What is the Riemann Hypothesis for Zeta Functions of Irregular Graphs?

Similar documents
What is the Riemann Hypothesis for Zeta Functions of Irregular Graphs?

Ihara zeta functions and quantum chaos

x #{ p=prime p x }, as x logx

Lecture 1: Riemann, Dedekind, Selberg, and Ihara Zetas

LECTURE 4. PROOF OF IHARA S THEOREM, EDGE CHAOS. Ihara Zeta Function. ν(c) ζ(u,x) =(1-u ) det(i-au+qu t(ia )

Lecture 3. A Proof of Ihara s Theorem, Edge & Path Zetas, Connections with Quantum Chaos

Fun with Zeta Functions of Graphs. Thanks to the AWM!!!!!!!!!!!!!!!!!

Zeta Functions and Chaos

Lecture 2: Ruelle Zeta and Prime Number Theorem for Graphs

fun with zeta and L- functions of graphs Audrey Terras U.C.S.D. February, 2004 IPAM Workshop on Automorphic Forms, Group Theory and Graph Expansion

Copy from Lang, Algebraic Number Theory

What are primes in graphs and how many of them have a given length?

Zeta functions in Number Theory and Combinatorics

Riemann Hypotheses. Alex J. Best 4/2/2014. WMS Talks

Eigenvalues of Non-Backtracking Walks in a Cycle with Random Loops

ZETA FUNCTIONS OF WEIGHTED GRAPHS AND COVERING GRAPHS

p e po K p e+1 efg=2

Zeta functions and chaos

Ramanujan Graphs, Ramanujan Complexes and Zeta Functions. Emerging Applications of Finite Fields Linz, Dec. 13, 2013

Zeta Functions of Graph Coverings

Rongquan Feng and Jin Ho Kwak

Weighted Zeta Functions of Graph Coverings

Finite Models for Arithmetical Quantum Chaos

Networks and Matrices

Random Lifts of Graphs

Randomness in Number Theory

Zeta functions of buildings and Shimura varieties

Advances in Random Matrix Theory: Let there be tools

Asymptotic Behavior of the Random 3-Regular Bipartite Graph

Universality of distribution functions in random matrix theory Arno Kuijlaars Katholieke Universiteit Leuven, Belgium

The Riemann Hypothesis

Randomness in Number Theory *

Eigenvectors Via Graph Theory

CONVERGENCE OF ZETA FUNCTIONS OF GRAPHS. Introduction

Alan Edelman. Why are random matrix eigenvalues cool? MAA Mathfest 2002 Thursday, August 1. MIT: Dept of Mathematics, Lab for Computer Science

Math 495 Dr. Rick Kreminski Colorado State University Pueblo November 19, 2014 The Riemann Hypothesis: The #1 Problem in Mathematics

An Introduction to Algebraic Graph Theory

Finite conductor models for zeros near the central point of elliptic curve L-functions

This section is an introduction to the basic themes of the course.

Eigenvalues, random walks and Ramanujan graphs

Fluctuations from the Semicircle Law Lecture 1

Potentially useful reading Sakurai and Napolitano, sections 1.5 (Rotation), Schumacher & Westmoreland chapter 2

Quantum chaos on graphs

The Riemann Hypothesis

PSRGs via Random Walks on Graphs

Review of similarity transformation and Singular Value Decomposition

Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition

TITLES & ABSTRACTS OF TALKS

Graph fundamentals. Matrices associated with a graph

The distribution of prime geodesics for Γ \ H and analogues for free groups

U.C. Berkeley Better-than-Worst-Case Analysis Handout 3 Luca Trevisan May 24, 2018

The Ihara zeta function of the infinite grid

Algebraic Constructions of Graphs

Matching Polynomials of Graphs

DISTINGUISHING GRAPHS WITH ZETA FUNCTIONS AND GENERALIZED SPECTRA

Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition

Determinant of the Schrödinger Operator on a Metric Graph

Eigenvalue comparisons in graph theory

arxiv:quant-ph/ v1 22 Aug 2005

Brown University Analysis Seminar

A Faber-Krahn type inequality for regular trees

An Invitation to Modern Number Theory. Steven J. Miller and Ramin Takloo-Bighash PRINCETON UNIVERSITY PRESS PRINCETON AND OXFORD

