Introduction to Optics

Similar documents
The Nature of Light and Matter 1 Light

Experiment #4 Nature of Light: Telescope and Microscope and Spectroscope

Core Concept. PowerPoint Lectures to accompany Physical Science, 8e. Chapter 7 Light. New Symbols for this Chapter 3/29/2011

The Nature of Light and Matter 1 Light

CHAPTERS: 9.1, 10.1 AND 10.2 LIGHT WAVES PROPERTIES

Electromagnetic Radiation

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : ,

UNIT-5 EM WAVES UNIT-6 RAY OPTICS

SPECTRUM. Dispersion. This phenomenon can be observed in a lab environment using a

Electromagnetic Radiation

Electricity & Optics

ATM 10. Severe and Unusual Weather. Prof. Richard Grotjahn.

3.3 The Wave Nature of Light

tip conducting surface

Light and Matter(LC)

LECTURE 32: Young's Double-Slit Experiment

LC circuit: Energy stored. This lecture reviews some but not all of the material that will be on the final exam that covers in Chapters

P5 Revision Questions

The Nature of Light. Early Greece to 20 th Century

1/d o +1/d i =1/f. Chapter 24 Wave Optics. The Lens Equation. Diffraction Interference Polarization. The Nature of Light

The Electromagnetic Spectrum

Some properties of waves: Huygens principle Superposition Coherence Interference Young s double-slit experiment Thin-film interference

Saint Lucie County Science Scope and Sequence

Light as a Transverse Wave.

Properties of Electromagnetic Radiation Chapter 5. What is light? What is a wave? Radiation carries information

Scattering. Vog Bank. MET 200 Lecture 14 Nature s Light Show. Atmospheric Optics. Atmospheric Optics. Ahrens Chapter 15

Phys 100 Astronomy (Dr. Ilias Fernini) Review Questions for Chapter 5

REVISION: WAVES, SOUND & LIGHT 11 JUNE 2013

EA Notes (Scen 101), Tillery Chapter 7. Light

Lecture PowerPoints. Chapter 24 Physics: Principles with Applications, 7 th edition Giancoli

Light and Geometric Optics

The Nature of Light I: Electromagnetic Waves Spectra Kirchoff s Laws Temperature Blackbody radiation

Physics 116. Nov 3, Lecture 21 Wave optics. R. J. Wilkes 11/3/11 1

Atmospheric Optics - II

Experiment 9. Emission Spectra. measure the emission spectrum of a source of light using the digital spectrometer.

Electromagnetic Waves

λ is a distance, so its units are m, cm, or mm, etc.

General Physics II Summer Session 2013 Review Ch - 16, 17, 18

WAVE-PARTICLE DUALITY. Katrina Forrestall & Emily Kingsbury

Light and Telescope 10/20/2017. PHYS 1411 Introduction to Astronomy. Guideposts (cont d.) Guidepost. Outline (continued) Outline.

EP118 Optics. Content TOPIC 1 LIGHT. Department of Engineering Physics University of Gaziantep

TOPIC: LIGHT, ELECTROMAGNETIC WAVES, 2D AND 3D WAVEFRONTS

Telescopes (Chapter 6)

PHYS 160 Astronomy Test #2 Fall 2017 Version A

Light: Transverse WAVE

Physics 30: Chapter 5 Exam Wave Nature of Light

Electromagnetic Waves

Atmospheric Optics. Lecture 17!! Nature s Light Show. Scattering. Atmospheric Optics. Atmospheric Optics. Scattering Reflection Ahrens Chapter 15

Module 1 LIGHT SOURCES Lecture 1. Introduction. Basic principles of Light and Vision

Astronomy. Optics and Telescopes

The Final Exam (Exam 4) will be on FRIDAY MAY 11 From 3 5 PM in LR1 VAN

2. The spectrum of visible light bounds the region of intensity of light emitted by the Sun. a. maximum b. minimum

VISIBLE LIGHT. L 32 Light and Optics [2] Seeing through the window. Windows behaving as mirrors. Seeing through a window

2007 Oct 9 Light, Tools of Astronomy Page 1 of 5

School. Team Number. Optics

Review: The distance between similar parts of a wave is referred to as. The Properties of Light

Preview from Notesale.co.uk Page 1 of 38

APAS Laboratory { PAGE } Spectroscopy SPECTROSCOPY

Democritus argued that all things in the universe, including light, are composed of indivisible sub components (light being some form of solar atom)

The Nature of Light. We have a dual model

Light as electromagnetic wave and as particle

Optical Bench. Polarization and Brewster s Angle

Chapter 1. THE LIGHT General remarks Wave characteristics Frequency spectrum Dual nature of light...

