badavi 1. Christopher J. Mertens 2 Tony C. Slaba 2

Laser-Based Search for Dark Matter Particles

Our View of the Milky Way. 23. The Milky Way Galaxy

Dark matter annihilations and decays after the AMS-02 positron measurements

3/6/12! Astro 358/Spring 2012! Galaxies and the Universe! Dark Matter in Spiral Galaxies. Dark Matter in Galaxies!

GALACTIC CENTER GEV GAMMA- RAY EXCESS FROM DARK MATTER WITH GAUGED LEPTON NUMBERS. Jongkuk Kim (SKKU) Based on Physics Letters B.

BROCK UNIVERSITY. Test 2, March 2015 Number of pages: 9 Course: ASTR 1P02 Number of Students: 420 Date of Examination: March 5, 2015

Cosmic ray electrons from here and there (the Galactic scale)

SUPPLEMENTARY INFORMATION

CMB constraints on dark matter annihilation

Searching for Dark Matter in the Galactic Center with Fermi LAT: Challenges

² The universe observed ² Relativistic world models ² Reconstructing the thermal history ² Big bang nucleosynthesis ² Dark matter: astrophysical

Dark Matter searches with astrophysics

Observational Cosmology

Gravitational Lensing. A Brief History, Theory, and Applications

Cosmic Positron Signature from Dark Matter in the Littlest Higgs Model with T-parity

Brief update (3 mins/2 slides) on astrophysics behind final project

LARGE QUASAR GROUPS. Kevin Rahill Astrophysics

A. Thermal radiation from a massive star cluster. B. Emission lines from hot gas C. 21 cm from hydrogen D. Synchrotron radiation from a black hole

Neutrinos and DM (Galactic)

Review of Lecture 15 3/17/10. Lecture 15: Dark Matter and the Cosmic Web (plus Gamma Ray Bursts) Prof. Tom Megeath

Dark Baryons and their Hidden Places. Physics 554: Nuclear Astrophysics Towfiq Ahmed December 7, 2007

Cosmic Ray Studies with PAMELA Experiment

Topics. 1. Towards a unified picture of CRs production and propagation: 2. AMS-02 good candidates for Dark Matter space search

Dark matter in split extended supersymmetry

A-Exam: e + e Cosmic Rays and the Fermi Large Array Telescope

Physics Enters the Dark Age

The Inner Region of the Milky Way Galaxy in High Energy Gamma Rays

Other Galaxy Types. Active Galaxies. A diagram of an active galaxy, showing the primary components. Active Galaxies

a cosmic- ray propagation and gamma-ray code

Searching for Dark Matter Annihilation from Milky Way Dwarf Spheroidal Galaxies. Present status and future prospects


Dark Matter & Dark Energy. Astronomy 1101

WOLFGANG KLASSEN DARK MATTER

Cosmic Ray Excess From Multi-Component Dark Matter

Whither WIMP Dark Matter Search? Pijushpani Bhattacharjee AstroParticle Physics & Cosmology Division Saha Institute of Nuclear Physics Kolkata

Astroparticle Anomalies

Astroparticle Physics with IceCube

Transcription:

Cosmic Ray detection with spaceborne detectors M. Casolino Casolino.marco @ gmail.com @casolinomarco INFN University of Rome Tor Vergata RIKEN Tuxla School for astrophysics, 11 2015 15/8/2011

7. Dark and Anti-Matter

Dark Matter Most probably a particle Does not emit or absorb light Does not interact e.m. or strong. Should be transparent matter Interacts gravitationally Most probably interacts weakly

When dark matter? In 1933 Zwicky, observing the movement of galaxies in the Coma cluster understood that their visible mass was not enough to keep them in a bound state. He estimated that not visible mass should have been at least 160 times the galaxies noone listened Immagine a falsi colori: blu visibile (Sloan Digital Sky Survey) Rosso e verde - Infrarosso (NASA's Spitzer Space Telescope)

Fritz Zwicky 14/2/1898, Varna (Bulgaria) 8/2/1974 Pasadena

1959: Louise Volders showed that spiral galaxy M33 does not rotate as expected. Stars in the galactic arms should follow keplerian law, since most of the mass was thought to be concentrated in galactic center Dark matter inside the galaxies

