The origin of NORMAL cosmic rays First results from H.E.S.S. Werner Hofmann MPI für Kernphysik Heidelberg

Similar documents
H.E.S.S. High Energy Stereoscopic System

H.E.S.S. High Energy Stereoscopic System

H.E.S.S. Highlights. Pierre Brun for the H.E.S.S. collaboration August 2014, Quy Nhon Vietnam

HESS Highlights and Status

Galactic sources in GeV/TeV Astronomy and the new HESS Results

Results from H.E.S.S.

The Milky Way in VHE γ-rays. Christopher van Eldik Max-Planck-Institut für Kernphysik Heidelberg

Highlights From H.E.S.S.

Recent Observations of Supernova Remnants

CANGAROO Status of CANGAROO project

Status of the MAGIC telescopes

A Galaxy in VHE Gamma-rays: Observations of the Galactic Plane with the H.E.S.S. array

Observations of the Shell-Type Supernova Remnants RX J and RX J (Vela Junior) with H.E.S.S.

SuperCANGAROO. Symposium on Future Projects in Cosmic Ray Physics, June 26-28, 28, Masaki Mori

Recent highlights from VERITAS

H.E.S.S. Unidentified Gamma-ray Sources in a Pulsar Wind Nebula Scenario And HESS J

VERITAS Observations of Starburst Galaxies. The Discovery of VHE Gamma Rays from a Starburst Galaxy

Recent Results from CANGAROO

TeV Gamma Rays from Synchrotron X-ray X

Gamma-ray Astrophysics

Integral flux (cm -2 s -1 )

Gamma-ray Astrophysics with VERITAS: Exploring the violent Universe

Special Topics in Nuclear and Particle Physics

The Extreme Universe Rene A. Ong Univ. of Michigan Colloquium University of California, Los Angeles 23 March 2005

RECENT RESULTS FROM CANGAROO

TEV GAMMA RAY ASTRONOMY WITH VERITAS

Very-High-Energy Gamma-Ray Astronomy with VERITAS. Martin Schroedter Iowa State University

CTA SKA Synergies. Stefan Wagner Landessternwarte (CTA Project Office) Heidelberg

Fermi: Highlights of GeV Gamma-ray Astronomy

VERITAS Observations of Supernova Remnants

Observing TeV Gamma Rays from the Jet Interaction Regions of SS 433 with HAWC

VHE γ-ray emitting pulsar wind nebulae discovered by H.E.S.S.

Very High Energy (VHE) γ-ray Astronomy: Status & Future

Galactic Sources in Cygnus. Rene A. Ong (UCLA)

Pulsar Wind Nebulae as seen by Fermi-Large Area Telescope

VERITAS. Tel 3. Tel 4. Tel 1. Tel 2

HAWC: A Next Generation All-Sky VHE Gamma-Ray Telescope

Very High-Energy Gamma- Ray Astrophysics

Status and Future of the HESS experiment

Particle acceleration and pulsars

PERSPECTIVES of HIGH ENERGY NEUTRINO ASTRONOMY. Paolo Lipari Vulcano 27 may 2006

Search for TeV Emission from the Direction of the Vela and PSR B Pulsars with the H.E.S.S. Experiment

CANGAROO. September 5, :13 Proceedings Trim Size: 9in x 6in morim

OBSERVATIONS OF VERY HIGH ENERGY GAMMA RAYS FROM M87 BY VERITAS

Are supernova remnants PeV accelerators? The contribution of HESS observations

Cosmic Ray Electrons and GC Observations with H.E.S.S.

Recent Results from VERITAS

A New View of the High-Energy γ-ray Sky with the Fermi Telescope

CANGAROO-III: Status report

TeV γ-ray observations with VERITAS and the prospects of the TeV/radio connection

VERY HIGH-ENERGY GAMMA-RAY ASTRONOMY

The H.E.S.S. Standard Analysis Technique

VERITAS: exploring the high energy Universe

Potential Neutrino Signals from Galactic γ-ray Sources

GLAST and beyond GLAST: TeV Astrophysics

Observing Galactic Sources at GeV & TeV Energies (A Short Summary)

