Elastic Properties of Polycrystalline Solid Helium

Similar documents
Low Temperature Shear Modulus Changes in Solid 4 He and Connection to Supersolidity

Study of Supersolidity and Shear Modulus Anomaly of 4 He in a Triple Compound Oscillator

The enigma of supersolidity SebastienBalibar 1

arxiv:cond-mat/ v1 [cond-mat.other] 27 Feb 2007

Nucleation in a Fermi liquid at negative pressure

A Summary of Mass Flux Measurements in Solid 4 He

Observation of a supersolid helium phase

Can a solid be superfluid?

The expansion coefficient of liquid helium 3 and the shape of its stability limit

Acoustic nucleation of solid helium 4 on a clean glass plate

Dislocation networks in helium-4 crystals

arxiv: v1 [cond-mat.other] 2 Jul 2009

PLEASE SCROLL DOWN FOR ARTICLE

NMR Studies of 3 He Impurities in 4 He in the Proposed Supersolid Phase

Properties of Metastable Solid Helium Below the Normal Melting Pressure

Quantum Cavitation: a comparison between superfluid helium-4 and normal liquid helium-3

Superphenomena in solid Helium-4

arxiv: v1 [cond-mat.other] 11 Sep 2008

Non Classical Rotational Inertia in Two Dimensional 4 He Solid on Graphite

Generalized Rotational Susceptibility Studies of Solid 4 He

6 Kosterlitz Thouless transition in 4 He thin films

McMAT 2007 Micromechanics of Materials Austin, Texas, June 3 7, 2007

Superfluidity and Supersolidity in 4 He

Supersolid. Yixing Fu 2013/3/14

Frequently Asked Questions

Density Functional Theory of the Interface between Solid and Superfluid Helium 4

Observations of the Motion of Single Electrons in Liquid Helium

Supporting Information. Potential semiconducting and superconducting metastable Si 3 C. structures under pressure

6th NDT in Progress Lamb waves in an anisotropic plate of a single crystal silicon wafer

A Study of the Motion of Particles in Superfluid Helium-4 and Interactions with Vortices

The Pennsylvania State University. The Graduate School. Department of Physics SPECIFIC HEAT OF SOLID 4 HE. A Dissertation in. Physics.

Workshop on Supersolid August Brief introduction to the field. M. Chan Pennsylvania State University, USA

Supplementary figures

On the study of elastic wave scattering and Rayleigh wave velocity measurement of concrete with steel bar

Thermal resistance at a solid/superfluid helium interface

International Journal of Engineering Science

Sound Propagation through Media. Nachiketa Tiwari Indian Institute of Technology Kanpur

EVALUATION OF EFFECTIVE MECHANICAL PROPERTIES OF COMPLEX MULTIPHASE MATERIALS WITH FINITE ELEMENT METHOD

PURE BENDING. If a simply supported beam carries two point loads of 10 kn as shown in the following figure, pure bending occurs at segment BC.

Liquid helium in confinement

arxiv:cond-mat/ v1 [cond-mat.other] 23 Jun 2005

V He C ( r r i ), (1)

Module-4. Mechanical Properties of Metals

A MICROMECHANIC MODEL FOR CHARACTERIZATION OF CEMENT PASTE AT EARLY AGE VALIDATED WITH EXPERIMENTS

Lindgren CRYSTAL SYMMETRY AND ELASTIC CONSTANTS MICHAEL WANDZILAK. S.B., Massachusetts Institute of Technology (196'7)

Analysis of high loss viscoelastic composites

Quadratic and cubic monocrystalline and polycrystalline materials: their stability and mechanical properties

Full list of Frédéric Caupin s scientific communications

4. The Green Kubo Relations

Stress-induced transverse isotropy in rocks

The response of an idealized granular material to an incremental shear strain

Module 7: Micromechanics Lecture 29: Background of Concentric Cylinder Assemblage Model. Introduction. The Lecture Contains

New Measurements of Wetting by Helium Mixtures

Nanoscale Energy Conversion and Information Processing Devices - NanoNice - Photoacoustic response in mesoscopic systems

Piezo materials. Actuators Sensors Generators Transducers. Piezoelectric materials may be used to produce e.g.: Piezo materials Ver1404

Module 7: Micromechanics Lecture 34: Self Consistent, Mori -Tanaka and Halpin -Tsai Models. Introduction. The Lecture Contains. Self Consistent Method

Mechanical Design in Optical Engineering

ELASTICITY AND CONSTITUTION OF THE EARTH'S INTERIOR*

Strain-related Tensorial Properties: Elasticity, Piezoelectricity and Photoelasticity

Superflow in Solid Helium

FINAL REPORT For Japan-Korea Joint Research Project

Constitutive Relations

The bulk modulus of covalent random networks

International Journal of Pure and Applied Sciences and Technology

Chapter 3. Load and Stress Analysis

A look into Gassmann s Equation

DRIVING FORCE IN SIMULATION OF PHASE TRANSITION FRONT PROPAGATION

Module 3 : Equilibrium of rods and plates Lecture 15 : Torsion of rods. The Lecture Contains: Torsion of Rods. Torsional Energy

MECHANICS OF MATERIALS. EQUATIONS AND THEOREMS

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown.