Rotation speed (km/s) Galaxy rotation curve Observed experimentally Predicted by keplerian law Distance from galactic center (kpc)

Doppler shift in the 21 cm (hyperfine line)

Back to cluster of galaxies X-ray emission from Hydrogen gas falling in the gravitational well of galaxy clusters Visible barion fraction: 0.56% f B h 3/2 =0.056 0.014 Matter from Big Bang: 38% W matter h 1/2 =0.38 0.07

Gravitational lensing

Distorsione dello Spazio - Tempo 1 R 8 2 g R G T La massa curva lo spazio. La luce segue il cammino più breve nello spazio.

Una stella

Appare in una posizione diversa

1919 GR predition was more or less verified. Il 29 Maggio, l eclisse di Sole consentì l osservazione dell ammasso globulare delle Iadi, la cui luce era deviata dal campo gravitazionale solare New York Times, November 10, 1919

Twin quasars Q0957+56? 1937 Zwicky again hypotesized the phenomenon of gravitational lensing. The effect was observed in 1979 Identical sources (massa, luce, distanza ecc ) discovered in 1979 Gravitational lenses by a galaxy in front of the quasar

Shape of gravitational lenses Einstein ring

Shape of gravitational lenses Elongated lens: Multiple images

Shape of gravitational lenses Multiple o non uniform lenses give images and multiple arches

Gravitational lens RXJ1131-1231 Visible lens Immagine Quasar B Quasar image D Quasar image A Einstein Ring immagine della galassia del quasar Quasar image C Galassia lente (più vicina)

Gravitational lens: invisible matter

1E 0657-56 - Bullet Cluster Credit X-ray: Chandra NASA/CXC/CfA/M.Markevitch et al.; Optical: NASA/STScI; Magellan/U.Arizona/D.Clowe Lensing Map: NASA/STScI; ESO WFI; Magellan/U.Arizona/D.Clowe et al. Scale Image is 7.5 x 5.4 arcmin Distance Estimate About 3.8 billion light years Red: Xray Blue: Gravitational lens Non visible matter (DM) density M. Casolino, INFN & University Roma Tor Vergata

Set upper limit to DM annihilation σ/m 3 10 3 /GeV 3 Exclude MOND (modified Newtonian Dynamics) Dynamical Simulations Abell 520 1E 0657-56 - Bullet Cluster M. Casolino, INFN & University Roma Tor Vergata

Microlensing Una stella viene illuminata da un buco nero di almeno sei masse solari di passaggio davanti ad essa.

Anche per i pianeti extrasolari Microlenti planetarie: Amplificano la luce delle stelle attorno a cui orbitano quando passano di fronte ad esse Dal numero di eventi di microlenti si deduce che pianeti isolati o stelle spente non possono costituire la materia oscura. Anche particelle massive Machos non possono essere candidati plausibili

M. Casolino, INFN & University Roma Tor Vergata

W 1 Visible luminous matter (stars): 0.2% - 0.6% W Barions (H, He, n): 1.6% - 2.4% W Neutrinos: ~ 0.3 10% W Rest of cosmic rays (photons, e - ) ~5% W Dark matter in Galactic Halo: ~10% W Dark Matter in the galaxies: ~30% W

Different approaches to search for Dark Matter PAMELA LHC FERMI Jem-Euso M. Casolino, INFN & University Roma Tor Vergata UNDERGROUND

Underground search

LHC production

Indirect search electron positron

Indirect search proton antiproton

Indirect search gamma gamma

Dark Matter Searches Cosmology Detection, not identification LHC Search Supersymmetry, not necessarily DM 1E 0657-56 - Bullet Cluster Direct Detection Local structure and nature DAMA Indirect Detection Various galactic scales M. Casolino, INFN & University Roma Tor Vergata g: Galactic centre Antiprotons: Galactic average positrons: Local galactic 1kpc

