LOGARITHMIC INEQUALITIES FOR TWO POSITIVE NUMBERS VIA TAYLOR S EXPANSION WITH INTEGRAL REMAINDER

Similar documents
AN INEQUALITY OF OSTROWSKI TYPE AND ITS APPLICATIONS FOR SIMPSON S RULE AND SPECIAL MEANS. I. Fedotov and S. S. Dragomir

Some Hermite-Hadamard type inequalities for functions whose exponentials are convex

SOME INTEGRAL INEQUALITIES OF GRÜSS TYPE

0 N. S. BARNETT AND S. S. DRAGOMIR Using Gruss' integrl inequlity, the following pertured trpezoid inequlity in terms of the upper nd lower ounds of t

A Generalized Inequality of Ostrowski Type for Twice Differentiable Bounded Mappings and Applications

f (a) + f (b) f (λx + (1 λ)y) max {f (x),f (y)}, x, y [a, b]. (1.1)

RGMIA Research Report Collection, Vol. 1, No. 1, SOME OSTROWSKI TYPE INEQUALITIES FOR N-TIME DIFFERENTIA

INNER PRODUCT INEQUALITIES FOR TWO EQUIVALENT NORMS AND APPLICATIONS

TRAPEZOIDAL TYPE INEQUALITIES FOR n TIME DIFFERENTIABLE FUNCTIONS

ON PERTURBED TRAPEZOIDAL AND MIDPOINT RULES. f (t) dt

NEW INEQUALITIES OF SIMPSON S TYPE FOR s CONVEX FUNCTIONS WITH APPLICATIONS. := f (4) (x) <. The following inequality. 2 b a

INEQUALITIES OF HERMITE-HADAMARD S TYPE FOR FUNCTIONS WHOSE DERIVATIVES ABSOLUTE VALUES ARE QUASI-CONVEX

S. S. Dragomir. 2, we have the inequality. b a

ON COMPANION OF OSTROWSKI INEQUALITY FOR MAPPINGS WHOSE FIRST DERIVATIVES ABSOLUTE VALUE ARE CONVEX WITH APPLICATIONS

Journal of Inequalities in Pure and Applied Mathematics

AN INEQUALITY OF GRÜSS TYPE FOR RIEMANN-STIELTJES INTEGRAL AND APPLICATIONS FOR SPECIAL MEANS

arxiv: v1 [math.ca] 28 Jan 2013

S. S. Dragomir. 1. Introduction. In [1], Guessab and Schmeisser have proved among others, the following companion of Ostrowski s inequality:

GENERALIZATIONS OF WEIGHTED TRAPEZOIDAL INEQUALITY FOR MONOTONIC MAPPINGS AND ITS APPLICATIONS. (b a)3 [f(a) + f(b)] f x (a,b)

APPROXIMATING THE RIEMANN-STIELTJES INTEGRAL BY A TRAPEZOIDAL QUADRATURE RULE WITH APPLICATIONS

ON THE WEIGHTED OSTROWSKI INEQUALITY

ON AN INTEGRATION-BY-PARTS FORMULA FOR MEASURES

Generalized Hermite-Hadamard-Fejer type inequalities for GA-convex functions via Fractional integral

The Hadamard s inequality for quasi-convex functions via fractional integrals

RIEMANN-LIOUVILLE AND CAPUTO FRACTIONAL APPROXIMATION OF CSISZAR S f DIVERGENCE

Hermite-Hadamard type inequalities for harmonically convex functions

Improvements of some Integral Inequalities of H. Gauchman involving Taylor s Remainder

WEIGHTED INTEGRAL INEQUALITIES OF OSTROWSKI, 1 (b a) 2. f(t)g(t)dt. provided that there exists the real numbers m; M; n; N such that

A Companion of Ostrowski Type Integral Inequality Using a 5-Step Kernel with Some Applications

Czechoslovak Mathematical Journal, 55 (130) (2005), , Abbotsford. 1. Introduction

