Communication Systems Lecture 25. Dong In Kim School of Info/Comm Engineering Sungkyunkwan University

Similar documents
Communications II Lecture 4: Effects of Noise on AM. Professor Kin K. Leung EEE and Computing Departments Imperial College London Copyright reserved

Principles of Communications Lecture 12: Noise in Modulation Systems. Chih-Wei Liu 劉志尉 National Chiao Tung University

EGR 544 Communication Theory

Ideal Amplifier/Attenuator. Memoryless. where k is some real constant. Integrator. System with memory

Section 8 Convolution and Deconvolution


Solutions Manual 4.1. nonlinear. 4.2 The Fourier Series is: and the fundamental frequency is ω 2π

F O R SOCI AL WORK RESE ARCH

ECE-314 Fall 2012 Review Questions

What is a Communications System?

Name:... Batch:... TOPIC: II (C) 1 sec 3 2x - 3 sec 2x. 6 é ë. logtan x (A) log (tan x) (B) cot (log x) (C) log log (tan x) (D) tan (log x) cos x (C)

MATH 6101 Fall 2008 Newton and Differential Equations

ETIKA V PROFESII PSYCHOLÓGA

B Signals and Systems I Solutions to Midterm Test 2. xt ()

Fourier transform. Continuous-time Fourier transform (CTFT) ω ω

Chair Susan Pilkington called the meeting to order.

Pulse Shaping and ISI (Proakis: chapter 10.1, 10.3) EEE3012 Spring 2018

Sampling. AD Conversion (Additional Material) Sampling: Band limited signal. Sampling. Sampling function (sampling comb) III(x) Shah.

Linear Time Invariant Systems

TELEMATICS LINK LEADS

Block Diagram of a DCS in 411

EELE Lecture 8 Example of Fourier Series for a Triangle from the Fourier Transform. Homework password is: 14445

ELG3175 Introduction to Communication Systems. Angle Modulation Continued

An Example file... log.txt

6.003 Homework #5 Solutions

T h e C S E T I P r o j e c t

ECE 350 Matlab-Based Project #3

P a g e 3 6 of R e p o r t P B 4 / 0 9

David Randall. ( )e ikx. k = u x,t. u( x,t)e ikx dx L. x L /2. Recall that the proof of (1) and (2) involves use of the orthogonality condition.

Hough search for continuous gravitational waves using LIGO S4 data

C(p, ) 13 N. Nuclear reactions generate energy create new isotopes and elements. Notation for stellar rates: p 12

Overview in Images. 5 nm

Electrical Engineering Department Network Lab.

1 Notes on Little s Law (l = λw)

ECE-305: Fall 2017 MOS Capacitors and Transistors

Chapter 4: Angle Modulation

. ffflffluary 7, 1855.

Big O Notation for Time Complexity of Algorithms

Q Scheme Marks AOs. Notes. Ignore any extra columns with 0 probability. Otherwise 1 for each. If 4, 5 or 6 missing B0B0.

King Fahd University of Petroleum & Minerals Computer Engineering g Dept

Linear System Theory

Discrete-Time Signals and Systems. Introduction to Digital Signal Processing. Independent Variable. What is a Signal? What is a System?

Differentiating Functions & Expressions - Edexcel Past Exam Questions

6/10/2014. Definition. Time series Data. Time series Graph. Components of time series. Time series Seasonal. Time series Trend

3.4 Design Methods for Fractional Delay Allpass Filters

Framework for functional tree simulation applied to 'golden delicious' apple trees

Continuous-time Fourier Methods

Min-Guk Seo, Dong-Min Park, Jae-Hoon Lee, Kyong-Hwan Kim, Yonghwan Kim

Sampling Example. ( ) δ ( f 1) (1/2)cos(12πt), T 0 = 1

Reciprocal Mixing: The trouble with oscillators

h : sh +i F J a n W i m +i F D eh, 1 ; 5 i A cl m i n i sh» si N «q a : 1? ek ser P t r \. e a & im a n alaa p ( M Scanned by CamScanner