M. Casolino, INFN & University Roma Tor Vergata From Serfass TevPa 2015

Indirect Dark matter search in space

Apj 795 91 2013 ApjL 799 4 2015 2008AdSpR..41..168C 2008AdSpR..41.2037D 2008AdSpR..41.2043C Physics Reports 544, 4, 323-370 Apj 770 2 2013 Science 2011 arxiv:1103.4055 Apj 791 2 2014 Nature, Astrop. Phys ApJ 457, L 103 1996 ApJ 532, 653, 2000 arxiv:0810.4994, PRL, NJP11,105023 Prl 111 1102 203 PrL 106 1101 2011 PrL105 121101 2010 --

Annihilation signal

Discovery of antiprotons in cr, 1979 p/p ratio 6 x 10-4 2-5 GeV From Robert E. Streitmatter Bogomolov, E.A. et al. 1979, Proc. 16th ICRC, Kyoto, 1, 330, A Stratospheric Magnetic Spectrometer Investigation of the Singly Charged Component Spectra and Composition of the Primary and Secondary Cosmic Radiation

Also Golden, 1979 Robert L. Golden

Antimatter Search Wizard Collaboration MASS 1,2 (89,91) TrampSI (93) CAPRICE (94, 97, 98) BESS (93, 95, 97, 98, 2000) Heat (94, 95, 2000) IMAX (96) AMS-01 (1998)

CAPRICE HEAT

1991 astromag on the alpha space station

The PAMELA apparatus Spatial Resolution 2.8 μm bending view 13.1 μm non-bending view MDR from test beam data 1 TV Calorimeter Performances: p/e + selection eff. 90% p rejection factor 10 5 e - rejection factor 10 4 ND p/e separation capabilities >10 above 10 GeV/c, increasing with energy GF ~20.5 cm 2 sr Mass: 470 kg Size: 120x40x45 cm 3 Power Budget: 360 W

AMS

Cosmic ray science in the Hillas Plot Direct e + / e - P / P - Jem-Euso g

Cosmic rays on Galactic scale: Nuclei, protons, antiprotons, isotopes

Antiprotons Secondary production, kinematics well understood Probe for extra sources Galactic scale

Antiproton/proton ratio Low Energy Confirms charge dependent solar modulation High Energy Consistent with models (Galprop, Donato ) Simon et al. (ApJ 499 (1998) 250) Ptuskin et al. ApJ 642 2006 902 Donato et al. (PRL 102 (2009) 071301) PRL. 105, 121101, 2010 PRL 102:051101,2009

Antiproton absolute flux Apparently no extra sources Rule out and strongly constrain many models of DM S M. Asano, et al, Phys. Lett. B 709 (2012) 128. R. Kappl et al, PRD 85 (2012) 123522 M. Garnyet al, JCAP 1204 (2012) 033 D. G. Cerdeno, et al, Nucl. Phys. B 854 (2012) 738

Synchrotron Radiation and Inverse Compton Limit propagation to 1-2 kpc Galactic neighborhood: e+, e- (1-2 kpc)

Pamela positron fraction Charge dependent solar modulation increase over background Nature 458, 607-609 ( 2009) M. Casolino, INFN & University Roma Tor Vergata

Pamela positron fraction: comparison with other data M. Casolino, INFN & University Roma Tor Vergata Nature 458, 607-609 (2 April 2009)

Charge dependent solar modulation L. Maccione, PRL 110 (2013) 081101 AMS & FERMI confirm PAMELA data Anomalous source at high energy Charge dependet Solar modulation at low energy Need 3D model of heliosphere.

Absolute positron spectrum Propagation Charge dependent solar modulation PRL111, 081102 (2013) PRL 111 2013

PRL111, 081102 (2013) Solid - Galprop ApJ M&S 1998 Dot - second. Delahaye, AA 2010 Dash Dot second + astrophys Delahaye, AA 2010 Dash DMatterAnnFinkbeiner JCAP 2011

Secondary production Dark Matter Annihilation Astrophysical sources, SNR M. Casolino, INFN & University Roma Tor Vergata

Electron spectrum GALPROP e- only e - - e+ + e- e + + e - - From E. Mocchiutti

M. Casolino, INFN & University Roma Tor Vergata