Recent results in very high energy gamma ray astronomy

TeV Galactic Source Physics with CTA

Dieter Horns, MPI-K, Heidelberg 3 H46+48 (Aharonian et al. ) ES (Götting et al. ICRC ) Mkn 5 (Bradbury et al. 997, Aharonian et al. 997,999a,999

TeV Future: APS White Paper

Figure 1. The H.E.S.S. telescope system

Non-thermal emission from pulsars experimental status and prospects

Gamma-Ray Astronomy from the Ground

Masaki Mori. Institute for Cosmic Ray Research, University of Tokyo

Recent Results from the CANGAROO Observations

High-Energy Plasma Astrophysics and Next Generation Gamma-Ray Observatory Cherenkov Telescope Array

Search for TeV Radiation from Pulsar Tails

HAWC Observation of Supernova Remnants and Pulsar Wind Nebulae

High Energy Emissions from the PSR /SS2883 Binary System

Radio Observations of TeV and GeV emitting Supernova Remnants

Searching for Dark Matter in the Galactic Center with Fermi LAT: Challenges

Galactic Accelerators : PWNe, SNRs and SBs

arxiv: v1 [astro-ph.he] 9 Sep 2015

On the scientific motivation for a wide field-of-view TeV gamma-ray observatory in the Southern Hemisphere

THE PATH TOWARDS THE CHERENKOV TELESCOPE ARRAY OBSERVATORY. Patrizia Caraveo

TeV Gamma Ray Emission from Southern Sky Objects and CANGAROO Project

Diffuse TeV emission from the Cygnus region

Supernova remnants: X-ray observations with XMM-Newton

TeV Gammas and Cosmic ray production in Tycho s SNR and Geminga

Short Course on High Energy Astrophysics. Exploring the Nonthermal Universe with High Energy Gamma Rays

TeV Astrophysics in the extp era

VERITAS Design. Vladimir Vassiliev Whipple Observatory Harvard-Smithsonian CfA

Cherenkov Telescope Array Status Report. Salvatore Mangano (CIEMAT) On behalf of the CTA consortium

arxiv:astro-ph/ v1 20 Sep 2006

arxiv:astro-ph/ v1 14 Jun 1999

Particle Acceleration in the Universe

Status of CANGAROO-III

The Mysterious VERITAS. Rene A. Ong Moreno Valley College 19 April. Cas A VERITAS

A pulsar wind nebula associated with PSR J as the powering source of TeV J

Search for Astrophysical Neutrino Point Sources at Super-Kamiokande

DARK MATTER ANNIHILATION AT THE GALACTIC CENTER?

The VelaX pulsar wind nebula in the TeV regime. Bernhard Glück for the H.E.S.S. Collaboration July 8th, 2009, Boston

Simulations for H.E.S.S.

PoS(Extremesky 2011)036

Extreme blazars and the VHE connection

Fermi-Large Area Telescope Observations of Pulsar Wind Nebulae and their associated pulsars

Physics with Very High Energy Cosmic Gamma Rays

Kathrin Egberts Max-Planck-Institut für Kernphysik, Heidelberg for the H.E.S.S. Collaboration

The Inner Region of the Milky Way Galaxy in High Energy Gamma Rays

THE MAGIC TELESCOPES. Major Atmospheric Gamma Imaging Cherenkov Telescopes

Transcription:

The origin of NORMAL cosmic rays First results from H.E.S.S. Werner Hofmann MPI für Kernphysik Heidelberg

High Energy Stereoscopic System 4 Cherenkov telescopes on a 120 m square located in Namibia full system operational since Dec. 03 David Berge Stefan Funk MPI Kernphysik, Heidelberg Humboldt Univ. Berlin Ruhr-Univ. Bochum Univ. Hamburg Landessternwarte Heidelberg Univ. Kiel Ecole Polytechnique, Palaiseau College de France, Paris Univ. Paris VI-VII CEA Saclay CESR Toulouse GAM Montpellier LAOG Grenoble Paris Observatory Durham Univ. Dublin Inst. for Adv. Studies Charles Univ., Prag Yerewan Physics Inst. Univ. Potchefstroom Univ. of Namibia, Windhoek

Gamma ray Air shower ~ 10 km Detection of TeV gamma rays with Cherenkov telescopes Cherenkov light ~ 1 o ~ 120 m