WENJUN LIU AND QUÔ C ANH NGÔ

Improvement of Grüss and Ostrowski Type Inequalities

SOME INEQUALITIES FOR THE DISPERSION OF A RANDOM VARIABLE WHOSE PDF IS DEFINED ON A FINITE INTERVAL

Journal of Inequalities in Pure and Applied Mathematics

QUADRATURE is an old-fashioned word that refers to

INEQUALITIES FOR TWO SPECIFIC CLASSES OF FUNCTIONS USING CHEBYSHEV FUNCTIONAL. Mohammad Masjed-Jamei

Research Article On The Hadamard s Inequality for Log-Convex Functions on the Coordinates

New Integral Inequalities for n-time Differentiable Functions with Applications for pdfs

Journal of Inequalities in Pure and Applied Mathematics

Bulletin of the. Iranian Mathematical Society

A unified generalization of perturbed mid-point and trapezoid inequalities and asymptotic expressions for its error term

Grüss Type Inequalities for Complex Functions Defined on Unit Circle with Applications for Unitary Operators in Hilbert Spaces

Journal of Inequalities in Pure and Applied Mathematics

Integral inequalities for n times differentiable mappings

New Expansion and Infinite Series

New general integral inequalities for quasiconvex functions

NEW HERMITE HADAMARD INEQUALITIES VIA FRACTIONAL INTEGRALS, WHOSE ABSOLUTE VALUES OF SECOND DERIVATIVES IS P CONVEX

Journal of Inequalities in Pure and Applied Mathematics

EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 3-1 Yıl:

Some estimates on the Hermite-Hadamard inequality through quasi-convex functions

Ostrowski Grüss Čebyšev type inequalities for functions whose modulus of second derivatives are convex 1

ASYMPTOTIC BEHAVIOR OF INTERMEDIATE POINTS IN CERTAIN MEAN VALUE THEOREMS. II

GENERALIZED OSTROWSKI TYPE INEQUALITIES FOR FUNCTIONS WHOSE LOCAL FRACTIONAL DERIVATIVES ARE GENERALIZED s-convex IN THE SECOND SENSE

Bounds for the Riemann Stieltjes integral via s-convex integrand or integrator

The Modified Heinz s Inequality

New Integral Inequalities of the Type of Hermite-Hadamard Through Quasi Convexity

Keywords : Generalized Ostrowski s inequality, generalized midpoint inequality, Taylor s formula.

OPIAL S INEQUALITY AND OSCILLATION OF 2ND ORDER EQUATIONS. 1. Introduction We consider the second-order linear differential equation.

Journal of Inequalities in Pure and Applied Mathematics

Research Article On New Inequalities via Riemann-Liouville Fractional Integration

Revista Colombiana de Matemáticas Volumen 41 (2007), páginas 1 13

The logarithmic mean is a mean

NON-NEWTONIAN IMPROPER INTEGRALS

Geometrically Convex Function and Estimation of Remainder Terms in Taylor Series Expansion of some Functions

A basic logarithmic inequality, and the logarithmic mean

Balanced Canavati type Fractional Opial Inequalities

OSTROWSKI AND TRAPEZOID TYPE INEQUALITIES RELATED TO POMPEIU S MEAN VALUE THEOREM WITH COMPLEX EXPONENTIAL WEIGHT

The presentation of a new type of quantum calculus

Several Answers to an Open Problem

Lecture 3 ( ) (translated and slightly adapted from lecture notes by Martin Klazar)

Farey Fractions. Rickard Fernström. U.U.D.M. Project Report 2017:24. Department of Mathematics Uppsala University

An Alternative Approach to Estimating the Bounds of the Denominators of Egyptian Fractions

INEQUALITIES FOR GENERALIZED WEIGHTED MEAN VALUES OF CONVEX FUNCTION

Integral inequalities

Research Article Fejér and Hermite-Hadamard Type Inequalities for Harmonically Convex Functions

MATH1050 Cauchy-Schwarz Inequality and Triangle Inequality

Lecture notes. Fundamental inequalities: techniques and applications

ARITHMETIC OPERATIONS. The real numbers have the following properties: a b c ab ac

Hermite-Hadamard and Simpson-like Type Inequalities for Differentiable p-quasi-convex Functions

Lecture 1. Functional series. Pointwise and uniform convergence.