Band gaps and the electromechanical coupling coefficient of a surface acoustic wave in a two-dimensional piezoelectric phononic crystal

Mass Coupling and Q 1 of Impurity-Limited Normal

Mechanical and Thermal Properties of Coir Fiber Reinforced Epoxy Composites Using a Micromechanical Approach

A model for the ultrasonic field radiated by an Electro-Magnetic Acoustic Transducer in a ferromagnetic solid

Density. Physical Properties of Materials. Which Ones? THEORETICAL DENSITY, ρ. What would make a material dense? Concept Question. Physical Properties

Liquid Helium up to 160 bar

Abvanced Lab Course. Dynamical-Mechanical Analysis (DMA) of Polymers

Collective Effects. Equilibrium and Nonequilibrium Physics

UvA-DARE (Digital Academic Repository) Delayed fracture in poreus media Shahidzadeh, N.F.; Vie, P.; Chateau, X.; Roux, J.N.; Bonn, D.

Granular Micro-Structure and Avalanche Precursors

Phononic Crystals. J.H. Page

The Pennsylvania State University. The Graduate School. Department of Physics RESONANT ULTRASOUND SPECTROSCOPY AND SOLID HELIUM RESEARCH

SÉBASTIEN BALIBAR AND FRÉDÉRIC CAUPIN. associé au CNRS et aux Universités Paris 6 et Paris 7, 24 rue Lhomond, Paris Cedex 05, France

Acoustic study of nano-crystal embedded PbO P 2 O 5 glass

Modeling high-frequency acoustics velocities in patchy and partially saturated porous rock using differential effective medium theory

Equivalent electrostatic capacitance Computation using FreeFEM++

Producing a Sound Wave. Chapter 14. Using a Tuning Fork to Produce a Sound Wave. Using a Tuning Fork, cont.

Constitutive Relations

Extremely slow edge waves in mechanical graphene with rotating grains

Experimental Investigation of Mobility Changes of Negative Ions in Superfluid Helium due to Photo-excitation

Band gaps in a phononic crystal constituted by cylindrical dots on a homogeneous plate

13th International Symposium on Nondestructive Characterization of Materials (NDCM-XIII), May 2013, Le Mans, France

Small-strain constrained elastic modulus of clean quartz sand with various grain size distribution

MODELING OF ACOUSTIC PROCESSES IN SOLIDS BASED ON PARTICLE INTERACTION

Mechanical Properties of Monodomain Side Chain Nematic Elastomers

PART A. CONSTITUTIVE EQUATIONS OF MATERIALS

PIEZOELECTRIC TECHNOLOGY PRIMER

INTRODUCTION TO STRAIN

Voigt, Reuss, Hill, and Self-Consistent Techniques for Modeling Ultrasonic Scattering

Porosity dependence of Elastic Modulii for Ceramic Materials

Transcription:

JLowTempPhys(2010)160:5 11 DOI 10.1007/s10909-010-0173-8 Elastic Properties of Polycrystalline Solid Helium Humphrey J. Maris Sebastien Balibar Received: 29 March 2010 / Accepted: 16 April 2010 / Published online: 29 April 2010 Springer Science+Business Media, LLC 2010 Abstract Recent experiments have shown that the shear modulus of solid helium undergoes a large temperature variation in the range 20 to 200 mk, possibly due to changes in the pinning of dislocations. In this note we report on computer simulations of the elastic properties of polycrystalline solid helium. We calculate how the elastic coefficients of a sample made up of a large number of randomly oriented grains are affected by the changes in the shear modulus c 44 of the individual grains. Keywords Solid helium Supersolid 1 Introduction In this paper we consider the elastic properties of polycrystalline solid helium. These properties are of interest in relation to the current investigations of a possible supersolid state of helium-4. Kim and Chan [1 3] performedtorsionaloscillatorexperiments with solid helium and found that below about 200 mk the period of the oscillator began to decrease suggesting that some fraction of the mass of the helium had decoupled and that a transition to a supersolid state had occurred. The existence of this effect has been confirmed by experiments in several other laboratories [4 10]but the magnitude of the effect has been found to vary significantly between the different experiments presumably because of variations in the way the solid helium samples were produced [11], a dependence on the amount of helium-3 impurity present [12], and differences in the sample geometry and the oscillator frequency. H.J. Maris ( ) Department of Physics, Brown University, Providence, RI 02912, USA e-mail: Humphrey_Maris@Brown.edu S. Balibar Laboratoire de Physique Statistique, Ecole Normale Supérieure and CNRS, 24 Rue Lhomond, 75231 Paris 05, France

