Spins and spin-orbit coupling in semiconductors, metals, and nanostructures

Similar documents
Electron spins in nonmagnetic semiconductors

Spin Superfluidity and Graphene in a Strong Magnetic Field

SPINTRONICS. Waltraud Buchenberg. Faculty of Physics Albert-Ludwigs-University Freiburg

Spin-orbit coupling: Dirac equation

Physics of Semiconductors

ECE440 Nanoelectronics. Lecture 07 Atomic Orbitals

Conserved Spin Quantity in Strained Hole Systems with Rashba and Dresselhaus Spin-Orbit Coupling

Lecture. Ref. Ihn Ch. 3, Yu&Cardona Ch. 2

Spin Transport in III-V Semiconductor Structures

Luigi Paolasini

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan

Anomalous spin suscep.bility and suppressed exchange energy of 2D holes

Spin relaxation of conduction electrons Jaroslav Fabian (Institute for Theoretical Physics, Uni. Regensburg)

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS

Lecture I. Spin Orbitronics

Spin Dynamics in Single GaAs Nanowires

Physics of Semiconductors (Problems for report)

J10M.1 - Rod on a Rail (M93M.2)

The Oxford Solid State Basics

Introduction to Heisenberg model. Javier Junquera

Spin Dynamics in Semiconductors, Chapter 4 of Semiconductor Spintronics and Quantum Computation edited by D. D. Awschalom, D. Loss, and N. Samarth.

Rashba spin-orbit coupling in the oxide 2D structures: The KTaO 3 (001) Surface

5 Topological insulator with time-reversal symmetry

Magnetism in Condensed Matter

Supplementary Materials for

WORLD SCIENTIFIC (2014)

Spin-Orbit Interactions in Semiconductor Nanostructures

Electron Correlation

Optical Properties of Semiconductors. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India

Semiconductor Physics and Devices Chapter 3.

Luttinger Liquid at the Edge of a Graphene Vacuum

2.4. Quantum Mechanical description of hydrogen atom

LECTURES ON QUANTUM MECHANICS

Lecture 20: Semiconductor Structures Kittel Ch 17, p , extra material in the class notes

Topological insulator with time-reversal symmetry

Chapter 4: Bonding in Solids and Electronic Properties. Free electron theory

Spin orbit interaction in semiconductors

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS

Coherent Control of a Single Electron Spin with Electric Fields

Quantum Physics in the Nanoworld

Mn in GaAs: from a single impurity to ferromagnetic layers

Lecture 3: Optical Properties of Insulators, Semiconductors, and Metals. 5 nm

Chapter 3 Properties of Nanostructures

Summary lecture VI. with the reduced mass and the dielectric background constant

Chem 442 Review for Exam 2. Exact separation of the Hamiltonian of a hydrogenic atom into center-of-mass (3D) and relative (3D) components.

Optical Properties of Solid from DFT

Lecture contents. Stress and strain Deformation potential. NNSE 618 Lecture #23

Spintronics: a step closer to the "The Emperor's New Mind" Ferenc Simon

PHYSICAL SCIENCES PART A

1.1 Units, definitions and fundamental equations. How should we deal with B and H which are usually used for magnetic fields?

Notes on Spin Operators and the Heisenberg Model. Physics : Winter, David G. Stroud

Coupling of spin and orbital motion of electrons in carbon nanotubes

SEMICONDUCTOR SPINTRONICS FOR QUANTUM COMPUTATION

Mesoscopic Spintronics

Supplementary Figure 1: Spin noise spectra of 55 Mn in bulk sample at BL =10.5 mt, before subtraction of the zero-frequency line. a, Contour plot of

Persistent spin helix in spin-orbit coupled system. Joe Orenstein UC Berkeley and Lawrence Berkeley National Lab

An introduction to magnetism in three parts

Anisotropic spin splitting in InGaAs wire structures

Effects of spin-orbit coupling on the BKT transition and the vortexantivortex structure in 2D Fermi Gases

NANOSCALE SCIENCE & TECHNOLOGY

ELECTRONS AND PHONONS IN SEMICONDUCTOR MULTILAYERS

Calculating Band Structure

Luigi Paolasini

Review of Semiconductor Physics

Fundamental concepts of spintronics

Lecture 2. Unit Cells and Miller Indexes. Reading: (Cont d) Anderson 2 1.8,

A.1 Alkaline atoms in magnetic fields

Nuclear spin spectroscopy for semiconductor hetero and nano structures

Modern Physics for Scientists and Engineers International Edition, 4th Edition

The Quantum Theory of Magnetism

Minimal Update of Solid State Physics

Topological Physics in Band Insulators II

Experimental discovery of the spin-hall effect in Rashba spin-orbit coupled semiconductor systems