LIGHT. Question. Until very recently, the study of ALL astronomical objects, outside of the Solar System, has been with telescopes observing light.

Exam 3--PHYS 202--S10

Chapter 6 Telescopes: Portals of Discovery

Cumulative Review 1 Use the following information to answer the next two questions.

Prac%ce Quiz 8. These are Q s from old quizzes. I do not guarantee that the Q s on this year s quiz will be the same, or even similar.

Chapter 6 Telescopes: Portals of Discovery. Agenda. How does your eye form an image? Refraction. Example: Refraction at Sunset

10.1 Properties of Light

PHSC 3033: Meteorology Atmospheric Optics

Topic 4 &11 Review Waves & Oscillations

Name Final Exam May 1, 2017

The interference of waves

Discussion Review Test #2. Units 12-19: (1) (2) (3) (4) (5) (6)

Chapter 35. Interference

JRE Group of Institutions ASSIGNMENT # 1 Special Theory of Relativity

aka Light Properties of Light are simultaneously

Chapter 5 Light: The Cosmic Messenger. Copyright 2012 Pearson Education, Inc.

Prentice Hall EARTH SCIENCE

Wave Properties of Light Karolina H. Czarnecka, PhD Department of Molecular Bases of Medicine

Astronomy 1 Fall 2016

EGR491 Notes: Optics, Part 1

Revision checklist SP4 5. SP4 Waves. SP4a Describing waves. SP4b Wave speeds. SP4c Refraction

where c m s (1)

Physics for Scientists & Engineers 2

Newton s Laws of Motion

9/19/ Basic Properties of Light and Matter. Chapter 5: Light: The Cosmic Messenger. What is light? Lecture Outline

The Theory of Electromagnetism

Sunlight. Sunlight 2. Sunlight 4. Sunlight 3. Sunlight 5. Sunlight 6

SECTION 3 & 4 LIGHT WAVES & INFORMATION TRANSFER

Speed of Light in Air

Final Exam is coming!

1. Waves and Particles 2. Interference of Waves 3. Wave Nature of Light

Unit 4 Parent Guide: Waves. What is a wave?

Chapter 10. Interference of Light

CHEM6416 Theory of Molecular Spectroscopy 2013Jan Spectroscopy frequency dependence of the interaction of light with matter

3/9/2011. Outline Chapter 7 Waves Water Waves Water Waves. Water waves are really circular. They are an example of Mechanical waves.

sin constructive n same condition destructive 2 Interference Constructive - Destructive 2-slit single slit diff. grating

Downloaded from

Transcription:

Introduction to Optics The Pasco Optics System. Figure 1 (Courtesy of PSCO) Setting up the Equipment The Optics Bench The optics bench is shown in Fig. 2 along with the light source, component holder and ray table base. Proper alignment of the components requires the edges of the components to be flush with the raised edge of the optics bench. Figure 2 (Courtesy of PSCO)

Incandescent Light Source The light source is shown in Fig. 3.The light source should be plugged into a grounded 110V outlet. To turn on the light source flip the On Switch. The filament knob moves the light bulb from side to side inside the housing. Figure 3 (Courtesy of PSCO) Component Holders and Components The optics system includes three component holders for the bench and one component holder for use on the ray table. The notches on the top of the holders are used for aligning the components. The notches on the base of the holders are to mark the position of the component on the bench for distance measurements. Both notches are shown in figure 4. Figure 4 (Courtesy of PSCO) When using the variable aperture, polarizer, lenses or mirrors, use the centering notch to align the components on the optical axis of the bench. The notch can also be used with the polarizer to measure the angle of polarization. The spherical mirror is silvered on both sides for use as a concave or convex mirror. Fig 5. Figure 5 (Courtesy of PSCO)

Diffraction Experiments When setting up the equipment for diffraction experiments one may use the diffraction plate or the diffraction grating. If using the diffraction plate, use the slit mask on the other side of the component holder to illuminate only one of the single diffraction apertures. When looking through the aperture or grating, the diffraction pattern will be superimposed over the diffraction scale. This will be useful to make accurate measurements of the diffraction pattern geometry. Dimensions of the apertures in the diffraction plate are provided in Fig 6. Figure 6 (Courtesy of PSCO)