6 J Low TempPhys (2010) 160: 5 11 It has also been discovered that there are large changes in the shear modulus. Paalanen et al. [13] makingmeasurementsat331hzfoundthattheshearmodulus at around 1 K was less than the low temperature limiting value (T <50 mk) by a very large value, between 20 and 40%. It was proposed that at high temperatures dislocations are able to move rather freely, whereas at lower temperatures their motion is decreased because of pinning by helium-3 impurities. The binding energy of helium-3 to a dislocation is believed to be around 0.6 K [13]. More recently, Day and Beamish [14, 15] havemademeasurementsbyadifferentmethodandfoundanincrease in the shear modulus starting below about 200 mk; they found a large increase in the range from 7 to 15% which varied from sample to sample [16]. Large changes have also been found by Mukharsky et al. [17]Inarecentexperiment,Westetal.[18] have measured the period change in a very strong torsional oscillator where, given its estimated magnitude, a possible contribution of the helium stiffness to the resonance period should be negligible. They have concluded that the observed period change had to be due to a change in rotational inertia, not to the change in the helium stiffness. The obvious similarity between the elastic and the rotation anomalies indicates arelationbetweenthesetwoanomaliesbut,toourknowledge,itsoriginhasnotbeen established yet. In many of the measurements just mentioned it is not certain whether the solid helium is a single crystal, is composed of a few crystalline grains, or has a grain size that is very small compared to the dimensions of the sample. The degree of disorder in the helium samples should depend on many parameters like the growth speed, the existence of temperature gradients in the cell, the nature of the liquid (normal or superfluid). Solid helium has a close-packed hexagonal structure (hcp) and its linear elastic properties are described by five elastic constants c 11, c 12, c 13, c 33,andc 44. The coefficient c 44 is the ratio of shear stress to strain inside the basal plane so that it determines the velocity of purely transverse sound waves propagating along the c-axis (v 2 T = c 44/ρ). For an hcp crystal it is natural to assume that the motion of dislocations is easiest in basal planes normal to the c-axis [19]. Thus, the effect of dislocation motion is to reduce the effective value of the elastic modulus c 44.For simplicity, we will assume that this is the only elastic coefficient that is modified. It is then interesting to ask to what extent a change in c 44 will change the overall elastic properties of a polycrystalline sample. A polycrystal with a large number of grains that are randomly oriented will be elastically isotropic. The elastic properties can be described by two independent elastic constants, the effective longitudinal modulus c 11 and the shear modulus c 44.Inthispolycrystal,thetransversesoundvelocityis v T = c 44 /ρ and the longitudinal velocity is v L = c 11 /ρ; thebulkmodulusis B = c 11 4 c 44 /3. Of particular interest is the question what will be the macroscopic elastic properties of a solid when in each grain c 44 becomes zero. The calculation below gives an upper bound for the possible softening of polycrystals when the shear modulus c 44 of hcp grains decreases due to dislocation motion in their basal plane. One can also ask how c 44 depends on the relative magnitude of the grain size compared to the sample dimensions. There are standard methods for the estimation of the elastic moduli of a polycrystal from a knowledge of the coefficients for a single crystal. The two classic methods are

