Model and program for the prediction of the indoor air temperature and the indoor air relative humidity

Similar documents
Section 8.1 Exercises

Air Age Equation Parameterized by Ventilation Grouped Time WU Wen-zhong

Caractérisation dans le plan de matériaux isolants par thermographie infrarouge et méthode convolutive

A correction model for zenith dry delay of GPS signals using regional meteorological sites. GPS-based determination of atmospheric water vapour

Stateof the art of urbanmesoscale modelling and possible use of the Helsinki testbed data

Lab 2e Thermal System Response and Effective Heat Transfer Coefficient

2010 Black Engineering Building, Department of Mechanical Engineering. Iowa State University, Ames, IA, 50011

Randomness and Computation

ENERGY SAVING SOLAR FACADE FOR NON-RESIDENTIAL BUILDINGS FOR CLIMATIC CONDITION IN THE CZECH REPUBLIC

instance, most of building simulation programs use 1- h time step since weather files normally give hourly values.

A Link Transmission Model for Air Traffic Flow Prediction and Optimization

Meteorological experience from the Olympic Games of Torino 2006

MODELING THE OCCUPANT BEHAVIOR RELATING TO WINDOW AND AIR CONDITIONER OPERATION BASED ON SURVEY RESULTS

EVALUATION OF THE VISCO-ELASTIC PROPERTIES IN ASPHALT RUBBER AND CONVENTIONAL MIXES

ORIGIN 1. PTC_CE_BSD_3.2_us_mp.mcdx. Mathcad Enabled Content 2011 Knovel Corp.

The Analysis of Convection Experiment

Week 9 Chapter 10 Section 1-5

is the calculated value of the dependent variable at point i. The best parameters have values that minimize the squares of the errors

Operating conditions of a mine fan under conditions of variable resistance

Airflow and Contaminant Simulation with CONTAM

Chapter 3. r r. Position, Velocity, and Acceleration Revisited

THE EFFECT OF TORSIONAL RIGIDITY BETWEEN ELEMENTS ON FREE VIBRATIONS OF A TELESCOPIC HYDRAULIC CYLINDER SUBJECTED TO EULER S LOAD

Research & Reviews: Journal of Engineering and Technology

Noise from structure borne sound sources mounted on lightweight receivers; progress report from CEN/TC126/WG7

IMPLICIT COUPLING BETWEEN ATMOSPHERIC AND SURFACE PHYSICS. Patrick Le Moigne. 15th ALADIN Workshop: 6-10 June, Bratislava

JAB Chain. Long-tail claims development. ASTIN - September 2005 B.Verdier A. Klinger

Mathematical Modeling to Support Gamma Radiation Angular Distribution Measurements

By Dr. Erkan KARACABEY 1 Dr. Cem BALTACIOĞLU 2 and Dr. Erdoğan KÜÇÜÖNER 1

Thermal models of buildings : determination of temperatures, heating and cooling loads : theories, models and computer programs

Environmental Lab. Don Pugh. Ergonomics

Part C Dynamics and Statics of Rigid Body. Chapter 5 Rotation of a Rigid Body About a Fixed Axis

Heating and ventilation in milking parlours

PORE STRUCTURE AND THERMAL CONDUCTIVITY OF BURNT CLAY BRICKS INTRODUCTION

Chapter 11 Angular Momentum

Deterministic and Monte Carlo Codes for Multiple Scattering Photon Transport

Name: Personal number:

Conservation of Angular Momentum = "Spin"

EN40: Dynamics and Vibrations. Homework 4: Work, Energy and Linear Momentum Due Friday March 1 st

Unbalanced Nested ANOVA - Sokal & Rohlf Example

Homework Notes Week 7

π e ax2 dx = x 2 e ax2 dx or x 3 e ax2 dx = 1 x 4 e ax2 dx = 3 π 8a 5/2 (a) We are considering the Maxwell velocity distribution function: 2πτ/m