960 PMT pixels 0.16 o pixel size 5 o field of view electronics in camera body (1 GHz analog sampling ASIC) 107 m 2 mirror area 382 mirror tiles automatic remote alignment guide telescope radiometer OO analysis software Root, CORBA

Point spread function All telescopes identical Agreement with simulations Stable over (2) years

Progress Detection of TeV gamma rays from the Crab Nebula Whipple 1989: 50 h observation time HEGRA 1997: 15 min HESS 2004: 30 sec

H.E.S.S. Sensitivity

Physics with H.E.S.S. Sources and acceleration mechanisms of (galactic) cosmic rays Astrophysics of compact objects (pulsars, stellar-mass black holes, AGNs, ) Cosmology Astroparticle physivs (dark matter search)

Things which will not happen in Namibia

other things do happen

H.E.S.S. 2002/3 data sample Objekt Type Time [h] 2002 2003 1ES 0323+022 AGN 16 Cen X-3 X-ray Binary 48 Crab Nebula Plerion 39 45 M87 AGN 92 NGC 253 Starburst-Galaxy 28 61 PKS 2005-489 AGN 15 68 PKS 2155-304 AGN 39 162 PSR B1706-44 Pulsar / Plerion 77 RXJ 1713.7-3946 Supernova-Remnant 77 SN 1006 Supernova-Remnant 198 Sgr A East Galaktic Center 42 TeV J1915.2+1147 Unident. TeV Source 27 Vela SNR Supernova-Remant 43 Others 58 60 Total 179 h 1016 h No. of events 74 M 644 M 1 Tel. 2/3 Tel.

Crab Nebula: The standard candle

Crab nebula Early data no background subtr. H.E.S.S.

Source mechanisms kev GeV TeV p int. ~ ρ 2 ISM Synch. ~ B 2 IC ~ ρ photon field Proton acceler. Electron accelerator

Galactic center A fascinating mix of potential VHE sources

TeV gamma rays from GC Tsuchiya et al. 2004 67 h on H.E.S.S. tight cuts no backgr. subtraction Kosack et al. 2004 26 h CANGAROO 2001/2002 > 10 σ Whipple 1995 2003 3.7 σ

Possible origins Shocks in Sgr A* accretion flow or jet Acceleration in Supernova shocks (Sgr A East) Acceleration in stellar winds from OB clusters Diffuse CR interacting with gas (ρ~10 3 /cm) Proton acceleration near event horizon and curvature radiation Neutralino / Wimp annihilation Source location, source size Time variability Energy spectrum

H.E.S.S. on off H.E.S.S. psf Point source (size < 3 or 7 pc)

Source location Chandra GC survey NASA/UMass/D.Wang et al. CANGAROO (80%) H.E.S.S. Whipple (95%) Contours from Hooper et al. 2004

H.E.S.S. 68% 95% Sgr A* Chandra F. Banagoff et al. 1.6

Galactic center spectra 2001/2 none of the individual experiments sees variability F CANGAROO (> 200 GeV) ~ Crab! H.E.S.S. should see it in minutes 1995-2003 2003

Spectrum: could it be DM? CANGAROO spectrum consistent with 2 TeV WIMP 10-7 H.E.S.S. spectrum requires > 12 TeV WIMP WIMPS > 1 TeV are disfavored in most models Need rather large WIMP density or cross section to explain flux E 2 dn/de 10-8 10-9 Wimp annihilation spectra have a cutoff at ~(0.2 0.3) Mχ 0,1 1 10 Energy [TeV] 6 TeV WIMP 15 TeV WIMP

Galactic center: PMT currents

Best guess (?) Sgr A East SNR Sgr A East Chandra & Radio NASA/G.Garmire (PSU) F.Baganoff (MIT) Yusef-Zadeh (NWU) H.E.S.S. limit on rms source size

Gamma emission by SNR The origin of cosmic rays p + nucleus π +X π o γγ π ± µ ± ν

How might such cosmic accelerators work? Man-made accelerators

How might such cosmic accelerators work? Man-made accelerators No. of particles Energy

How might such cosmic accelerators work? Man-made accelerators Nature s accelerators No. of particles Energy Enrico Fermi No. of particles Energy

