FLAT AND FP-INJEOTVITY

Similar documents
INJECTIVE COGENERATOR RINGS AND A THEOREM OF TACHIKAWA1

RIGHT-LEFT SYMMETRY OF RIGHT NONSINGULAR RIGHT MAX-MIN CS PRIME RINGS

REGULAR P.I.-RINGS E. P. ARMENDARIZ AND JOE W. FISHER

PF-MODULES EDGAR A. BUTTER, (Rec. June 8, 1970)

REFLEXIVE MODULES OVER GORENSTEIN RINGS

On U-dominant dimension

On Harada Rings and Serial Artinian Rings

TORSION THEORIES AND SEMIHEREDITARY RINGS1

Paul E. Bland and Patrick F. Smith (Received April 2002)

c-pure Projective and c-pure Injective R-Modules

International Journal of Algebra, Vol. 4, 2010, no. 2, Atomic Modules. V. A. Hiremath 1

Hong Kee Kim, Nam Kyun Kim, and Yang Lee

Proceedings of the Twelfth Hudson Symposium, Lecture Notes in Math. No. 951, Springer-Verlag (1982), 4l 46.

REMARKS ON REFLEXIVE MODULES, COVERS, AND ENVELOPES

An Axiomatic Description of a Duality for Modules

Correct classes of modules

HOMOLOGICAL PROPERTIES OF MODULES OVER DING-CHEN RINGS

THE LARGE CONDITION FOR RINGS WITH KRULL DIMENSION

GENERALIZED MORPHIC RINGS AND THEIR APPLICATIONS. Haiyan Zhu and Nanqing Ding Department of Mathematics, Nanjing University, Nanjing, China

TRIVIAL EXTENSION OF A RING WITH BALANCED CONDITION

RINGS WITH RESTRICTED MINIMUM CONDITION

ON sfp-injective AND sfp-flat MODULES

n-x -COHERENT RINGS Driss Bennis

RESEARCH STATEMENT. My research is in the field of commutative algebra. My main area of interest is homological algebra. I

ARTINIAN SKEW GROUP RINGS1

Projective and Injective Modules

SUBRINGS OF NOETHERIAN RINGS

0-*A--*X--*X.--* -X Rings of Dominant Dimension

Injective Envelopes and (Gorenstein) Flat Covers

GOLDIE S THEOREM RICHARD G. SWAN

Universal Localization of Piecewise Noetherian Rings

A CHARACTERIZATION OF TORSIONFREE MODULES OVER RINGS OF QUOTIENTS

Essential Extensions of a Direct Sum of Simple Modules

Universal localization at semiprime Goldie ideals

MODEL STRUCTURES ON MODULES OVER DING-CHEN RINGS

REGULAR AND SEMISIMPLE MODULES

Semi co Hopfian and Semi Hopfian Modules

TORSION THEORIES OVER SEMIPERFECT RINGS

Artin algebras of dominant dimension at least 2.

Cotorsion radicals and projective modules

ON MAXIMAL TORSION RADICALS, II

arxiv: v1 [math.ra] 23 Apr 2018

STATE OF THE ART OF THE OPEN PROBLEMS IN: MODULE THEORY. ENDOMORPHISM RINGS AND DIRECT SUM DECOMPOSITIONS IN SOME CLASSES OF MODULES

COHEN-MACAULAY RINGS SELECTED EXERCISES. 1. Problem 1.1.9

A NOTE ON ALMOST INJECTIVE MODULES

arxiv: v1 [math.ac] 16 Nov 2018

ON DIRECT SUMS OF BAER MODULES

Two Generalizations of Lifting Modules

On Left Quasi Noetherian Rings

On Generalizations of Pseudo-Injectivity

Piecewise Noetherian Rings

A SURVEY OF RINGS GENERATED BY UNITS

7 Rings with Semisimple Generators.

COMPRESSIBLE MODULES. Abhay K. Singh Department of Applied Mathematics, Indian School of Mines Dhanbad India. Abstract