PREDICTING THE TEMPERATURE PROFILE OF INDOOR BUILDINGS BY USING ORTHONORMAL BASIS FUNCTIONS

Dynamic Contact Problem for Slide Hinge

SGNoise and AGDas - tools for processing of superconducting and absolute gravity data Vojtech Pálinkáš and Miloš Vaľko

Convexity preserving interpolation by splines of arbitrary degree

Amplification and Relaxation of Electron Spin Polarization in Semiconductor Devices

and Statistical Mechanics Material Properties

Implementation of the Matrix Method

DEVELOPMENT OF APPROACH TO OPTIMIZATION OF BUILDING ENVELOPE DESIGN IN ASPECT OF THERMAL COMFORT AND ENERGY USE. Ruey Lung Hwang 1, Fu Shun Tsai 2

Physics 141. Lecture 14. Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 14, Page 1

High resolution entropy stable scheme for shallow water equations

ALGORITHM FOR THE CALCULATION OF THE TWO VARIABLES CUBIC SPLINE FUNCTION

Methods (Exp. Cal.) Methods (Exp.)

Thermal-Fluids I. Chapter 18 Transient heat conduction. Dr. Primal Fernando Ph: (850)

Indeterminate pin-jointed frames (trusses)

MODELING AND CONTROL OF LIVESTOCK VENTILATION SYSTEMS AND INDOOR ENVIRONMENTS

Comparison of Regression Lines

NON LINEAR ANALYSIS OF STRUCTURES ACCORDING TO NEW EUROPEAN DESIGN CODE

Over-Temperature protection for IGBT modules

Chapter 7 Channel Capacity and Coding

A Mathematical Model for Infiltration Heat Recovery

MODULE 6 HUMIDIFICATION AND AIR CONDITIONING

A NEW FILTERED DYNAMIC SUBGRID-SCALE MODEL FOR LARGE EDDY SIMULATION OF INDOOR AIRFLOW

NEW METHOD FOR QUICK EVALUATION OF THE HEATING ENERGY DEMAND OF RESIDENTIAL BUILDINGS

Line Drawing and Clipping Week 1, Lecture 2

International Power, Electronics and Materials Engineering Conference (IPEMEC 2015)

Strong Markov property: Same assertion holds for stopping times τ.

NUMERICAL INVESTIGATION OF HEAT AND MASS TRANSFER IN FLAX AND HEMP CONCRETE WALLS

Interval Regression with Sample Selection

Integral Transforms and Dual Integral Equations to Solve Heat Equation with Mixed Conditions

Nice plotting of proteins II

Statistics MINITAB - Lab 2

Comparing TRNSYS and WUFI plus simulation models- illustrated on models validated on measurements at Schack- Gallery Munich

Physics 40 HW #4 Chapter 4 Key NEATNESS COUNTS! Solve but do not turn in the following problems from Chapter 4 Knight

Back Analysis of Self-Compacting Concrete Rheological Parameters Based on H-B Model

Constitutive Modelling of Superplastic AA-5083

Suppose that there s a measured wndow of data fff k () ; :::; ff k g of a sze w, measured dscretely wth varable dscretzaton step. It s convenent to pl

Economic and Social Council

Uncertainty in measurements of power and energy on power networks

Numerical modelization by finite differences of a thermoelectric refrigeration device of double jump". Experimental validation.

Introduction to Vapor/Liquid Equilibrium, part 2. Raoult s Law:

Reliability Analysis of Bearing Capacity of Large-Diameter Piles under Osterberg Test

Determining the Temperature Distributions of Fire Exposed Reinforced Concrete Cross-Sections with Different Methods

Generalized Linear Methods

Modeling of Dynamic Systems

Crnomarković, N. Dj., et al.: Influence of the Gray Gases Number in the Weighted THERMAL SCIENCE, Year 2016, Vol. 20, Suppl. 1, pp.