How might such cosmic accelerators work? Energy gain / cycle E/E ~ β shock... many 100 cycles to reach TeV energies... takes several 100 years Generates power law spectrum dn/de ~ E -2-ε at some point, particle falls behind shock Peak energy ~10 15 ev depending on size of shock front Nonlinear process with efficiency ~50%! accelerated particles generate plasma waves Nature s accelerators 10% required to generate cosmic rays from supernovae In rest frame of shock front

Classical southern SNRs CANGAROO RXJ1713.7-3946 H.E.S.S. Kifune ICRC 2003

First TeV source with resolved morphology! Hard RXJ cuts, 1713 with H.E.S.S. no background subtraction

RX J1713 Spectrum H.E.S.S.: full remnant CANGAROO: hotspot Index 2.84±0.15±0.20 Index 2.2±0.07±0.1 preliminary

Classical southern SNRs cont d CANGAROO SN 1006 H.E.S.S. significance map Kifune ICRC 2003 preliminary Tanimori et al., ApJ 497 (1988) L25 3.8 m telescope + conference proceedings

H.E.S.S. flux limits Time dependence? Integral Flux [cm -2 s-1] 10-11 10-12 Modeling CANGAROO 1996/97 HEGRA CT1 1999-2001 H.E.S.S. 99% UL 10-13 2003 Data Large B forfield CANGAROO (> 100 hotspot mg) suppresses with CANGAROO IC relative psf (0.23 to o ) X- rays Ambient 0,1 ISM density 1 seems 10 100 to be small (0.1/cm Energy 3 [TeV] ) no target for protons Size of SNR ~50 LY But small scale shocks < 1 LY (Chandra) Need O(mG) fields to cool electrons quickly enough

The crazy southern sky

H.E.S.S. & the old sources Southern hemisphere TeV sources Object PSR 1706-44 Vela SN 1006 RX J1713 Gal. center NGC 253 PKS 2155 Current status H.E.S.S.: not detected at level of old flux H.E.S.S.: not detected at level of old flux H.E.S.S.: not detected at level of old flux H.E.S.S.: 20 σ, spectrum & flux not incompatible H.E.S.S.: 11 σ, spectrum differs H.E.S.S.: not detected at level of old flux H.E.S.S.: 45 σ, flux reasonable; no earlier spectrum

Pulsars and & pulsar nebulae Exploring Extreme electrodynamics & GR Relativistic winds Acceleration in shocks

PSR 1706-44 Chandra Spindown lum. ~ 1% of Crab X-ray lum. ~ 0.01% of Crab TeV emission detected by Durham and CANGAROO-I,II Kifune et al. 1995 Chadwick et al. 1998 Kushida et al., ICRC 2003 E -1.2 Kifune, ICRC 2003 Preliminary ICRC 2003 Crab Flux E 2.2 IC prediction ~0.001 Crab Sefako & de Jager 2003, 2004 Integral flux Correlated points!

PSR 1706-44 preliminary Signal region θ 2 (Degr. 2 ) 14 h 2-telescope data taken during commissioning phase H.E.S.S. assuming point source

Pulsars and & pulsar nebulae cont d Lose some, win some

PSR B1259-63 -20 days Pulsar crosses disk Mar 04 +20 days CANGAROO Kawachi et al. 2004 A (2000) B (2001) Model: Ball & Kirk 2000 Complex time dependence depending on alignment of pulsar and stellar wind

PSR B1259-63 H.E.S.S. preliminary ~ 9 σ pre-periastron ~ 6 σ post-periastron Flux ~5% Crab Index 2.8±0.3(stat) Periastron ~ 10 days before periastron (Feb./March)

The 1259 field Feb. 04 March 04 H.E.S.S. preliminary Apr./May 04 First two T New unidentified TeV source, >13 σ ev sourc o es i n Looks extended at 0.2 level, steady flux s ingle -2.2 field! Flat spectrum (E ), ~10% Crab

H.E.S.S. Phase II Ideas for the future: larger telescope Lower threshold (~ 10-15 GeV) and increased energy range in stand-alone mode Improved sensitivity at higher energy (> 60 GeV) in coincidence mode Test bed for high-altitude telescope systems