A Note on Feng Qi Type Integral Inequalities

Torsion in Groups of Integral Triangles

KRASNOSEL SKII TYPE FIXED POINT THEOREM FOR NONLINEAR EXPANSION

INEQUALITIES OF HERMITE-HADAMARD TYPE FOR

Research Article The Group Involutory Matrix of the Combinations of Two Idempotent Matrices

The Shortest Confidence Interval for the Mean of a Normal Distribution

GENERALIZED ABSTRACTED MEAN VALUES

Section 6.1 INTRO to LAPLACE TRANSFORMS

Section 4: Integration ECO4112F 2011

A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007

p-adic Egyptian Fractions

Math& 152 Section Integration by Parts

Necessary and sufficient conditions for some two variable orthogonal designs in order 44

Polynomial Approximations for the Natural Logarithm and Arctangent Functions. Math 230

Generalized Hermite-Hadamard Type Inequalities for p -Quasi- Convex Functions

Parametrized inequality of Hermite Hadamard type for functions whose third derivative absolute values are quasi convex

An optimal 3-point quadrature formula of closed type and error bounds

ON ALTERNATING POWER SUMS OF ARITHMETIC PROGRESSIONS

Complex integration. L3: Cauchy s Theory.

#A11 INTEGERS 11 (2011) NEW SEQUENCES THAT CONVERGE TO A GENERALIZATION OF EULER S CONSTANT

Transcription:

LOGARITHMIC INEQUALITIES FOR TWO POSITIVE NUMBERS VIA TAYLOR S EXPANSION WITH INTEGRAL REMAINDER S. S. DRAGOMIR ;2 Astrct. In this pper we otin severl new logrithmic inequlities for two numers ; minly in the cse when > 0 y the use of Tylor s epnsion with integrl reminder. An nlysis of which ound is etter is lso performed.. Introduction There re numer of inequlities for logrithm tht re well know nd widely used in literture, such s (.) ln for > 0; (.2) nd see for instnce 2 2 + ln ( + ) p for 0; + ln ( ) ; for < ; ln n n for n > 0 nd > 0; ln ( jj) ln ( + ) ln ( jj) for jj < ; 3 2 ln ( ) 3 for 0 < 05838; 2 http functionswolfrmcomelementryfunctionslog29 nd [4]. A simple proof of the rst inequlity in (.2) my e found, for instnce, in [5], see lso [6] where the following rtionl ounds re provided s well + 5 6 ( + ) + 3 ln ( + ) + 6 + 2 3 for 0 (.3) In the recent pper [] we estlished the following inequlities for logrithm ( ) 2n 2n 2n m 2n f; g X ( ) k ( ) k k k k ln + ln 99 Mthemtics Suject Clssi ction. 26D5, 26D0. Key words nd phrses. Logrithmic inequlities, Tylor s epnsion, Bounds. ( ) 2n 2n min 2n f; g

2 S. S. DRAGOMIR ;2 nd (.4) ( ) 2n 2n 2n m 2n f; g ln ln X k ( ) k k k for ny ; > 0 nd for n. In prticulr, for n we get (.5) nd (.6) ( ) 2 2 m 2 f; g ln + ln ( ) 2n 2n min 2n f; g ( )2 2 min 2 f; g ( ) 2 2 m 2 f; g ln ln ( )2 2 min 2 f; g We hve the following upper ounds [] 2n X ( ) k ( ) k (.7) (0 ) k k ln + ln ( )2n 2n 2n (2n ) 2n 2n nd k (0 ) ln ln 2n X k ( ) k k k ( )2n 2n 2n (2n ) 2n 2n for ny ; > 0 nd for n. For ny ; > 0 we hve the simpler inequlities (.8) (0 ) nd (.9) (0 ) ln ln ln + ln We lso hve the Hölder s type upper ounds [2] (.0) nd (.) 2n X (0 ) k ( ) k ( ) k k k ( )2 ( )2 ln + ln j j 2n +p 2nq 2nq q [(2n ) p + ] p (2nq ) q 2n q () (0 ) ln ln 2n X k ( ) k k k j j 2n +p 2nq 2nq q ; [(2n ) p + ] p (2nq ) q 2n q () where p; q > with p + q nd ; > 0 nd n. In prticulr, we get for n (.2) (0 ) ln + ln j j+p 2q 2q q [(p + )] p (2q ) q () 2 q