DOUGLAS J. DAILEY AND THOMAS MARLEY

ABSOLUTELY PURE REPRESENTATIONS OF QUIVERS

ON RINGS WITH ONE-SIDED FIELD OF QUOTIENTS

PERFECT TORSION THEORIES PAUL E. BLAND

ADDITIVE GROUPS OF SELF-INJECTIVE RINGS

LIVIA HUMMEL AND THOMAS MARLEY

Decompositions of Modules and Comodules

129. Rings o f Dominant Dimension 1

A CHARACTERIZATION OF GORENSTEIN DEDEKIND DOMAINS. Tao Xiong

Ext and inverse limits

Generalized tilting modules with finite injective dimension

On the vanishing of Tor of the absolute integral closure

ON A GENERALIZED VERSION OF THE NAKAYAMA CONJECTURE MAURICE AUSLANDER1 AND IDUN REITEN

Ring Theory Problems. A σ

SUMS OF UNITS IN SELF-INJECTIVE RINGS

Lecture 2. (1) Every P L A (M) has a maximal element, (2) Every ascending chain of submodules stabilizes (ACC).

HOMOLOGICAL DIMENSIONS AND REGULAR RINGS

COMMUNICATIONS IN ALGEBRA, 15(3), (1987) A NOTE ON PRIME IDEALS WHICH TEST INJECTIVITY. John A. Beachy and William D.

SOME APPLICATIONS OF ZORN S LEMMA IN ALGEBRA

On Universal Localization of Noetherian Rings

On Commutative FDF-Rings

NIL DERIVATIONS AND CHAIN CONDITIONS IN PRIME RINGS

Dedicated to Helmut Lenzing for his 60th birthday

INJECTIVE MODULES: PREPARATORY MATERIAL FOR THE SNOWBIRD SUMMER SCHOOL ON COMMUTATIVE ALGEBRA

Artinian local cohomology modules

A NOTE ON SIMPLE DOMAINS OF GK DIMENSION TWO

ON HOCHSCHILD EXTENSIONS OF REDUCED AND CLEAN RINGS

1. Regular Modules Keivan Mohajer and Siamak Yassemi Let M be an R{module. The support of M is denoted by Supp(M) and it is dened by Supp(M) = fp 2 Sp

DERIVED EQUIVALENCES AND GORENSTEIN PROJECTIVE DIMENSION

SUBCATEGORIES OF EXTENSION MODULES BY SERRE SUBCATEGORIES

THE STRUCTURE OF JOHNS RINGS

Relative Left Derived Functors of Tensor Product Functors. Junfu Wang and Zhaoyong Huang

RIGHT SELF-INJECTIVE RINGS IN WHICH EVERY ELEMENT IS A SUM OF TWO UNITS

MATH 101B: ALGEBRA II PART A: HOMOLOGICAL ALGEBRA

Special Precovered Categories of Gorenstein Categories

ZERO-DIMENSIONALITY AND SERRE RINGS. D. Karim

ON FINITELY GENERATED FLAT MODULES

ON MINIMAL APPROXIMATIONS OF MODULES

Extended Index. 89f depth (of a prime ideal) 121f Artin-Rees Lemma. 107f descending chain condition 74f Artinian module

ALMOST PERFECT COMMUTATIVE RINGS

CONTRAVARIANTLY FINITE RESOLVING SUBCATEGORIES OVER A GORENSTEIN LOCAL RING

ON STRONGLY PRIME IDEALS AND STRONGLY ZERO-DIMENSIONAL RINGS. Christian Gottlieb

FROBENIUS AND HOMOLOGICAL DIMENSIONS OF COMPLEXES

Injective Modules and Matlis Duality

SEQUENCES FOR COMPLEXES II

2 HENNING KRAUSE AND MANUEL SAOR IN is closely related is that of an injective envelope. Recall that a monomorphism : M! N in any abelian category is

Transcription:

PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 41, Number 2, December 1973 FLAT AND FP-INJEOTVITY SAROJ JAIN1 Abstract. One of the main results of this paper is the characterization of left FP-injective rings as rings over which every finitely presented right module is torsionless. The necessity of the torsionless condition (in fact reflexivity) previously has been observed for special classes of FP-injective rings (e.g., self-injective rings (Kato and McRae), right and left coherent and self FP-injective rings (Stenström)). Furthermore, if the ring is left coherent, it is equivalent to say that every finitely presented right module is reflexive. We investigate the condition (called IF) that every injective right module is flat and characterize this via FP-injectivity. IF-rings generalize regular rings and QF-rings, and under certain chain or homological conditions coincide with regular or QF-rings (e.g., wgldim R^Irregular, noetherian, or right perfect=>qf). 1. Introduction. It is well known in QF-rings (Quasi-Frobenius) that finitely generated modules are reflexive. Also it is easy to see that over a regular ring (in the sense of von Neumann) that every finitely presented module is reflexive. In this paper, we show that the property of every finitely presented module being torsionless is a characterizing property of left FP-injective rings. (Recall the definition 2.) For left coherent rings, we can strengthen this to the statement that every finitely presented right Ä-module is reflexive. This concept generalizes injective modules and self-injective rings, in particular, QF-rings. We also consider another generalization of QF-rings, namely right IF-rings. A ring R is said to be right IF if every injective right /{-module is flat. A theorem of Faith and Walker [5, Theorem 5.3] characterizes QF-rings with the property that every injective module is projective. Since any regular ring is right IF, the class of all right IF-rings is quite large. We connect right IF-rings with left FP-injectivity as follows : A left coherent ring is right IF iff R is left Received by the editors January 29, 1973. AMS (MOS) subject classifications (1970). Primary 16A30,16A50,16A52; Secondary 16A34, 16A62. Key words and phrases. QF-ring, IF-ring, self-injective ring, FP-injective ring, coherent ring, perfect ring, regular ring, semiprime Goldie ring, right and left annulets, injective module, FP-injective module, flat module, projective module, torsionless module, reflexive module, finitely presented module. 1 This paper is part of the author's doctoral dissertation written under the direction of Professor Carl Faith at Rutgers University, 1973. American Mathematical Society 1973 437

438 SAROJ JAIN [December FP-injective. (Moreover left coherent is necessary for right self-injective right IF-rings.) We also characterize right IF-rings in a number of special cases including when R is right perfect (in this case R is QF) and wgl R = 1 (R is regular in this case). The author wishes to express her appreciation to her advisor, Professor Carl Faith, for his generous advice and encouragement for the preparation of this paper. 2. FP-injective and reflexive modules. A left R-module is called left FP-injective iff Ext1(F, M)=0 for every finitely presented module F. A left FP-injective ring R is left FP-injective as left R-module. The following is clear (e.g. Gupta [8]). Lemma 2.1. Let {MA^j be a family of left R-modules, then direct product Yl Mi (respectively direct sum 0 MA is left FP-injective iff each Mi is left FP-injective. We also use the following result which can be found in Auslander [1] and especially Lipman [10]. Lemma 2.2. Let R be any ring, and let Ft -Ft-+M-*Q be an exact sequence of R-modules, where F0 and Fx are projective and of finite type. Let N be the cokernel of the dual map F* *-F*. Then there is an exact sequence 0 -* Ext^N, R) ^ M -» M** -* Ext2(N, R) ->- 0. in the next theorem, we refer to torsionless and reflexive modules in the sense that the canonical homomorphism M^-M* * is monomorphism and isomorphism respectively, where M* = HomR(M, R). Theorem 2.3. R is left FP-injective iff every finitely presented right R- module is torsionless. Proof. Let M be a finitely presented right Ä-module. Then by the above lemma, we have an exact sequence 0 -> Ext*(N, R) -* M ' -* M** -* Ext2(N, R) -* 0. N being a cokernel of FÍ~*-F* is finitely presented. Thus R left FPinjective implies Ext1(N, R)=0. Thus M-»-M** is a monomorphism. Conversely, let every finitely presented right module be torsionless. Assuming RM to be a finitely presented module, we have an exact sequence