8.022 (E&M) Lecture 4

En Route Traffic Optimization to Reduce Environmental Impact

Introduction to Antennas & Arrays

CONTROL OF THE HUMIDITY AND TEMPERATURE IN AN ATRIUM BY COOLING THE SURFACE OF A POND IN THE ATRIUM

Modeling of CO 2 Cut in CBM Production

Chapter 13: Multiple Regression

Numerical Analysis of Natural Ventilation System in a Studio Apartment in Bangladesh

On Outlier Robust Small Area Mean Estimate Based on Prediction of Empirical Distribution Function

Evaluation of changes in thermodiffusion properties of mineral wool resulting from treatment with water and re-drying

9.2 Seismic Loads Using ASCE Standard 7-93

Indirect Evidence: Indirect Treatment Comparisons in Meta-analysis

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity

Ming-Chung Chan and Chun-Ho Liu

TREES Training for Renovated Energy Efficient Social housing

Transcription:

Insttute of Buldng Clmatology, Faculty of Archtecture, Dresden Unversty of Technology, Germany Model and program for the predcton of the ndoor ar temperature and the ndoor ar relatve humdty Dr.-Ing. A. Bshara & Prof. Dr.-Ing. habl. (em.) P. Häupl Dresden Unversty of Technology, Germany Dpl. Ing. (FH) F. Hansel Unversty of Technology Cottbus Senftenberg, Germany Venna 10/09/2013

Outlook - Introducton and boundary condtons - Modelng of energy balance - Modelng of mosture balance - Results and concluson

Test house constructon wth outdoor clmate loadng, mosture sources ndoor heat and gven usng regme Drect / dffuse radaton Outsde ar temperature outdoor ar humdty External buldng part : roof tendency 0, 30, 45, 60, 90 ventlaton Wndow wth varable shadng Room ar temperature Room ar humdty Insde buldng part: celng, floor Room 3 Internal heat and mosture sources Room 1 ventlaton Wndow wth fxed foregn shadng Insde buldng part: Wall Insde buldng part: Door Room 4 Room 2 Heatng External buldng part: wall poston north, northeast, East, Southeast, South, Southwest, West, Northwest

Outdoor clmate (measured values, Dresden 1997) 1 2 3 4 5 6 7 column 1- Temperature Apr 11th 2424 2425 2426 2427 5.31 55.33 0.00 0.00 0.00 8.20 274.10 4.51 64.30 0.00 0.00 0.00 7.90 276.80 3.35 75.61 0.00 0.00 0.00 8.30 262.60 3.16 79.75 0.00 0.00 0.00 7.10 274.40 column 2- Relatve humdty 2428 2429 2430 3.53 76.32 0.00 0.00 0.00 8.00 276.90 2.94 76.48 0.00 0.00 0.00 7.20 269.50 2.60 79.54 0.00 0.00 0.00 7.90 281.70 column 3- Drekt radaton column 4- Dffuse radaton column 5- Precptaton KU2 = 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2.53 83.45 100 0.00 0.00 0.00 6.70 267.10 2.80 83.58 0.00 0.00 0.00 6.20 271.60 3.05 82.59 4.53 45.78 0.00 5.80 270.10 3.32 80.98 10.27 101.00 0.10 8.30 271.30 3.72 78.99 16.29 141.10 0.20 8.80 276.60 3.94 78.47 10.60 113.10 0.70 11.10 284.20 4.78 75.55 324.10 183.40 0.10 10.40 277.70 5.88 61.30 171.10 201.40 0.00 9.00 292.90 5.62 69.64 132.50 221.40 0.00 7.60 278.70 6.92 62.38 284.90 260.10 0.00 8.40 278.80 column 6- Wnd velcty 2441 2442 2443 6.71 61.66 9.03 96.59 0.00 8.60 300.00 5.30 74.03 36.23 105.40 0.00 7.30 302.30 5.35 76.41 9.83 73.28 0.00 6.00 296.20 column 7- Wnd drecton Apr 12th 2444 2445 2446 2447 2448 5.34 75.40 18.82 44.34 0.00 5.30 12.00 3.21 82.71 0.31 8.36 0.00 1.90 7.70 2.64 83.48 0.42 0.08 0.00 0.30 312.10 2.06 87.19 0.00 0.00 0.00 0.00 299.70 1.74 91.06 0.00 0.00 0.00 0.50 320.80