1 Tridiagonal matrices

4 - Moore Graphs. Jacques Verstraëte

A Modified Method Using the Bethe Hessian Matrix to Estimate the Number of Communities

EIGENVALUE SPACINGS FOR REGULAR GRAPHS. 1. Introduction

On Spectrum and Arithmetic

Linear Algebra Massoud Malek

Energy of Graphs. Sivaram K. Narayan Central Michigan University. Presented at CMU on October 10, 2015

Extreme eigenvalues of Erdős-Rényi random graphs

The Distribution of the Largest Non-trivial Eigenvalues in Families of Random Regular Graphs

Zeta function of a graph revisited

THE SELBERG TRACE FORMULA OF COMPACT RIEMANN SURFACES

On a problem of Bermond and Bollobás

The Langlands Program: Beyond Endoscopy

Eigenvalues of the Redheffer Matrix and Their Relation to the Mertens Function

Local Kesten McKay law for random regular graphs

Moments of the Riemann Zeta Function and Random Matrix Theory. Chris Hughes

Spectra of Adjacency and Laplacian Matrices

On the concentration of eigenvalues of random symmetric matrices

Math 307 Learning Goals. March 23, 2010

Determinant of the Schrödinger Operator on a Metric Graph, by Leonid Friedlander, University of Arizona. 1. Introduction

Primes, queues and random matrices

Community detection in stochastic block models via spectral methods

Riemann s Zeta Function and the Prime Number Theorem

Linear Algebra Practice Problems

Recent Developments in Low-Density Parity-Check Codes

Arithmetic quantum chaos and random wave conjecture. 9th Mathematical Physics Meeting. Goran Djankovi

Estimates for the resolvent and spectral gaps for non self-adjoint operators. University Bordeaux

1.10 Matrix Representation of Graphs

Modelling large values of L-functions

A Generalization of Wigner s Law

FORMULAE FOR ZETA FUNCTIONS FOR INFINITE GRAPHS. Mark Pollicott University of Warwick

arxiv: v2 [math.nt] 28 Feb 2010

Computations related to the Riemann Hypothesis

1 Adjacency matrix and eigenvalues

FORMAL ZETA FUNCTION EXPANSIONS AND THE FREQUENCY OF RAMANUJAN GRAPHS

Diagonalizing Matrices

Notes on Linear Algebra and Matrix Theory

Random matrices and the Riemann zeros

Transcription:

What is the Riemann Hypothesis for Zeta Functions of Irregular Graphs? Audrey Terras Banff February, 2008 Joint work with H. M. Stark, M. D. Horton, etc. Introduction The Riemann zeta function for Re(s)>1 1 s 1 ζ () s = = ( 1 p ). s n n= 1 p= prime Riemann extended to all complex s with pole at s=1 with a functional equation relating value at s and 1-s Riemann hypothesis primes <-> zeros of zeta There are many other zetas: Dedekind, primes -> prime ideals in number field Selberg, primes->primitive closed geodesics in a manifold Ihara, primes-> closed geodesics in graph 1

Odlyzko s Comparison of Spacings of Imaginary Parts of Zeros of Zeta and Eigenvalues of Random Hermitian Matrix. See B. Cipra, What s Happening in the Mathematical Sciences, 1998-1999, A.M.S., 1999. Finite Graphs as a Toy Model for RMT We want to investigate spectral statistics for matrices coming from finite undirected connected graphs. Here mostly spectra and not spacings. Usually we assume: graph is not a cycle or a cycle with degree 1 vertices A Bad Graph is It is OK to be irregular (vertices do not all have same degree) and to have multiple edges and loops. You can add physics to it by making the graph a quantum graph. Brian Winn s talk should do this. 2