LOGARITHMIC INEQUALITIES FOR TWO POSITIVE NUMBERS 3 nd (.3) (0 ) ln ln j j+p 2q 2q q [(p + )] p (2q ) q () 2 q In [2] we otined the following complementry results (.4) nd (.5) 2 m f; g ( )2 ln ln 2 m f; g ( )2 ( )2 2 min f; g ln + ln for ny ; > 0. If n ; then for ny ; > 0 we hve tht [2] (.6) nd (.7) ( ) 2n+2 (2n + ) (2n + 2) m 2n+ f; g ln ln + 2n+ X ( ) 2n+2 (2n + ) (2n + 2) min 2n+ f; g ( ) 2n+2 (2n + ) (2n + 2) m 2n+ f; g ( )2 2 min f; g ( ) k ( ) k k (k ) k 2n+ X ( ) k k (k ) k ln + ln ( ) 2n+2 (2n + ) (2n + 2) min 2n+ f; g For other similr ounds see [2]. Motivted y the ove results, we estlish in this pper severl ounds for the quntities nd ln + ln ln ln k ( ) k ( ) k k k ; k ( ) k k k ; ( ) k ( ) k k (k ) k ln + ln ( ) k k (k ) k ln + ln where ; > 0 nd n The simpler cses when n re outlined nd in this cse some ounds re numericlly compred to conclude tht neither is lwys est.

4 S. S. DRAGOMIR ;2 2. Some Inequlities for Logrithm The following result holds, see for instnce [3] where vrious pplictions in Informtion Theory were provided Lemm. For ny ; > 0 we hve for m tht mx ( ) k ( ) k (2.) ln ln + k k ( ) m k Z ( t) m t m+ dt For recent inequlities derived from this identity nd short proof, see []. We hve the following result Theorem. For ny ; > 0 we hve for n tht (2.2) nd (2.3) (2n + ) 2n+ ( )2n+ ln ln (2n + ) 2n+ ( )2n+ ln ln k ( ) k ( ) k k k ( )2n+ (2n + ) 2n+ k ( ) k k k (2n + ) 2n+ ( )2n+ Proof. If we tke m 2n with n in (2.), then we get for ny ; > 0 tht (2.4) ln ln + If > > 0; then we hve nd since 2n+ Z k ( t) 2n dt Z ( ) k ( ) k k k Z ( t) 2n dt we get, y (2.4) the desired inequlity (2.2). If > > 0; then (2.5) We hve (2.6) Oserve tht Z 2n+ Z Z ( t) 2n dt ( t) 2n t 2n+ dt ( t) 2n dt Z Z (t ) 2n dt Z ( t) 2n t 2n+ dt 2n+ 2n + ( Z ( t) 2n t 2n+ dt )2n+ ( t) 2n t 2n+ dt Z ( t) 2n t 2n+ dt 2n+ ( )2n+ 2n + ( t) 2n dt Z ( t) 2n dt ( )2n+ 2n +