Modellng of the energy balance 1 th Energy balance of the outer surface dθoe SW = T ' W.( θoe θo ) + Ü e.( θoe θe ) + C e. dt 2 nd Energy balance of the ndoor ar Φ = Ü e. ( θ oe θ ) Ü e e θ oe θ e Φ = a.g a Φ TW = T W. ( θ Oe θ O ) SWe θ oe C e d Φ SPe = C e. θ dt Oe θ θ oe 0 = ( L + T ).( θ θ ) + Ü.( θ θ ) + F e o J 2 Φ TW = T W ( θ oe θ o ) Φ = S θ oe SF Φ = Ü ( θ o θ ) Ü. θ o θ F J Φ = 2 θ o d Φ S P = C. θ dt o C θ o d Φ S P = C. θ d t o θ o C 3 rd Energy balance of the nner surface Φ = ( θ o θ ) Ü. Ü dθo J C. = SF + T ' W.( θoe θo ) + Ü.( θo θ ) + dt 2 θ e Φ L = L. ( θ e θ ) Φ TF = T F. ( θ e θ ) θ o θ θ J Φ = 2 d Φ S p L = C L. θ C d t L

Indoor ar temperature for the tme step +1 =1,2..8760 θ, + 1 = θ, + ( θlim, θ, ).( 1 exp( β. t )) Lmt temperature for each tme step θ LIM, S S S 1 1 + + + + F F W Üe T ' W Üe Üe T ' W J Ü.. 1 J ( L ( L + T F ) + T F ) 2 L TF Ü + + 2 = θ e, + + + 1 1 1 1 1 1 1 1 + + + + + + L + Ü + T Ü T ' Ü L + T Ü T ' Ü L + T e W F e W F F Tme coeffcent E E β = + B 2 2 2 τ = 3 β T ' W + Üe = 1 1 B +. C.C 1 1 1 1 e + + + Ü L TF T ' W Üe Ü 1 T ' W + Üe T ' W + Ü E =. C ( + ). L T 1 1 F + Ce C + Ü L TF

Modellng of the mosture balance Example: Readng room of the lbrary wth hgh heat and mosture capacty p C F p d d m = C. p dt dt SPL LF d C. p = Ü. p p dt ( ) F O F O d m = Ü. p p Ü dt ( ) F O p o θ e C LF p p p p e se s θ C F p o φ e φ d V L.n L pe p m L = dt R D T e T d m = m.v dt QU ptv L

Modellng of the mosture balance 1 th Mosture balance of the outer surface d m 0 T = dt 2 nd Mosture balance of the ndoor ar dp V.n p p ( ) L L e C LF. =. + Ü F. po p + m ptv.v L dt RD Te T dp C. = Ü. p p dt 3 rd Mosture balance of the nner surface ( ) o F F o 1 t δ w C =... ρ..a sp L h F W o 2 π µ ps

Vapor pressure on the nner surface for the tme step +1 =1,2..8760 ( ) ( ) p = o, 1 p + o, p o,lim, p o,. 1 + exp( β F.t ) p o,lim, = p + e, m.r.t ptv D n L Heren means p o,lim,, the water vapor pressure at the surface after an nfntely long tme β F = 1 1. C R F D.T 1 + V.n Ü L L F b F s the tme constant for the humdty adustment wthn the -th tme step