Primes in Graphs (correspond to geodesics in compact manifolds) are equivalence classes [C] of closed backtrackless tailless primitive paths C DEFINITIONS backtrack equivalence class: change starting point tail α Here α is the start of the path non-primitive: go around path more than once EXAMPLES of Primes in a Graph [C] =[e 1 e 2 e 3 ] e 3 e 2 [D]=[e 4 e 5 e 3 ] e 5 [E]=[e 1 e 2 e 3 e 4 e 5 e 3 ] e 4 ν(c)=3, ν(d)=4, ν(e)=6 e 1 E=CD another prime [C n D], n=2,3,4, infinitely many primes 3

Ihara Zeta Function ν(c) ( ) -1 ζ(u,x)= 1-u [C] prime ν(c) = # edges in C converges for u complex, u small -1 2 r-1 2 ζ(u,x) =(1-u ) det(i-au+qu ) A=adjacency matrix, Q +I = diagonal matrix of degrees, r=rank fundamental group Can prove via Selberg trace formula for trees in regular graph case. There are simpler proofs. For q+1 regular graph, meaning that each vertex has q+1 edges coming out u=q -s makes Ihara zeta more like Riemann zeta. f(s)=ζ(q ( -s ) has a functional equation relating f(s) and f(1-s). Riemann Hypothesis (RH) says ζ(q -s ) has no poles with 0<Res<1 unless Re s = ½. RH means graph is Ramanujan i.e., non-trivial spectrum of adjacency matrix is contained in the spectrum for the universal covering tree which is the interval (-2 q, 2 q) [see Lubotzky, Phillips & Sarnak, Combinatorica, 8 (1988)]. Ramanujan graph is a good expander (good gossip network) 4

What is an expander graph X? 4 Ideas 1) spectral property of some matrix associated to our finite graph X Choose on of 3: Adjacency matrix A, Laplacian D-A, or I-D -1/2 AD -1/2, D=diagonal matrix of degrees edge matrix W for X (to be defined) Lubotzky: Spectrum for X SHOULD BE INSIDE spectrum of analogous operator on universal covering tree for X. 2) X behaves like a random graph. 3) Information is passed quickly in the gossip network based on X. 4) Random walker on X gets lost FAST. Possible Locations of Poles u of ζ(u) for q+1 Regular Graph 1/q always the closest pole to 0 in absolute value. Circle of radius 1/ q from the RH poles. Alon conjecture for regular graphs says RH true for most regular graphs. See Joel Friedman's web site for proof (www.math.ubc.ca/~jf) Real poles ( ±q -1/2, ±1) correspond to non-rh poles. See Steven J. Miller s web site: (www.math.brown.edu/~sjmiller ) for a talk on experiments leading to conjecture that the percent of regular graphs satisfying RH approaches 52% as # vertices, via Tracy-Widom distribution. 5

Derek Newland s Experiments Graph analog of Odlyzko experiments for Riemann zeta Mathematica experiment with random 53- regular graph - 2000 vertices Spectrum adjacency matrix ζ(52 -s ) as a function of s Top row = distributions for eigenvalues of A on left and imaginary parts of the zeta poles on right s=½+it. Bottom row = their respective normalized level spacings. Red line on bottom: Wigner surmise GOE, y = (πx/2)exp(-πx 2 /4). What is the meaning of the RH for irregular graphs? For irregular graph, natural change of variables is u=r s, where R = radius of convergence of Dirichlet series for Ihara zeta. Note: R is closest pole of zeta to 0. No functional equation. Then the critical strip is 0 Res 1 and translating back to u- variable: Graph theory RH: ζ(u) is pole free in R < u < R To investigate this, we need to define the edge matrix W. 6

Labeling Edges of Graphs X = finite undirected graph Orient or direct the m edges arbitrarily. Label them as in picture where m=6. e i With this labeling, we have the properties of the edge matrix on the next slides. e i+6 The Edge Matrix W Define W to be the 2 E 2 E matrix with i j entry 1 if edge i feeds into edge j, (end vertex of i is start vertex of j) provided i opposite of j, otherwise the i j entry is 0. i j Theorem. ζ(u,x) -1 =det(i-wu). Proof uses N m = # tailless backtrackless oriented closed paths of length m is Tr(W m ) Corollary. The poles of Ihara zeta are the reciprocals of the eigenvalues of W. The pole R of zeta is: R=1/Perron-Frobenius eigenvalue of W. 7