P a g e 5 1 of R e p o r t P B 4 / 0 9

AQA Maths M2. Topic Questions from Papers. Differential Equations. Answers

Math 2414 Homework Set 7 Solutions 10 Points

Solutions to selected problems from the midterm exam Math 222 Winter 2015

SUMMATION OF INFINITE SERIES REVISITED

MATH 174: Numerical Analysis I. Math Division, IMSP, UPLB 1 st Sem AY

Digital Signal Processing. Homework 2 Solution. Due Monday 4 October Following the method on page 38, the difference equation

= 1 3. r in. dr in. 6 dt = 1 2 A in. dt = 3 ds

ECE-305: Fall 2017 Metal Oxide Semiconductor Devices

ONE RANDOM VARIABLE F ( ) [ ] x P X x x x 3

Byung-Soo Choi.

Notes 03 largely plagiarized by %khc

Digital Modulation Schemes

Problems and Solutions for Section 3.2 (3.15 through 3.25)

IE 400 Principles of Engineering Management. Graphical Solution of 2-variable LP Problems

Fresnel Dragging Explained

Principles of Communications Lecture 1: Signals and Systems. Chih-Wei Liu 劉志尉 National Chiao Tung University

12 Getting Started With Fourier Analysis

EE3723 : Digital Communications

Subrings and Ideals 2.1 INTRODUCTION 2.2 SUBRING

probability of k samples out of J fall in R.

6.003 Homework #3 Solutions

UNIQUE FJORDS AND THE ROYAL CAPITALS UNIQUE FJORDS & THE NORTH CAPE & UNIQUE NORTHERN CAPITALS

Gaussian source Assumptions d = (x-y) 2, given D, find lower bound of I(X;Y)

Thermodynamic Variables and Relations

General Neoclassical Closure Theory: Diagonalizing the Drift Kinetic Operator

EE456 Digital Communications

A First Course in Digital Communications

Fundamentals of Thermodynamics. Chapter 8. Exergy

Finding small factors of integers. Speed of the number-field sieve. D. J. Bernstein University of Illinois at Chicago

ME 501A Seminar in Engineering Analysis Page 1

" #$ P UTS W U X [ZY \ Z _ `a \ dfe ih j mlk n p q sr t u s q e ps s t x q s y i_z { U U z W } y ~ y x t i e l US T { d ƒ ƒ ƒ j s q e uˆ ps i ˆ p q y

STK4080/9080 Survival and event history analysis

Examination paper for TFY4240 Electromagnetic theory

PROBLEMS AND SOLUTIONS 2

Chapter 10. Laser Oscillation : Gain and Threshold

This document has been prepared by Sunder Kidambi with the blessings of

ANSWER KEY WITH SOLUTION PAPER - 2 MATHEMATICS SECTION A 1. B 2. B 3. D 4. C 5. B 6. C 7. C 8. B 9. B 10. D 11. C 12. C 13. A 14. B 15.

COS 522: Complexity Theory : Boaz Barak Handout 10: Parallel Repetition Lemma

6.003: Signals and Systems

A Robust Adaptive Digital Audio Watermarking Scheme Against MP3 Compression

Applications of Light-Front Dynamics in Hadron Physics

Application of Combined Fourier Series Transform (Sampling Theorem)

An Introduction to Optimal Control Applied to Disease Models

MODERN CONTROL SYSTEMS

EECE 301 Signals & Systems Prof. Mark Fowler

Let s express the absorption of radiation by dipoles as a dipole correlation function.

7 Algebra. 7.1 Manipulation of rational expressions. 5x x x x 2 y x xy y. x +1. 2xy. 13x

LA PRISE DE CALAIS. çoys, çoys, har - dis. çoys, dis. tons, mantz, tons, Gas. c est. à ce. C est à ce. coup, c est à ce

Transcription:

Commuiaio Sysems Leure 5 Dog I Kim Shool o Io/Comm Egieerig Sugkyukwa Uiversiy 1

Oulie Noise i Agle Modulaio Phase deviaio Large SNR Small SNR Oupu SNR PM FM

Review o Agle Modulaio Geeral orm o agle modulaed sigal: PM: ( = os é w + ( x A ë x( = Aos éw+ kpm( ù ë û ( ( m : ormalized message wih max m = 1. é ù FM: x ( = Aos w+ p ò d m ( a d a êë úû 1 P= A. Trasmied Power: Demodulaio oupu: PM: T 1 d yd( = KD(, FM: yd( = KD p d ù û ( 3