Vapor pressure and relatve humdty of the room ar for the tme step +1 =1,2..8760 Fnally we can determne the water vapor pressure of the room ar p, + 1 = V.n L L p o, + 1.Ü F + p o, + 1..3600 R D.T V L.n L.3600 + ÜF R D.T 17,26. θ, + 1 21,87. θ, + 1 273,3+, 265,5+ θ + 1, + 1 e. + e = θ p (, 1 ) s, 1 610,5. Φ θ + + +. 6 (, 1 10 Φ θ + ) The nsde relatve humdty at the tme +1 s φ, + 1 = p p, + 1 s, + 1

Valdaton of the humdty module 100,00 80 temperature n C / relatve humdty n % 90,00 80,00 70,00 60,00 50,00 40,00 30,00 20,00 10,00 Ph flow nto Ph clmt Ph mes T m es temperature n C / relatve humdty n % 70 60 50 40 30 20 10 Ph flow nto Ph clmt Ph mes T mes 0,00 0 20 40 60 80 100 120 140 tm e n h Comparson between measured and calculated relatve humdty n the empty box 0 0 10 20 30 40 50 60 70 80 90 100 tme n h Comparson between measured and calculated relatve humdty n the box wth the sample wooden concrete: mosture ump 65%/45%, ump tme 24h, ventlaton rate 0.4/h Test box wth wooden concrete samples and measurement equpment

Example 1: Readng room of the lbrary wth hgh heat and mosture capacty Yearly course of the ndoor ar temperature outdoor ar temperature (Dresden) n comparson 35 Outdoor/Indoor Außenluft/Raumlufttemperatur ar temperature C C θ ( ) T + 1 30 25 20 15 10 5 0 5 10 0 30.5 61 91.5 122 152.5 183 213.5 244 274.5 305 335.5 366 24 Zet n 4h Tme n days

Example 1: Readng room of the lbrary wth hgh heat and mosture capacty Yearly course of the ndoor relatve humdty outdoor ar relatve humdty (Dresden) n comparson 100 90 Indoor Relatve ar Luftfeuchgketen relatve humdty n 1 n 1 KD2 2 + 4 ( ) 100 φ, m ptv 80 70 60 50 40 30 20 10 0 0 30.5 61 91.5 122 152.5 183 213.5 244 274.5 305 335.5 366 t( ) Zet n Tagen Tme n days

Program CLIMT (Clmate-Indoor-Mosture-Temperature) Input data for the room parameters http://www.hslaustz.de/fakultaet4/lehrgebete/bauphysk/clmt.html

Example 2: Archve room of the lbrary Magdeburg wth hgh heat and mosture capacty Tm n day

Example 2: Archve room of the lbrary Magdeburg wth hgh heat and mosture capacty Comparson between measurement and calculaton (clmate Magdeburg 2012) by CLIMT Indoor ar relatve humdty Indoor ar temperature

Example 3: Swmmng house n South Brandenburg

Example 3: Swmmng house n South Brandenburg Indoor ar temperature n the swmmng house n 2008: Calculated by TRNSYS (ponted magenda lne), calculated by CLIMT (black lne) and measured values (cyan lne) Indoor ar temperature n C θpb( ) θp( ) θt( ) 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0 0 30.5 61 91.5 122 152.5 183 213.5 244 274.5 305 335.5 366 24 Tme n d

Example 3: Swmmng house n South Brandenburg Indoor ar relatve humdty n the swmmng house n 2008: calculated by CLIMT (black lne) and measured values (green lne) 100 90 Indoor ar relatve humdty n % φpb( ) φp( ) 80 70 60 50 40 30 20 10 0 0 30.5 61 91.5 122 152.5 183 213.5 244 274.5 305 335.5 366 24 Tme n d

Summary - The model and also the program CLIMT for the practcable calculaton of the ndoor ar temperature and relatve humdty has been developed - The results have been compared for a test box and for two actual test houses. All results correspond very good

Thank you for your attenton Ayman.Bshara@tu-dresden.de