JLowTempPhys(2010)160:5 11 7 Voigt [20]and Reuss[21]averaging.The Voigt average is based on the approximation that the strain field is uniform and for a crystal with hexagonal symmetry gives c 44 = 1 30 (7c 11 5c 12 4c 13 + 2c 33 + 12c 44 ). (1) The Reuss average takes the stress to be uniform and gives c 44 = 15 B[4(c 11 + c 12 ) + 8c 13 + 2c 33 ]+6/c 44 + 12/(c 11 c 12 ) (2) with 1 B = c 33 (c 11 + c 12 ) 2c13 2. (3) One can see that these formulas lead to quite different results in the limit as c 44 goes to zero and thus cannot be considered to be useful in the present context. For Voigt averaging c 44 = 1 30 (7c 11 5c 12 4c 13 + 2c 33 ), (4) and for Reuss averaging c 44 5 2 c 44. (5) There are more advanced averaging methods. For a recent discussion see the paper by Berryman [22]. 2 NumericalMethod To calculate the effective shear modulus we consider a rectangular sample with sides L x, L y, L z.inthex- andy-directions we take periodic boundary conditions. The sample is taken to have some number of grains N g.tomodelthegeometryofthese grains we use Voronoi tessellations. We generate a set of N g grain points with coordinates r n = (c x L x,c y L y,c z L z ) where c x, c y, c z are random numbers in the range 0 to 1. For each grain point n we then add associated points displaced by vectors (d x L x,d y L y, 0) where d x and d y are integers. A point r in the sample is then in grain n if it is closer to r n (or to one of the points associated with r n )thanforanyother grain point. As an example, we show in Fig. 1 the grain structure that is obtained for acubeofside1cmthatcontains50grainpoints.theplotshowstheintersectionof grains with the plane y = 0.5 cm.thematerialineachgrainisassignedarandom orientation. To calculate the shear modulus of the polycrystal we start with all parts of the sample undisplaced. We then give a unit displacement in the x-direction to the top surface (z = L z )whileholdingpointsonthebottomsurface(z = 0) fixed. The material in the sample is then allowed to relax to mechanical equilibrium and the average of the shear stress over the area of the top surface is calculated. To find the state of

8 J Low TempPhys (2010) 160: 5 11 Fig. 1 Cross section showing the grain structure for a polycrystal cube of side 1 cm. The sample contains 50 grains. The dashed lines show the boundary of the sample mechanical equilibrium we take the equations of linear elasticity and time develop the displacement using a finite difference method. For these calculations we take the elastic constants as measured by Greywall [23]. The values at the melting pressure of 25 bars are c 11 = 4.05, c 12 = 2.13, c 13 = 1.05, c 33 = 5.54, and c 44 = 1.24 in units of 10 8 gcm 1 s 2.Itisassumedthatthesevaluesaremeasuredunderconditionssuch that they are not appreciably affected by dislocation motion, i.e., it is assumed that the measurements are made at a temperature and sound frequency (10 MHz) such that dislocation motion is small and does not change the effective elastic constants appreciably. We now investigate the effect of reduction of c 44 below the value just listed. We first consider the effective shear modulus c 44 as a function of c 44 for solid with grain size small compared to the sample dimensions. In these calculations the sample was a cube with side 1 cm containing 600 grains, and 125,000 mesh points were used for the finite difference simulation. Two sets of simulations were performed with different seeds for the random number generator that was used to set up the grain geometry and orientation. Results are shown in Fig. 2 along with the predictions of the Voigt and Reuss formulae. One can see that as might have been expected neither of these formulae is a good approximation when c 44 becomes very small. The difference between the results from the two simulations gives an indication of the statistical errors resulting from considering a finite number of grains. One can see that when c 44 is reduced from the value just given to zero the effective modulus c 44 is reduced to about 32% of the initial value. We have performed a number of tests and found that, as expected, when the number of grains is large the result for the effective modulus is independent of the grain size.

JLowTempPhys(2010)160:5 11 9 Fig. 2 The effective shear modulus c 44 as a function of c 44 for a solid helium polycrystal containing 600 grains. The results of the two sets of simulations with different seeds for the random number generator are indicated by the crosses and open squares. The predictions of the Voigt and Reuss models are shown by the solid and dashed lines, respectively Fig. 3 The effective elastic modulus c 11 as a function of c 44 for a solid helium polycrystal containing 600 grains. The results of the two sets of simulations are indicated by the crosses and open squares. The predictions of the Voigt and Reuss models are shown by the solid and dashed lines, respectively In Fig. 3 we show similar results for the effective modulus c 11.Onecanseethat the effect of decreasing c 44 to zero is to reduce this longitudinal velocity modulus to 72% of the initial value. In the experiments of Day and Beamish [14] theshearmodulusismeasuredby forming a thin layer of solid helium between two piezoelectric transducers. By applying a voltage to one transducer a shear strain is produced in the solid helium. The second transducer is used to measure the shear stress. In this type of experiment it is possible that while the sample may contain many grains, each grain may extend from one transducer to the other. In this situation it is clear that for a given value of c 44 the value of the effective modulus c 44 will depend on the ratio of the grain size to the spacing d between the transducers. Note that in this context by grain size we mean the dimensions of the grains in the direction parallel to the surfaces of the transducers. We have performed a calculation to investigate what happens in this limit where d. Thesimulationwasperformedforapolycrystalwithdimensions1cmby1 cm by 0.03 cm with 60 grains. Thus, the average grain volume was 5 10 4 cm 3.