LOGARITHMIC INEQUALITIES FOR TWO POSITIVE NUMBERS 5 nd y (2.6) we then get tht is equivlent to ( ) 2n+ dt (2n + ) 2n+ ( ) 2n+ 2n+ (2n + ) Z Z By using (2.4) nd (2.5) we get (2.2) gin. Now, if we replce with in (2.2) we get nmely ( t) 2n t 2n+ dt (2n + ) 2n+ ( )2n+ ln ln + ( ) 2n+ 2n+ (2n + ) ( t) 2n ( )2n+ t 2n+ dt dt (2n + ) 2n+ k ( ) k ( ) k k k ( )2n+ (2n + ) 2n+ (2n + ) 2n+ ( )2n+ ln ln + k ( ) k k k (2n + ) 2n+ ( )2n+ If we multiply this inequlity y we get the desired inequlity (2.3). (2.7) nd (2.8) For ny ; > 0 we hve y (2.2) nd (2.3) for n tht 3 3 ( )3 ln ln 3 3 ( )3 ln ln ( )2 + 2 2 ( )3 33 ( ) 2 2 2 3 3 ( )3 Corollry. For ny ; > 0 with > 0 we hve for n tht (2.9) nd (2.0) k ( ) k ( ) k k k k ln ln ( ) k For ny ; > 0 with > 0 we hve (2.) nd (2.2) ( ) 2 k k ln ln 2 2 ln ln + ( )2 2 2 ln ln

6 S. S. DRAGOMIR ;2 Remrk. If we tke 2 (0; ) nd in (2.2) nd (2.3), then we get (2.3) nd (2.4) ( ) 2n+ (2n + ) 2n+ ln k (2n + ) 2n+ ( )2n+ ln for ny 2 (0; ) nd n In prticulr, for n we hve (2.5) nd (2.6) ( ) k ( ) k ( )2n+ k (2n + ) k ( ) k k k 3 3 ( )3 ln + + 2 ( )2 ( )3 3 3 3 ( )3 ln Now, if ; then we get from (2.3) tht (2.7) nd from (2.4) tht (2.8) We hve k ( ) 2 ( ) k ( ) k ln k k ( ) k k k ln 2 2 3 ( )3 Theorem 2. For ny ; > 0 with > 0 we hve for n tht (2.9) (0 ) ln ln k ( )2n+ (2n + ) ( ) k ( ) k k k ( ) 2n 2n 2n 2n 2n 2n If p; q > with p + q nd ; > 0 with > 0 we hve for n tht (2.20) (0 ) ln ln k ( ) k ( ) k k k (2np + ) p [(2n + ) q ] q ( )2n+p (2n+)q (2n+)q q 2n+p 2n+p In prticulr, for p q 2 we hve (2.2) (0 ) ln ln k ( ) k ( ) k k k ( ) 2n+2 4n+ 4n+ 2 (4n + ) 2n+2 2n+2

LOGARITHMIC INEQUALITIES FOR TWO POSITIVE NUMBERS 7 Proof. By (2.4) we hve for > 0 tht (2.22) ln ln k ( ) k ( ) k k k Z ( ( t) 2n t 2n+ dt ) 2n Z t 2n+ dt ( ) 2n 2n 2n 2n 2n 2n tht proves the inequlity (2.9). Using Hölder s integrl inequlity we hve for p; q > with p + q tht Z Oserve tht ( t) 2n t 2n+ dt Z! p Z q ( t) 2np dt t dt! (2n+)q nd Z Z ( t) 2np dt! p! p ( )2np+ ( )2n+p 2np + (2np + ) p q t dt! (2n+)q (2n+)q+ (2n+)q+ q (2n + ) q + (2n+)q (2n+)q [(2n + ) q ] (2n+)q (2n+)q (2n+)q (2n+)q q [(2n + ) q ] q 2n+ q 2n+ q (2n+)q (2n+)q q [(2n + ) q ] q 2n+p 2n+p By utilising the equlity in (2.22) we deduce the desired result (2.20). q For ny ; > 0 with > 0 we hve y (2.9), (2.20) nd (2.2) for n tht ( )2 (2.23) (0 ) ln ln + 2 2 ( ) 2 2 2 2 2 2 ; (2.24) (0 ) ln ln + ( )2 2 2 ( ) 2+p 3q 3q q (2p + ) p (3q ) q 2+p 2+p with p; q > with p + q nd (2.25) (0 ) ln ln + ( )2 2 2 ( ) 52 5 5 2 5 52 52