Basic Ray Optics Setup lign the ray table base along the rail of the optics bench. The ray table itself sits upon the ray table base. The ray table base is slanted and should be sloping downward in a direction toward the light source on the optics bench. The ray table has a rotational scale and a linear scale to make use of either measurement. The slit plate attached to a component holder should be placed between the light source and the ray table aligned along the rail of the optics bench. The distances between the components on the optics bench can be varied to yield clear lines on the ray table. nother component holder on the ray table can be used to hold the viewing screen, the polarizer, or other various components. See Fig. 7. Figure 7 (Courtesy of PSCO)

Single Ray Setup To perform experiments using a single ray use the slit mask to block all but the desired ray. For measurements using the rotational scale adjust three parameters as needed (Fig. 8.). 1. The lateral position of the slit plate on the component holder, 2. The position of the light source filament with respect to the optical axis, 3. The rotation of the ray table. Figure 8 (Courtesy of PSCO) Parallel Ray Setup Parallel rays are obtained by placing the parallel ray lens between the light source and the ray table as in Fig. 9. The parallel lines of the ray table can be used as a reference. The longitudinal position of the lens should be adjusted until the rays are parallel. Figure 9 (Courtesy of PSCO)

The Electromagnetic Spectrum/Electromagnetic Waves E/M waves are disturbances that travel through space Consist of particles and waves ll e/m waves travel at the speed of light (3 10 8 m/s) in free space, c ll e/m waves transport energy (electromagnetic energy) The relationship between speed, frequency and wavelength in free space: c = λf c The relationship between energy and frequency or wavelength: E = hf = h λ Note that decreasing wavelengths increasing energy Longer wavelengths lower frequency E/M waves reflect, refract, scatter, diffract, interfere, and may be polarized Figure 10 (Courtesy of Thomas rny)

Historical Figures and Their Contributions to Theories of Light Newton corpuscular theory Huygens wave theory Young interference Maxwell E/M equations Michaelson & Morley luminiferous ether Einstein photons Physical ttributes of Light Visible light exists between 400 700 nanometers (10-9 ), 0.4 0.7 microns (10-6 ), 4000 7000 ngstroms (10-10 ) White light consists of all frequencies in the visible range combined Wavelength peak to peak distance mplitude ½ of the distance from peak to trough Frequency number of oscillations per second mplitude Crest Trough λ

interference - combining e/m waves together in such a manner as to cause constructive (bright) or destructive (dark) patterns to result. + = 2 2 Constructive Interference + = Destructive Interference diffraction bending of light or any e/m waves as they pass through narrow openings or around sharp corners. Explained by Huygen s Theory (below). reflection - a form of scattering that may be described with a simple geometric relationship, i.e. angle of incidence equals angle of reflection (The Law of Reflection). scattering what happens, in general, when light or any e/m waves interact with matter. polarization orientation of e/m fields in space

refraction the change of speed and direction that occurs when light goes from one medium to another. Refraction of white light, which contains all wavelengths from 400 to 700 nanometers results in dispersion. Figure 11 (Courtesy of Thomas rny)

How Light Interacts with Matter Light is propagated through any dense medium (air, water, etc.) primarily by scattering. When light encounters a change in medium (falls on a surface, for instance) it may be absorbed, scattered or reflected. Light travels through any dense medium via scattering Christian Huygens was the first to propose that light was a wave. Light waves traveling together through space or any dense medium form wavefronts. ny point on a wavefront is capable of acting as a new source of the wave. This is known as Huygens Theory and may be used to explain reflection, refraction, diffraction and interference. Consider Earth s sky. On a clear day the sky is blue at noon and reddish or yellow near sunrise and sunset. On days when there is a lot of particulate matter in the atmosphere (water vapor, pollutants, etc.) the sky appears milky white. Can you use Huygen s Theory and your knowledge of visible light to explain this?

Natural Occurrences of Optical Phenomena Reflection Glitter Path Rainbows (total internal reflection) Refraction Twilight Stars twinkle Rainbows (dispersion) Mirage Superior Mirage Figure 11 (Courtesy of Thomas rny) warm, less dense air cold, more dense i Inferior Mirage cool dense air very warm air

Refractory phenomena Twilight The twinkle of stars Figure 12 (Courtesy of Thomas rny)

Diffraction Corona Glory Heiligenschien Some Halos Scattering Blue skies Red sunsets Interference Supernumerary rcs (rainbows) Polarization Light at high altitudes is highly polarized Reflected light may be highly polarized Origin of Light Visible, ultraviolet and infrared light originates from electronic transitions in atoms. Gamma rays originate from similar events in the nuclei of atoms. X rays may form in any of several ways but most commonly from the rapid acceleration of atoms. t the other end of the spectrum, radio waves result from the oscillations of large numbers of charged particles. Figure 13 (Courtesy of Thomas rny)