Magnetism and Magnetic Switching

Luigi Paolasini

Introduction to Sources: Radiative Processes and Population Inversion in Atoms, Molecules, and Semiconductors Atoms and Molecules

Quantum Physics II (8.05) Fall 2002 Outline

Graphite, graphene and relativistic electrons

MAGNETIC MATERIALS. Fundamentals and device applications CAMBRIDGE UNIVERSITY PRESS NICOLA A. SPALDIN

Electronic structure of correlated electron systems. G.A.Sawatzky UBC Lecture

Lok С. Lew Yan Voon Morten Willatzen. The k-p Method. Electronic Properties of Semiconductors. Springer

Contents. Acknowledgments

Topological Kondo Insulators!

The Zeeman Effect in Atomic Mercury (Taryl Kirk )

FYS Vår 2017 (Kondenserte fasers fysikk)

QUANTUM WELLS, WIRES AND DOTS

A. F. J. Levi 1 EE539: Engineering Quantum Mechanics. Fall 2017.

Correlations between spin accumulation and degree of time-inverse breaking for electron gas in solid

Chapter 12: Semiconductors

1.6. Quantum mechanical description of the hydrogen atom

Electrons in a weak periodic potential

CHAPTER 8 Atomic Physics

Lecture 19: Building Atoms and Molecules

Direct and Indirect Semiconductor

Supplementary Information: Electrically Driven Single Electron Spin Resonance in a Slanting Zeeman Field

Madhya Pradesh Bhoj (Open) University, Bhopal. Assignment Question Paper I

Electronic structure of correlated electron systems. Lecture 2

Lecture 19: Building Atoms and Molecules

Lecture 20 - Semiconductor Structures

Electronic and Optoelectronic Properties of Semiconductor Structures

Transcription:

B. Halperin Spin lecture 1 Spins and spin-orbit coupling in semiconductors, metals, and nanostructures Behavior of non-equilibrium spin populations. Spin relaxation and spin transport. How does one produce and detect non-equilibrium spin populations. How can one manipulate non-equilibrium spins? Emphasis on the role of spin-orbit coupling in semiconductor systems.

Spin-subjects discussed by previous speakers include: Ferromagnetic-nonmagnetic metal hybrid structures. (Dan Ralph) Use of electric currents to detect or alter the orientation of magnetic domains. Role of spin-orbit coupling in Random Matrix Theory and in electrical resistance at low temperatures: weak antilocalization and reduced conductance fluctuations in two-dimensional systems and quantum dots (Altshuler, Marcus,Birge)

Motivations for study of non-equilibrium electron spins include possibilities of practical applications. Systems based on ferromagnets are very important for data storage and retrieval-magnetic memory devices including hard discs and magnetic random access memories GMR read heads. Reversal of magnetic domains is currently accomplished by applying magnetic fields. If one can control orientation directly with electrical currents or electric fields, that could be useful: they are much easier to apply locally in nanoscale geometries. Magnetic information is typically converted to charge information (variations in voltages, electrical currents) for further data processing.perhaps it could be useful to process information with spins directly.

As discussed by Charlie Marcus: Electron spins in semiconductor nanostructures are one possibility for qubits in a quantum computer.

How to produce a non-equilibrium spin population Injection from a ferromagnet to a normal metal or semiconductor, through an interface; via electrical currents, or optical excitation. Creation of electron-hole pairs by circularly polarized light above the band gap of semiconductor. Electrical transport through a quantum dot in an applied magnetic field Use of electrical currents to generate spin currents and polarization without magnetic fields or ferromagnets, via spin-orbit coupling.

How to detect a non-equilibrium (or equilibrium) spin polarization Electrical resistance at a ferromagnet-nonmagnetic interface can depend on spin polarization in non-magnetic metal, as well as orientation relative to ferromagnet.. Spin polarization can lead to Faraday rotation of light, in transmission or reflection.. Transmission through a quantum dot or nanostructure in an applied magnetic field can depend on spin of incident electrons. Electrical resistivity of a bulk material can depend on degree of spin polarization. Electrical current in spin-polarized material can generate Hall voltage due to Anomalous Hall Effect, arising from spin orbit coupling.

How to manipulate (rotate) spin polarizations With applied magnetic fields: Electron spin resonance. With applied electric fields via spin-orbit coupling. With time-dependent optical beams. Via coupling to nuclei.

Sources of spin relaxation Spin-orbit coupling. Coupling to nuclear spins.