8 S. S. DRAGOMIR ;2 If ; then we hve for n tht (2.26) (0 ) ln k ( ) k ( ) k k ( ) 2n 2n 2n 2n If p; q > with p + q nd ; then we hve for n tht (2.27) (0 ) ln k ( ) k ( ) k In prticulr, for p q 2 we hve (2.28) (0 ) ln for ny k k ( ) k ( ) k k (2np + ) p [(2n + ) q ] q ( )2n+p (2n+)q q 2n+p ( ) 2n+2 4n+ 2 (4n + ) 2n+2 3. Further Inequlities for Logrithm We hve the following representtion result [2] Lemm 2. For ny m 2 nd ny ; > 0 we hve (3.) ln ln + mx ( ) k ( ) k k (k ) k ( )m m We hve Theorem 3. For ny ; > 0 we hve for n tht (3.2) nd (3.3) ( ) 2n+ 2n (2n + ) 2n+ + ( ) 2n+ 2n (2n + ) 2n ( ) 2n+ 2n (2n + ) 2n ( ) 2n+ 2n (2n + ) 2n+ Proof. If we tke m 2n with n in (3.), then we get ln ln tht is equivlent to (3.4) for ny ; > 0 + ( ) k ( ) k k (k ) k Z ( t) m dt t m ( ) k ( ) k k (k ) k ln + ln ( ) k k (k ) k ln + ln 2n ( ) k ( ) k k (k ) k ln + ln + 2n Z Z ( t) 2n dt t 2n ( t) 2n dt t 2n

LOGARITHMIC INEQUALITIES FOR TWO POSITIVE NUMBERS 9 If > > 0; then we hve 2n Z ( t) 2n dt Z ( t) 2n t 2n dt 2n nmely (3.5) (2n + ) 2n ( Z ( t) 2n )2n+ t 2n If > > 0; then Z ( t) 2n Z t 2n dt Oserve tht We hve Z ( t) 2n dt 2n Z Z (t ) 2n dt (t ) 2n dt Z dt Z ( t) 2n dt (2n + ) 2n ( )2n+ ( t) 2n dt t 2n ( )2n+ 2n + ( t) 2n t 2n dt 2n nmely ( ) 2n+ Z ( t) 2n 2n 2n + t 2n dt which, y multiplying with gives (3.6) ( ) 2n+ 2n 2n + Z Z ( )2n+ 2n + (t ) 2n dt ( ) 2n+ 2n ; 2n + ( t) 2n t 2n dt ( ) 2n+ 2n 2n + for > 0 Using the representtion (3.4) nd the inequlities (3.5) nd (3.6) we get (3.2). If we replce with in (3.2) then we get nmely (3.7) ( ) 2n+ 2n (2n + ) 2n+ ( ) 2n+ 2n (2n + ) 2n+ ( ) k ( ) k k (k ) k ln + ln + ( ) 2n+ 2n (2n + ) 2n ( ) k k (k ) k ln + ln + 2n (2n + ) ( ) 2n+ 2n If we multiply (3.7) y ; then we get (3.3). (3.8) nd (3.9) For ny ; > 0 we hve y (3.2) nd (3.3) for n tht ( ) 3 6 3 + ( ) 2 2 ( ) 3 6 2 ( ) 2 2 ln + ln ( ) 3 6 2 ln + ln ( ) 3 6 3