10 J Low Temp Phys (2010) 160: 5 11 Fig. 4 The effective shear modulus c 44 as a function of c 44 for a slab of solid helium polycrystal of thickness 0.03 cm. The grain size is such that most of the grains extend throughout the thickness of the slab. The results of the two sets of simulations are indicated by the diamonds and crosses. The prediction of the Voigt model is shown by the solid line Since the grains can have a dimension in the z-direction of no more than 0.03 cm, this means that the average grain dimension in the x- andy-directions are approximately 0.13 cm. The results of two simulations with different random number seeding are shown in Fig. 4. Thefluctuationsintheresultsarelargerherebecausethegeometry of the sample forces us to run a simulation in which the number of grains is smaller. The effect of reducing c 44 to zero is to decrease c 44 to 66% of the initial value. It can be seen that in this limit the results lie close to the predictions of the Voigt formula (1). This is to be expected in the limit d because when this condition holds the displacement applied to the sample by the transducer results in the same elastic strain existing in each grain. It should also be noticed that if applied to the results by Day, Syshchenko and Beamish [15, 16]whereareductionby7to15%oftheaverageshear modulus was found, it would mean that c 44 is reduced by between 18 to 39% of its normal value. Along with the same analysis, we predict that the shear modulus of a bulk polycrystal (not a thin slab) could be reduced to a lower value than measured by Day and Beamish in their slab geometry. 3 Summary We have found that when c 44 is decreased the fractional change in the effective shear modulus c 44 is larger than the corresponding change in the modulus c 11.Thedecrease when c 44 goes from its value as measured ultrasonically down to zero is found to be 68% for c 44 and 28% for c 11.Thesenumberscomparedwiththelargestdecreasein c 44 of 40% found by Paalanen et al. [13] and7to15%foundbydayetal.[14 16] Thecalculationsreportedherepredictthatforthesamesamplethepercentage change in c 11 should be between 2 and 3 times less than the change in c 44 ;itwould be interesting to make an experimental test of this prediction. This work was supported in part by the National Science Foundation through Grant No. DMR-0605355 and by the European Research Council grant ERC-2009- AdG247258-SUPERSOLID.

JLowTempPhys(2010)160:5 11 11 References 1. E. Kim, M.H.W. Chan, Nature 427, 225(2004) 2. E. Kim, M.H.W. Chan, Science 305, 1941(2004) 3. E. Kim, M.H.W. Chan, Phys. Rev. Lett. 97, 115302(2006) 4. A.S.C. Rittner, J.D. Reppy, Phys. Rev. Lett. 97, 165301(2006) 5. A.S.C. Rittner, J.D. Reppy, Phys. Rev. Lett. 98, 175302(2007) 6. Y. Aoki, J.C. Graves, H. Kojima, Phys. Rev. Lett. 99, 015301(2007) 7. M. Kondo, S. Takada, Y. Shibayama, K. Shirahama, J. Low Temp. Phys. 148, 695(2007) 8. A. Penzev, Y. Yasuta, M. Kubota, J. Low Temp. Phys. 148, 677(2007) 9. S. Balibar, F. Caupin, J. Phys. Condens. Matter. 20, 173201(2008) 10. S. Balibar, Nature 464, 176(2010) 11. A.C. Clark, J.T. West, M.H.W. Chan, Phys. Rev. Lett. 99, 135302(2007) 12. E. Kim, J.S. Xia, J.T. West, X. Lin, A.C. Clark, M.H.W. Chan, Phys. Rev. Lett. 100, 065301(2008) 13. M.A. Paalanen, D.J. Bishop, H.W. Dail, Phys. Rev. Lett. 46, 664(1981) 14. J. Day, J. Beamish, Nature 450, 853(2007) 15. J. Day, O. Syshchenko, J. Beamish, Phys. Rev. B 79, 214524(2009) 16. J. Day, O. Syshchenko, J. Beamish, Phys. Rev. Lett. 104, 075302(2010) 17. Y. Mukharsky, A. Penzev, E. Varoquaux, Phys. Rev. B 80, 140504(2009) 18. J.T. West, O. Syshchenko, J.R. Beamish, M.W.H. Chan, Nat. Phys. 5,598(2009) 19. F. Tsuruoka, Y. Hiki, Phys. Rev. B 20, 2702(1979) 20. W. Voigt, Lehrbuch der Kristallphysik (Teubner, Leipzig, 1928) 21. A. Reuss, Angew. Math. Mech. 9,55(1929) 22. J.G. Berryman, J. Mech. Phys. Solids 53, 2141(2005) 23. D.S. Greywall, Phys. Rev. B 16, 5127(1977)