1973] FLAT AND FP-INJECTIVITY 439 where F0 and Fx are finitely generated free right Ä-modules. Then applying the dual functor HomK(, R) we get an exact sequence (i) o-»m*^fx*-+f;^n^-o where Ar=cokernel of Ft~*F*. Now applying the above lemma to the right half of the sequence (1), we get 0 -* Ext^Af", R) -+N-+N**, M=cokernel of F**^>-Fx*; now N torsionless^ext^m, R)=0. Thus R is left FP-injective. Corollary 2.4. A left coherent ring is left FP-injective iff every finitely presented right R-module is reflexive. Proof. <= by Theorem 2.3. => Ext^F, R)=0 for every finitely presented left /î-module F. Since R is left coherent, this implies Ext"(F, i?)=0 for every n_l. The result follows from the proof of Theorem 2.3. Corollary 2.5. In a left FP-injective ring, every finitely generated right ideal I is right annulet. The proof follows by the fact that R/I is torsionless. The referee has remarked that the following proposition is also a consequence of Utumi's theorem [13], which implies that a left self-injective ring with zero singular ideal is regular. Proposition 2.6. A left self-injective ring with no nil elements is regular. Proof. By Corollary 2.5, rl(i)=i for every finitely generated right ideal / of R. Let /.=/ /(/). Since R has no nil elements, then /(/) and hence L is a two-sided ideal of R. Define a :/ /(/)-» /? by a+b -a, a el, b e /(/). Then a is given by a right multiplication of an element r. Further r is an idempotent and / is generated by r. Corollary 2.7. A prime left self-injective ring R is afield iff R has no nil elements. 3. Right IF-rings. R is said to be a right IF-ring if every injective right R-module is flat. QF-rings, regular rings are trivial examples of right and left IF-rings. Moreover, Hom^F^, FR), for FR a nonfinitely generated free right Ä-module and R a QF-ring, is a left IF-ring, by Sandomierski [11] and Lenzing [9]. Proposition 3.1. A right IF-domain is afield.

440 SAROJ JAIN [December Proof. In a domain, flat modules are torsion free. Thus every injective, being flat, is torsion free. Hence every module is nonsingular. For an essential right ideal /, R/I is nonsingular, so I=R, implying that R is a semisimple ring, hence a field, completing the proof. (Also follows from 3.3.) A ring R is defined to be QF if every right and left ideal is an annulet and if it is right or left noetherian or artinian (and then it is both). As characterized by Faith and Walker [5], every injective module is projective. By Bass [2], R is right perfect in case every right R-module has a projective cover (dual to injective hull) and characterized as a ring with descending chain condition on finitely generated left ideals. Theorem 3.2. A right IF-ring R is QF iffr is right perfect. Proof. By Bass [2, Theorem P], every flat right /J-module is projective. Thus every injective is projective, hence QF, by [5, Theorem 5.3]. <= Since QF is artinian, R is right perfect. For every finitely presented left jr-module and injective right /î-module M, one has a canonical homomorphism [4, p. 120] Tori(M, F) = ToTx(Hom(R, M), F) - HomíExt^F, R), M) which is an epimorphism, as is easily verified (cf. [12]). Theorem 3.3. A right IF-ring is left FP-injective. Proof. By above remark, Hom(Ext1(F, R), M)=0. Choosing M to be an injective cogenerator, we get Ext^F, R)=0, proving the result. In order to obtain the above result under the hypothesis of left perfect, we are forced to assume that a ring R is right pseudocoherent in the sense that r(s) is a finitely generated right ideal, for each finite subset SofR. Theorem 3.4. A right IF, right pseudocoherent ring is QF iff R is left perfect. Proof. Follows by 3.3 and Björk [3, Theorem 4.3]. Theorem 3.5. A right IF-ring is regular iff wglr=l. Proof. Since every finitely generated right Ä-module is embeddable in a flat module, the result follows. Lemma 3.6. R is right IF-ring iff every right R-module is embeddable in aflat module. Theorem 3.7. A semiprime right Goldie ring R is semisimple artinian iff R is right IF-ring. Proof. => Obvious.