Noise i Agle Modulaio ( x + Noise w(: AWGN N 0 / Predeeio Filer 1( ( e Demodulaio Badwidh o he predeeio iler: Carso s rule: B T = (D+1W. ( = éw + ( From x Aos ù ë û, To aalyze he ee o he oise, we eed o wrie ( ( e1 ( = R(os éw q e ù ë + + + û, where e ( is he oise added o (. Posdeeio Filer Rd Redue oise (explaied laer 4

Noise i Agle Modulaio Predeeio iler oupu: ( = os é w + q + ( ù + ( os ( w + q - ( si ( w + q e1 Aos ë û ( os s( si = A os é w q ( ù ë + + û + r( os( w+ q+ ( os éw q ( ù ( os( w q ( ( ( = A ë + + û + r + + - + ( ( ( ( ( w + q+ ( si( ( ( ( ù ( = A os é ë w+ q+ û + r( os w+ q+ os - - r (si + + si( - ( ( ( ( A r(os oséw q ( = + - ë + + - r (si ( w + q+ ( si( ( -( ù û 5

Noise i Agle Modulaio ( ( ( ( éw q ( e1 ( = A + r (os - os ë + + e ( ( w + q+ ( si ( ( ( - r (si + + - ( ( = R(os é ë w+ q+ + e = a ù û ( ( ( ( ( r (si 1 A + r (os - - - ( Phase deviaio rom he arrier: ( ( y( = + e Oly yphase deviaio aes he demodulaio. Ampliude a be kep osa by a limier (pp. 143. 6 ù û

Agle Modulaio wih High SNR High SNR: A r( mos o he ime. r (si ( ( (si ( ( - r - -1 ( -1 ( e ( = a» a A+ r(os ( ( -( A r (si ( ( - ( r (si ( ( - ( (si -1 (si(» si» A A r ( y( = + e» + si - A A ( ( ( ( ( ( Sill domiaed by he sigal ( ireases, he ee o r ( redues! 7

Agle Modulaio wih Low SNR Low SNR: A r ( mos o he ime. y (: domiaed by (. y ( = ( -a (. a ( Need expressio o a ( i erms o ( ad (. Noe: e ( is wrog i Fig. 6.13. e 8

Agle Modulaio wih Low SNR Low SNR: y ( = ( -a (. a( very small i A r (. a ( a(» si a(» a a(» A y(» ( si q( r ( A - si ( ( r ( - ( 9

Agle Modulaio wih Low SNR Low SNR: A» - ( - y ( ( si ( ( r ( Message sigal is los a low SNR! Threshold ee. 10

Agle Modulaio Phase deviaio e ( (os 1 = R é ë w+ q+ y ù û ( High SNR: r ( y (» ( + si ( ( - ( (1 ( Low SNR: A Small mos o he ime A y(» ( - si ( ( - ( ( r ( Noe: Eq ( a be obaied rom (1 by swihig ( «(, ad A «r (. 11

Oulie Noise i Agle Modulaio Phase deviaio Large SNR Small SNR Oupu SNR PM FM 1

PM Oupu SNR ( = éw + q+ ( ù+ ( ( w + q - ( i ( w + q e1 Aos ë û (os s(si ( ( (os ( = R(os éw q ù R éw q ù ë + + + e û ( ë + + y û r ( y (» + si - A PM Demodulaio oupu: ( High SNR: ( ( ( ( = y( = ( + ( y K K K D D D D e r ( = KD ( + KD si ( - ( A ( = K k m + ( D p P ( P ( 13

PM Oupu SNR PM Demodulaio oupu: r yd ( = KD kp m ( + KD si ( - ( A ( si ( Demod Sigal power: S = P ( K k P DP D p m To ompue oise power: le ( = 0 (message is 0 r( s( P( = KD si( = KD A A r ( ( ( s 14