Origins of Spin-Orbit Coupling Microscopic Hamiltonian, electron in potential V: H = (p 2 /2m) + V(r) + λ 0 σ (p V), h λ 0 = - /(4 m 2 c 2 ) = -3.7 10-8 nm 2. Comes from Dirac equation, first spin-dependent term in relativistic expansion. (For heavy atoms, electron velocity can approach c near nucleus, should use full Dirac equation). In system with many electrons, replace V with self-consistent potential. Many body corrections to SO are relatively small. Other relativistic effects which couple spin and orbital motion include magnetic dipole-dipole interaction between spins and interaction between spin of one electron with orbital magnetic moments of others.

Spin orbit effects in atoms or ions Spin orbit effects are most important when they split a degeneracy of the non-relativistic atom. For light atoms (Z < 70) use Russel- Saunders (LS) coupling.first:find non-relativistic ground state, including electron-electron interactions, If total orbital angular momentum L and total spin S are both non-zero, find states with different total angular momentum J (J = L + S), have different energies. Hunds rule: If outer shell is more than half full, ground state has J=L+S. Magnetic moment M L + 2S, -> Lande g-factor satisfies 1 <g < 2. If outer shell is less than half full, J = L-S. Lande g factor can be bigger than 2.

Magnetic ion in a crystal An ion embedded in an insulating crystal may have a degenerate ground state, with broken time reversal symmetry, and therefore may have a magnetic moment. Orbital angular momentum is not a good quantum number, but depending on symmetry of lattice site, ground state may still have orbital degeneracy.ion will have local magnetic moment which is a combination of spin and orbital angular momentum, g-factor may be far from 2, and may be strongly anisotropic. (We still describe the ground state degeneracy and the magnetic moment as due to a spin. If two-fold degenerate, describe by Pauli spin matrices.) If orbital ground state is non-degenerate, magnetic moment will be mostly spin, g-factor will be close to 2, close to isotropic.

Exchange interactions in magnetic insulators. In the absence of spin-orbit coupling, the exchange interaction between spins must have Heisenberg symmetry: H spin = i,j J ij S i S j. Invariant under simultaneous rotations of the spins. With spin orbit coupling, exchange may be anisotropic, depending on orientation relative to the crystal axes, and the line joining the spins. In simplest case may have Ising-like or XY-like symmetry H spin = i,j [J ij z S i z S j z + J ij x (S i x S j x + S i y S jy ) ]

Spin-orbit effects on band-structure: Non-interacting electrons in a self-consistent periodic potential V(r) H = (p 2 /2m) + V(r) + λ 0 σ (p V) Bloch s theorem: ψ nkα (r,σ) = e ik r u nkα (r,σ), where u is periodic. α = ± 1 is a (pseudo)spin index.. Without spin-orbit coupling: u nkα (r,σ) = u nk (r) δ ασ, and energy ε nkα = ε nk With spin orbit coupling.

Symmetry considerations Kramers Degeneracy. Time reversal symmetry requires ε nkα = ε n,-k,-α, u nkα (r,σ) = σ u* n,-k,-α (r,-σ). If crystal has inversion symmetry, ε nkα = ε n,-k α, hence ε nkα = ε nk,-α (2-fold degeneracy at each k-point separately.) If no center of inversion: energy levels at a given k are split by an amount b(k), except at special symmetry points, where b -> 0. Splitting is generally small, but can have interesting effects

General size of spin-orbit effects on band structure Spin-orbit effects generally give small corrections to the non-relativistic band structure, except near k-points where bands are degenerate in the non-relativistic structure.. Important examples of this are: At the hexagonal face of the Brillouin zone for an hcp metal. Near the valence-band maximum, at the zone center (Γpoint) of a group IV or zincblende III-V semiconductor: (Si, Ge, GaAs, etc).

GaAs near k=0

GaAs near k=0 Without spin orbit Antribonding s orbitals ε E F Bonding p orbitals. 3-fold degenerate at k=0 0 k Also applies to Si and Ge, but in those cases the k=o minimum is not the lowest point of the conduction band..

GaAs near k=0 Conduction band Antribonding s orbitals Bonding p orbitals Valence band E F With spin orbit ε E 0 Δ 0 j=1/2 j=3/2 j=1/2 0 k Neglects broken inversion symmetry in GaAs. Also applies to Si and Ge

effh GaAs near k=0 Conduction band H= E o + k 2 /2m Effective Hamiltonian ε E F Valence band H = -(k 2 /2m v ) + C(k J) 2 0 HH J k = ± 3/2 LH J k = ± 1/2 k Heavy and light hole masses are given by m H -1 = (m v -1-2C) and m L -1 = (m v -1 +2C). Neglects cubic anisotropy and broken inversion symmetry.