Properties of W 1) A B, B and C symmetric W = C A T 2) Row sums of entries are q j +1=degree vertex which is start of edge j. Poles Ihara Zeta are in region q -1 R u 1, q+1=maximum degree of vertices of X. Theorem of Kotani and Sunada If p+1=min vertex degree, and q+1=maximum vertex degree, non-real poles u of zeta satisfy 1 1 u q p Kotani & Sunada, J. Math. Soc. U. Tokyo, 7 (2000) Spectrum of Random Matrix with Properties of W-matrix 40 30 20 10 0-10 -20-30 spectrum W=A B;C trn(a) with A rand norm, B,C rand symm normal r =sqrt(n)*(1+2. 5)/2 and n=1000 A B W = C A T B and C symmetric Girko circle law with a symmetry with respect to real axis since our matrix is real. We used Matlab command randn(1000) to get A,B,C matrices with random normally distributed entries mean 0 std dev 1. -40-40 -30-20 -10 0 10 20 30 40 We seem to see level repulsion if it means looking at histogram of distances between nearest neighbors. See P. LeBoef, Random matrices, random polynomials, and Coulomb 4 4 5 4 systems. Wigner surmise is 5 Γ s 3 4 4Γ se Ginebre ensembles should be mentioned here. 4 8

Experiment on Locations of 0.6 Zeros of Ihara Zeta of Irregular Graphs 0.4 All poles but -1 of ζ X (u) for a random graph with 80 vertices denoted by 0.2 using Mathematica: RandomGraph[80,1/10] -0.5-0.25 0.25 0.5 0.75 1-0.2-0.4-0.6 5 circles centered at 0 with radii R, q -1/2, R 1/2, (pq) -1/4, p -1/2 q+1=max degree, p+1=min degree, R=radius of convergence of Euler product for ζ X (u) RH is false but poles are not far inside circle of radius R 1/2 RandomGraph[80,1/10] means probability of edge between 2 vertices =1/10. Experiment on Locations of Zeros of Ihara Zeta of Irregular Graphs All poles except -1 of ζ X (u) for a random graph with 100 vertices are denoted, using Mathematica RandomGraph[100,1/2] Circles centered at 0 with radii RH is false maybe not as false as in previous example with probability 1/10 of an edge rather than ½. R, q -1/2, R 1/2, p -1/2 q+1=max degree, p+1=min degree R=radius of convergence of product for ζ X (u) 9

Matthew Horton n s Graph has 1/R e to 7 digits. it Poles of Ihara zeta are boxes on right. Circles have radii R,q -½,R ½,p -½, if q+1=max deg, p+1=min deg. Here The RH is false. Poles more spread out over plane. Poles of Ihara Zeta for a Z 61 xz 62 -Cover of 2 Loops + Extra Vertex are pink dots Circles Centers (0,0); Radii: 3-1/2, R 1/2,1; R.47 RH very False 10

1.2 random 700 cover of 2loops with extra vertex on 1 loop 1 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.2 1 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1 1.2 Z is random 700 cover of 2 loops plus vertex graph in picture. The pink dots are at poles of ζ Z. Circles have radii q -1/2, R 1/2, p -1/2, with q=3, p=1, R.4694. RH approximately True. References: 3 papers with Harold Stark in Advances in Math. Paper with Matthew Horton & Harold Stark in Snowbird Proceedings, Contemporary Mathematics, Volume 415 (2006) Quantum Graphs and Their Applications, Contemporary Mathematics, v. 415, AMS, Providence, RI 2006. See my draft of a book: www.math.ucsd.edu/~aterras/newbook.pdf Draft of new paper joint with Horton & Stark: also on my website www.math.ucsd.edu/~aterras/cambridge.pdf There was a graph zetas special session of this AMS meeting many interesting papers some on my website. For work on directed graphs, see Matthew Horton, Ihara zeta functions of digraphs, Linear Algebra and its Applications, 425 (2007) 130 142. work of Angel, Friedman and Hoory giving analog of Alon conjecture for irregular graphs, implying our R (see Joel Friedman s websit: www.math.ubc.ca/~jf) 11

The End 12