PM Oupu SNR Reall: NBNoise N 0 / S ( S (- +B/ S (+ ( = Lp é ( - + ( + B/ S S s S ù ë û S s ( N 0 B/ 15

PM Oupu SNR PM Demodulaio oupu: s ( P ( KD A D = S ( = N P 0 A Sperum o s ( is i [-1/ B T, 1/ B T ] ( = ( + ( y K k m D D p P B T : Badwidh o predeeio iler (by Carso s rule. Oupu oise power: N DP = K D 0 A K N B T 16

PM Oupu SNR Pos-deeio i iler: Sie B T = (D+1W > W, he oupu oise power a be redued by applyig a pos-deeio iler wih badwidh W Predeeio Filer e1( Demodulaio Posdeeio Filer N DP = K D A N B 0 T N DP = K D A N W 0 17

PM Oupu SNR Trasmied power Per ui message badwidh 1 P= A. Trasmied Power: Oupu oise power: T D ç T 0 D A è 0 A PT = N W N W 0 0-1 K æ P ö N = DP N W = K. ç N W ø Ireasig rasmied power redues oupu oise power! Diere rom liear modulaio. PM Demod Oupu SNR: K k P SNR = = k P DP K P N W - NW ( SNR D D p m P T k ppm T / ( 0 0 ( 1 18

PM Oupu SNR PM: x A é ë kpm ( = os w + ( PM Demod Oupu SNR: Sigle-oe Modulaio ( = k siw bsiw p m m ù û P SNR = k P DP NW ( SNR m ( = si w or osw m m T p m 0 b k p : Modulaio Idex SNR PT = b P m : ireasig b ireases oupu SNR. DP NW ( 0 ( b + Bb Bu badwidh B = + 1 W is also ireased. T Ipu oise power will be ireased. Eveually large ipu SNR assumpio is ivalid hreshold ee. 19

Oulie Noise i Agle Modulaio Phase deviaio Large SNR Small SNR Oupu SNR PM FM 0

FM Oupu SNR ( = A éw + q + ( ù + ( ( w + q - ( i ( w + q e1 Aos ë û (os s(si ( ( (os ( r ( y(» ( + si( ( ( - A = R(os éw + q+ + ù R éw + q+ y ù ë e û ë û High SNR: FM Demodulaio oupu: y D ( ( A K d y D = p d K d ( ì ü D KD d r ( = + í ï si ( ( ( - ý ï p d p d ï A î ïþ ( = K m + ( D d F F ( 1

FM Oupu SNR FM Demodulaio oupu: K ( D d ì r ü y ( ( ï si ( ( ( ï D = KD dm + í p d A - ý ï î ïþ Demod Sigal power: S F ( DF = KD d Pm To ompue oise power: le ( = 0 (message is 0 ( K ì ü (si D d r KD ds ( F ( = ï í ï ý= p d ïî A ïþ pa d (: quadraure ompoe o oise. s How o id oise psd? r ( ( ( s

FM Oupu SNR ( K (si D d ì r ü KD ds ( F ( = ï í ï ý= p d ï î A ï þ pa d dx( j p X ( d ( s «d/d is a liear iler d d u ( S ( = H( S ( KD KD 1 1 NF = ç ( p 0 0 T T pa = Îê- A æ ö é ù S ( N N, B, B. èç ø ê ë ú û u s 3

FM Oupu SNR K é 1 1 ù D SNF ( = N 0, Î - BT, BT. A ê ë úû The oise has less ee o low-req message sigals. Aer Pos-deeio iler wih badwidh W: K K NDF = N ò d = N W A W D D 3 0 0. -W 3A ò 4

FM Oupu SNR 1 P= A. Trasmied Power: Oupu oise power: N DF T K K W æ P ö = 3A = 3 ç N W ø D 3 D T N 0W ç è 0 A PT = N W N W -1 0 0 Noise power is iversely proporioal p o FM Demod Oupu SNR: ( SNR DF K D d P æ m ö 3 d PT P -1 m æ P ö èç W ø D T 0 = = K W 3 ç èn W ø 0 N W P T NW 0 5