0 S. S. DRAGOMIR ;2 We hve Corollry 2. For ny ; > 0 with > 0 we hve for n tht (3.0) ln ln + ( ) k ( ) k k (k ) k nd (3.) ln ln ( ) k k (k ) k For ny ; > 0 with > 0 we hve (3.2) ln ln nd (3.3) ln ln ( ) 2 2 + ( ) 2 2 Remrk 2. If we tke 2 (0; ) nd in (3.2) nd (3.3), then we get (3.4) nd (3.5) ( ) 2n+ 2n (2n + ) 2n+ + ( ) 2n+ 2n (2n + ) 2n In prticulr, for n we hve (3.6) nd ( ) 3 6 3 + ( ) 2 2 (3.7) ( ) 3 6 2 for ny > 0 For we lso hve (3.8) nd (3.9) ln for ny n ln ( ) 2n+ 2n (2n + ) ( ) k k (k ) ( )k ln ( ) k k (k ) k ln 2n (2n + ) ( )2n+ ( ) 2 2 + ln ( ) 3 6 ln ( )3 6 ( ) k ( )k k (k ) ( ) k k (k ) k ( )

LOGARITHMIC INEQUALITIES FOR TWO POSITIVE NUMBERS In prticulr, we hve (3.20) nd (3.2) ln for ny We hve ln ( ) 2 2 + ( ) 2 2 ( ) Theorem 4. For ny ; > 0 with > 0 we hve for n tht (3.22) (0 ) + ( ) k ( ) k k (k ) k ln + ln ( ) 2n 2n 2n 2n (2n ) 2n 2n If p; q > with p + q nd ; > 0 with > 0 we hve for n tht (3.23) (0 ) + ( ) k ( ) k k (k ) k ln + ln ( ) 2n+p 2nq 2nq q 2n (2np + ) p (2nq ) q 2n+ q 2n q In prticulr, for p q 2 we hve (3.24) (0 ) + ( ) k ( ) k k (k ) k ln + ln ( ) 2n+2 4n 4n 2 2n (4n + ) 2 (4n ) 2 2n+2 2n 2 Proof. For ny ; > 0 with > 0 we hve for n tht (3.25) which proves (3.22). 2n ( ) k k (k ) Z 2n ( 2n ( ( ) k k ln + ln + ( t) 2n dt t 2n Z )2n )2n t 2n dt 2n+ 2n + 2n+ 2n + ( ) 2n 2n 2n 2n (2n ) 2n 2n ;

2 S. S. DRAGOMIR ;2 Using Hölder s integrl inequlity we hve for p; q > with p + q tht Z ( t) 2n dt t 2n Z! p Z ( t) 2np dt t 2nq dt! q ( )2np+ 2np + ( )2n+p (2np + ) p! p 2nq+ 2nq+ 2nq + 2nq + 2nq 2nq q (2nq ) 2nq 2nq ( )2n+p 2nq 2nq (2np + ) p (2nq ) q 2n q for ny ; > 0 with > 0 nd n Using the rst identity in (3.25) we get (3.23). q 2n q q For ny ; > 0 with > 0 we hve y (3.22)-(3.24) for n tht (3.26) (0 ) (3.27) nd (0 ) (3.28) (0 ) + ( ) 2 2 + ( ) 2 2 ln + ln ( ) 3 2 2 ; ln + ln ( ) 2+p 2q 2q q 2 (2p + ) p (2q ) q 3 q 2 q + ( ) 2 2 Remrk 3. For we lso hve (3.29) (0 ) + ln + ln 2 p 5 ( ) k k (k ) ( )k ln ( ) 2n 2n 2n (2n ) 2n ; r ( ) 3 2 + + 2 2 (3.30) nd (3.3) (0 ) + ( ) k k (k ) ( )k ln ( ) 2n (2np + ) p (2nq ) q (0 ) + ( ) k k (k ) ( )k ln 2n+p 2nq q 2n+ q 2n (4n + ) 2 (4n ) 2 ( ) 2n+2 4n 2 2n+2