1973] FLAT AND FP-INJECTIVITY 441 <= By 3.3, R is left FP-injective. Thus R is left Ä-divisible (the proof of every injective left.r-module is divisible also works for left FP-injective modules). Hence every regular element has a right inverse and thus is invertible. Since in a semiprime Goldie ring every essential right ideal has a regular element, (Goldie [7, Theorem 3.9]), which is invertible in our case, then R has no essential right ideals. Hence R is semisimple artinian. Proposition 3.8. Let R be a logenerator in the category of right R- modules. Then R is right IF iff R is left coherent. Proof. R is a cogenerator implies that every right A-module is torsionless. Since R is Il-flat every module is embeddable in a flat module. Thus R is right IF, by 3.6. The next corollary generalizes Faith's characterization of a QF-ring as a right or left self-injective ring with ascending chain condition on left annulets (cf. [6]). Corollary 3.9. A right IF-ring R is QF iff R has ascending chain condition on left annihilators. Proof. Follows by 3.3 and [3, Theorem 4.1]. The same proof of Stenström [12, Proposition 4.2] yields: Theorem 3.10. In a left coherent ring, R is right IF iff R is left FPinjective. 4. Flat duals. Let (*) be a property that the dual of every right R- module is left R-flat. The next lemma follows immediately. Lemma 4.1. If R is a ring with property (*), then R is right coherent. Proposition 4.2. Let R have (*). Then the following are equivalent: (1) R is right FP-injective. (2) R is left FP-injective and left coherent. (3) R is regular. Proof. (1)=>(3). By 4.1 and 2.4, every finitely presented left R- module M is reflexive. (*)=>AP* is left R-ñat. Thus M is flat. Since every module is a direct limit of finitely presented modules, every module is flat. (3)=>(1) and (2). Trivial. (2)=>(3) follows symmetry to (1)=>(3). Theorem 4.3. For a right FP-injective ring R, the following are equivalent: (a) R has the property (*). (b) R is regular. (c) R is right coherent and wgl /?< oo. (d) R is right semihereditary.

442 SAROJ JAIN Proof, (a)o(b) by 4.2. (b)o(c) by Stenström [12, Proposition 3.6]. (b)o(d) by Gupta [8, Theorem 3.4]. In conclusion, I would like to call attention to the following open problem. We remark that we have completely characterized left coherent right IF-rings ideal-theoretically via Theorem 3.10, inasmuch as both left FP-injectivity and left coherency are so characterizable. However, we do not know whether a right IF-ring is left coherent, even for commutative rings. References 1. M. Auslander, Coherent functors, Proc. Conf. Categorical Algebra (La Jolla, Calif., 1965), Springer, New York, 1966, pp. 189-231. MR 35 #2945. 2. H. Bass, Finitistic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc. 95 (1960), 466-488. MR 28 #1212. 3. J. E. Björk, Rings satisfying certain chain conditions, J. Reine Angew. Math. 245 (1970), 63-73. MR 43 #3295. 4. H. Cartan and S. Eilenberg, Homological algebra, Princeton Univ. Press, Princeton, N.J., 1956. MR 17, 1040. 5. C. Faith and E. Walker, Direct sum representations of injective modules, J. Algebra 5 (1967), 203-221. MR 34 #7575. 6. C. Faith, Rings with ascending condition on annihilators, Nagoya Math. J. 27 (1966), 179-191. MR 33 #1328. 7. A. W. Goldie, Semi-prime rings with maximum condition, Proc. London Math. Soc. (3) 10 (1960), 201-220. MR 22 #2627. 8. R. N. Gupta, On f-injective modules and semi-hereditary rings, Proc. Nat. Inst. Sei. India Part A 35 (1969), 323-328. MR 40 #5658. 9. H. Lenzing, Über kohärente Ringe, Math. Z. 114 (1970), 201-212. MR 41 #5410. 10. J. Lipman, Free derivation modules on algebraic varieties. Amer. J. Math. 87 (1965), 874-898. MR 32 #4130. Il: F. E. Sandomierski, Some examples of right self-infective rings which are not left self-injective, Proc. Amer. Math. Soc. 26 (1970), 244-245. MR 42 #324. 12. B. Stenström, Coherent rings and FP-injective modules, J. London Math. Soc. (2) 2 (1970), 323-329. MR 41 #3533. 13. Y. Utumi, On quotient rings, Osaka Math. J. 8 (1956), 1-18. MR 18, 7. Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08903 Current address: Department of Mathematics, University of Southern Illinois, Carbondale, Illinois 62901