FM Oupu SNR FM Demod Oupu SNR: ( SNR DF æ ö = ç P N W d T 3 Pm ç èw ø 0 Reall: Deviaio Raio or geeral m(: peak requey deviaio max '( D = = badwidh o m( W é ù FM: x ( = Aos w+ p ò d m ( a d a êë úû d max m( D = d SNR W = ( DF W P SNR = D P NW T 3D Pm 0 6

FM Oupu SNR FM Demod Oupu SNR: P SNR = D P DF NW ( SNR T 3D Pm 0 For D 1, B =(D+1W» DW: T ( SNR DF 3æB ö T PT Pm 4 ç çèw ø 0 = N W Ireasig badwidh a improve he oupu SNR. Ipu oise power will be ireased. Eveually large ipu SNR assumpio is ivalid hreshold ee. 7

Pre-emphasis ad De-emphasis or Noise Pre emphasis Mod + Pre deeio Demod Pos deeio Deemphasis Demod oupu: Noise K ì ü D d r ( y ( ( si ( ( ( D = KD dm + í ï - ý ï p d ï A î ïþ Umodulaed arrier: F dx ( «d F ( ( 0 (message is 0 = ( K ì ü (si D d r KD ds ( ( = í ï ý ï= p d ïî A ïþ pa d K é 1 1 ù D j p X ( SNF ( = N 0, Î - BT, BT. A ê ë úû 8

Pre-emphasis ad De-emphasis or Noise Pre emphasis Mod + Pre deeio Demod Pos deeio Deemphasis Noise K 1 1 D é ù SNF ( = N0, - B,. T BT A Îê ê ë úû Assume de-emphasis iler is a 1 s -order lowpass RC iler: 1 HDE ( = 1 + ( / 3 W Noise power aer de-emphasis iler: W DF DE NF W N = ò H ( S ( d - 3 ò 9

ò 1 1 u du = a -1 a + u a a Pre-emphasis ad De-emphasis or Noise Pre emphasis Mod + Pre deeio Demod Pos deeio Deemphasis Noise Noise power aer de-emphasis emphasis iler: W NDF = ò HDE ( SNF ( d - W K K = N d = N d A A W W D ò D ò 0 0 3 W W - 1 + ( / - 3 3 + K æw Wö K æw pö K = N - a» N -» N W A A A D 3-1 D 3 D 0 3 0 3 0 3 ç è 3 3ø ç è 3 ø 30

Pre-emphasis ad De-emphasis or Noise A PT = N W N W 0 0 Pre emphasis Mod + Pre deeio Demod Pos deeio Deemphasis Noise ( = ( + ( y K m D D d F Demod Sigal power: Noise power aer de-emphasis: Oupu SNR: ( ( / P = Oupu SNR: SNR wihou deemphasis: S N DF = KD d Pm DF» SNR P T DF d 3 m NW 0 SNR PT = 3 d / W P DF m NW ( ( 0 K D A N W 0 3 31

Pre-emphasis ad De-emphasis or Noise Pre emphasis Mod + Pre deeio Demod Pos deeio Deemphasis Noise Oupu SNR wih de-emphasis: emphasis: ( = ( / SNR P T DF _ DE d 3 m NW 0 Oupu SNR wihou de-emphasis: 3 W ( = 3 ( / P PT SNR 3 d / W P DF m NW SNR a be improved sigiialy by de-emphasis iler. 0 3

Pre-emphasis ad De-emphasis or Noise SNR wih de-emphasis: SNR wihou de-emphasis: ( ( / P = SNR P T DF _ DE d 3 m NW 0 ( = 3 ( / P SNR W P T DF d m NW Example: FM: = 75 khz, W=15kHz, D = 5. ( SNR ( d =.1 khz, P =0.1. 3 m PT PT SNR = 375/15 01 0.1 = 7.5 75 DF NW 0 NW 0 PT PT SNR = 75/.1 0.1 = 18 DF_ DE NW NW ( ( 0 0 Trasmied power a be redued by 17 imes, wih he same oise perormae. 0 33