LOGARITHMIC INEQUALITIES FOR TWO POSITIVE NUMBERS 3 In prticulr, for n ; we hve (3.32) (0 ) (3.33) nd (3.34) for ny (0 ) + ( ) 2 2 + ( ) 2 2 ln ln ( ) 3 2 2 ; ( ) 2+p 2q q 2 (2p + ) p (2q ) q 3 q (0 ) 2 p 5 + ( ) 2 2 ln r ( ) 3 2 + + 2 4. Comprison Using the inequlities (2.7), (2.23) nd (2.25) we hve for ny > 0 the following upper ounds for the positive quntity (4.) ln ln where + ( )2 2 2 B (; ) ; B 2 (; ) nd B 3 (; ) (4.2) B (; ) 3 3 ( )3 ; B 2 (; ) ( ) 3 ( + ) 2 2 2 nd (4.3) B 3 (; ) r ( ) 3 4 + 3 + 2 2 + 3 + 4 5 2 2 Consider the simpler quntities C (; ) 3 ; C 2 (; ) + 2 2 nd C 3 (; ) r 4 + 3 + 2 2 + 3 + 4 5 2 If we plot the di erence D (; ) C (; ) C 2 (; ) on the domin 0 we hve the Figure, the plot of the di erence D 2 (; ) C 2 (; ) C 3 (; ) on the domin 0 2 is depicted in Figure 2 while the plot of the di erence D 3 (; ) C (; ) C 3 (; ) on the tringle 0 is incorported in Figure 3 The plots in Figure -3 show tht neither of the upper ounds B (; ) ; B 2 (; ) nd B 3 (; ) for the positive quntity is lwys est. ln ln + ( )2 2 2 ; 0 <

4 S. S. DRAGOMIR ;2 Figure. Plot of D (; ) for 0 Figure 2. Plot of D 2 (; ) for 0 2 From the inequlities (3.8), (3.26) nd (3.28) we hve for ny > 0 the following upper ounds for the positive quntity (4.4) where + ( ) 2 2 ln + ln K (; ) ; K 2 (; ) nd K 3 (; ) (4.5) K (; ) ( ) 3 6 2 ; K 2 (; ) ( ) 3 2 2

LOGARITHMIC INEQUALITIES FOR TWO POSITIVE NUMBERS 5 Figure 3. Plot of D 3 (; ) for 0 nd (4.6) K 3 (; ) r 2 p ( ) 3 2 + + 2 5 2 The interested reder my perform similr nlysis for these ounds. However the detils re not provided here. References [] S. S. Drgomir, Some inequlities for logrithm vi Tylor s epnsion with integrl reminder, RGMIA Res. Rep. Coll. 9 (206), Art. 08. [http//rgmi.org/ppers/v9/v908.pdf]. [2] S. S. Drgomir, New inequlities for logrithm vi Tylor s epnsion with integrl reminder, RGMIA Res. Rep. Coll. 9 (206), Art. 26. [http//rgmi.org/ppers/v9/v926.pdf]. [3] S. S. Drgomir nd V. Glušµcević, New estimtes of the Kullck-Leiler distnce nd pplictions, in Inequlity Theory nd Applictions, Volume, Eds. Y. J. Cho, J. K. Kim nd S. S. Drgomir, Nov Science Pulishers, New York, 200, pp. 23-37. Preprint in Inequlities for Csiszár f-divergence in Informtion Theory, S.S. Drgomir (Ed.), RGMIA Monogrphs, Victori University, 200. [ONLINE http//rgmi.vu.edu.u/monogrphs]. [4] L. Kozm, Useful inequlities chet sheet, http//www.lkozm.net/inequlities_chet_sheet/. [5] E. R. Love, Some logrithm inequlities, The Mthemticl Gzette, Vol. 64, No. 427 (Mr., 980), pp. 55-57. [6] E. R. Love, Those logrithm inequlities!, The Mthemticl Gzette, Vol. 67, No. 439 (Mr., 983), pp. 54-56. Mthemtics, College of Engineering & Science, Victori University, PO Bo 4428, Melourne City, MC 800, Austrli. E-mil ddress sever.drgomir@vu.edu.u URL http//rgmi.org/drgomir 2 School of Computer Science & Applied Mthemtics, University of the Witwtersrnd, Privte Bg 3, Johnnesurg 2050, South Afric