2D hole gas in GaAs Assume square confining well. Neglect broken inversion symmetry and cubic anisotropy. H = -(k 2 /2m v ) + C(k J) 2 with k z 2 = (π/d) 2, <k z > = 0. 4x4 matrix has 2 pairs of degenerate eigenvalues Top of valence band has J z = ± 3/2 at k=0. (Heavy holes in z- direction). Light hole band (J z = ± 1/2 ) has higher energy by amount 2C (π/d) 2. Away from k=0, bands are mixed. Perturbation C(k x J x +k y J y ) 2 enters only in second order perturbation theory. So close to k=0, effective Hamiltonian is H eff = -E c -(k 2 /2m v ), where the confinement energy is E c = 9(π/d) 2 /8m H.

Effects of a magnetic field Replace k by k - e A(r)/c. Add Zeeman term H Z which splits spin degeneracy. For electrons in conduction band, H Z = -(gµ B /2) B σ, where the Pauli spin matrices σ =(σ x,σ y,σ z ) act on the (pseudo)spin index α. = ±1. (In GaAs, g=-0.41) For holes in bulk GaAs, H Z B J (4x4) matrix. For 2D holes gas in GaAs, we wish to consider only the two states in the heavy hole band which are separated from the light hole band by the difference in confinement energies. Use pseudospin index = ±1 to label states which have J Z = ±1 at k=0. Defining Pauli spin matrices σ to act on index α, we find very anisotropic g-factor: H Z B z σ z. Coupling to in-plane field is k 2.

Effects of Broken Inversion Symmetry For band which is 2-fold degenerate in absence of broken inversion symmetry, we write H SO = - b(k) σ /2. For conduction electrons in bulk GaAs, b has the form (Dresselhaus coupling) : b x = γ k x (k y2 -k z2 ) + cyclic permutations. For a 2DEG in a symmetric confining well, set k z 2 = (π/d) 2, <k z > = 0, obtain b x = - βk x +γ k x k y 2, b y = βk y -γ k y k x 2, with β= γ (π/d) 2. For a 2DEG in an asymmetric confining well, get additional (Rashba) term: b(k) = α z k.

Effects of Broken Inversion Symmetry (continued) For holes in bulk GaAs, lack of inversion symmetry leads to a splitting of the four hole bands which is linear in k near k=0, but is very small.. Similarly, intrinsic inversion asymmetry of GaAs has small effect in 2D hole gas. For 2D hole gas in an asymmetric confining well, we again find a Rashba term, which we may write as H SO = - b(k) σ /2, with b z = 0, but now (b x +ib y ) = α (k x +ik y ) 3.

Scattering by impurities Even if the host material has inversion symmetry, defects or impurities add perturbations which can mix states of different pseudospin.for an impurity potential V which varies slowly on the scale of the lattice constant, within the effective mass approximation, we may write: H = (k 2 /2m*) + V(r) + λ σ (k V). This is the same form as in vacuum but λ depends on the host material. For the conduction band of GaAs. λ= 0.053 nm 2, which is 10 6 times larger than the vacuum value λ 0 = -3.7 10-8 nm 2

Relaxation of spin Elliott-Yafet mechanism For a material with inversion symmetry, in the absence of scattering, the psuedospin σ is a constant of the motion. However, scattering by impurities or phonons can flip the pseudospin. For H SO = λ σ (k V), the scattering amplitude in the first Born approximation has a contribution proportional to iλ σ (k k )V(k - k ), This leads to a spin relaxation rate τ sf -1 (λ k F ) 2 τ tr -1, where τ tr -1 is the transport scattering rate. (λ k F ) 2 is of order 10-3 for electrons in GaAs.

Relaxation of Spin Dyakonov-Perel Mechanism In a system with broken inversion symmetry, the spin-orbit field b(k) causes the components of pseudospin perpendicular to b to precess at a frequency b. The component parallel to b is conserved until the electron is scattered through an angle large enough to change the direction of b. If In the clean limit, where bτ tr >>1, spin memory will persist for times of order τ tr In the dirty limit, where bτ tr <<1, the field direction seen by an electron changes rapidly, and the spin direction diffuses over the unit sphere, with a relaxation rate τ sf -1 b 2 τ tr.

How do you understand structure and parameters? k p perturbation theory 4 x 4 Hamiltonian for valence band (Luttinger model) 8 x 8 Hamiltonian (Kane model) 14 x 14 Hamiltonian (includes antibonding p orbitals in conduction band) Reference: R. Winkler, Spin-Orbit Coupling effects in Two-Dimensional Electron and Hole Systems, (Springer, 2003)