Chloroplasts and Mitochondria

Similar documents
Chloroplasts and Mitochondria

Chloroplasts and Mitochondria

Chloroplasts and Mitochondria

Unit 8: Energy Conversions in Cells

Chapter 8.1. How Organisms Obtain Energy

Photosynthesis and Respiration

Photosynthesis and Cellular Respiration Unit

6CO 2 + 6H 2 O C 6 H 12 O 6 + 6O 2. sun. Occurs in chloroplasts ATP. enzymes CO 2 O 2 H 2 O. sugars

ATP. Chapter 4. Photosynthesis. Cell Respiration. Energy of Life. All organisms need energy in order to survive

Unit 8: Energy Conversions in Cells

Chemical Energy and ATP. Autotrophs and Heterotrophs. Living things need to survive.

Photosynthesis Prep Test 2

Photosynthesis Prep Test

All Cells need energy. (Ability to perform work) What do cells use energy for? Mitosis. Repair. Active transport. Movement.

Cellular Energy. The cell will store energy in molecules like sugars and ATP

Photosynthesis and Cellular Respiration Lapbook Pre-test. SC.912.L.18.7: Identify the reactants, products, and basic functions of photosynthesis.

Photosynthesis. From Sunlight to Sugar

Photosynthesis and Cellular Respiration

PHOTOSYNTHESIS STARTS WITH

Chapter 4 Photosynthesis

4.1 Chemical Energy and ATP. KEY CONCEPT All cells need chemical energy.

CP Biology Unit 5 Cell Energy Study Guide. Electron Carriers Electron Transport Chain Fermentation Glycolysis Krebs cycle Light-Dependent Reactions

Ch. 6 & 7 Photosynthesis & Cellular Respiration

Energy Transfer. Photosynthesis

Photosynthesis. All Materials Cmassengale

Cellular Respiration and Photosynthesis Test

Overview of Photosynthesis

Energy and Life. Lesson Overview. Lesson Overview. 8.1 Energy and Life

The main form of energy from the sun is in the form of electromagnetic radiation. Visible radiation (white light) used for photosynthesis ROY G.

Photosynthesis. Energy & Life

Energy & Photosynthesis

Autotrophs and Heterotrophs

Photosynthesis and Cellular Respiration

ATP. Pentose Sugar (ribose) 3 phosphate groups. adenine. Does this structure look familiar?

Complete the notes on photosynthesis in the spaces below.

UNIT 2: CELLS Chapter 4: Cells and Energy

CHAPTER 6 STUDY GUIDE. phosphate work. energy adenosine In order for organisms to carry out life processes their cells need (1).

Photosynthesis

Respiration and Photosynthesis. The Ying and Yang of Life.

ATP: Energy for Life ATP. Chapter 6. What Is ATP? What Does ATP Do for You? Photosynthesis. Cell Respiration. Chemical Structure of ATP

Photosynthesis. light

Lesson Overview. Photosynthesis: An Overview. Lesson Overview. 8.2 Photosynthesis: An Overview

photosynthesis notes Biology Junction Everything you need in Biology Photosynthesis All Materials Cmassengale I. Capturing the Energy of Life

Overview of Photosynthesis

ATP, Cellular Respiration and Photosynthesis

Name Class Date. Describe the role of ATP in cellular activities. Explain where plants get the energy they need to produce food.

Photosynthesis: Life from Light and Air

Ch. 10- Photosynthesis: Life from Light and Air

Energy in the World of Life

Unit 8 Cell Metabolism. Foldable Notes

What cellular structure carries out respiration?

Chapter 8: Photosynthesis

Pearson Biology Chapter 8 Class Notes

Photosynthesis and Life

Chapter 8 Photosynthesis Class/Homework

Cell Energy: The Big Picture. So, What Exactly is ATP. Adenosine Triphosphate. Your turn to Practice converting ATP to ADP:

Photosynthesis. Dr. Bertolotti

AP Biology

AP Biology

Cell Energetics. How plants make food and everyone makes energy!

8.2 Photosynthesis Overview

AP Biology. Photosynthesis

Biology Chapter 8: The Process of Photosynthesis. Ms. Nguyen

Unit 4 Bioenergetics Test Review

Chapter 8 Notes Photosynthesis

Ch. 4 Cells and Energy. Photosynthesis and Cellular Respiration

Cellular Energy (Photosynthesis & Cellular Respiration)

A + B = C C + D = E E + F = A

Unit 3: Photosynthesis & Cellular Respiration

Chapter 4: Cellular Metabolism (Sections 1,3,5,6) KEY CONCEPT All cells need chemical energy.

Outcome: Explain the process of photosynthesis.

Chapter 8: Cellular Energy

Bellringer 11/12/ CO H Light C 6 H 12 O 6 + 6O 2. Law of conservation. Recall: Photosynthesis Overview.

Endosymbiotic Theory. p

Photosynthesis: Location

2015 Biology Unit #3 Quiz 1 Photosynthesis, Cellular Respiration and Fermentation Week of November

UNIT 3: Cell Energy What is energy? energy is a property of objects which can be transferred to other objects or converted into different forms.

PHOTOSYNTHESIS Chapter 6

Cell Energy Notes ATP THE ENDOSYMBIOTIC THEORY. CELL ENERGY Cells usable source of is called ATP stands for. Name Per

Biology Unit 4 Energy and Life. 4:1 Energy All living things require a constant supply of ENERGY.

PHOTOSYNTHESIS. Chapter 8

Lesson Overview. 8.2 Photosynthesis: An Overview

1. How is a partially charged battery like ADP?

Warm Up: Vocab on desk

Chapter 5. Table of Contents. Section 1 Energy and Living Things. Section 2 Photosynthesis. Section 3 Cellular Respiration

Unit 5 Cellular Energy

1/25/2018. Bio 1101 Lec. 5, Part A Chapter 6: Cellular Respiration

Cellular Respiration and Photosynthesis

Draw, label, and color

Use the PowerPoint found on my website to answer the following

Bio Ch 6 Photosynthesis Notes

AP Biology. Warm-up. Photosynthesis: Life from Light and Air. Energy needs of life. Energy needs of life. Objective: Warm-up:

Draw, label, and color

Photosynthesis: An Overview. Lesson Overview. Lesson Overview. 8.2 Photosynthesis: An Overview

Study Guide A. Answer Key. Cells and Energy

AN OVERVIEW OF PHOTOSYNTHESIS. Copyright 2009 Pearson Education, Inc.

Cellular Energetics. Photosynthesis, Cellular Respiration and Fermentation

Unit 4.2: Photosynthesis - Sugar as Food

Section 2: Photosynthesis

X Biology I. Unit 1-4: Cellular Energy

Transcription:

Chloroplasts and Mitochondria Plant cells and some Algae contain an organelle called the chloroplast. The chloroplast allows plants to harvest energy from sunlight to carry on a process known as Photosynthesis. Specialized pigments in the chloroplast (including the common green pigment chlorophyll) absorb sunlight and use this energy to combine carbon dioxide and water and make GLUCOSE and OXYGEN. The complete the chemical reaction for Photosynthesis is: 6 CO 2 + 6 H 2 O + energy (from sunlight) C 6 H 12 O 6 + 6 O 2 RAW MATERIALS ENERGY PRODUCTS In this way, plant cells manufacture glucose and other carbohydrates that they can store for later use. Photosynthetic cells found mainly in the leaves may have thousands of chloroplasts. QUESTIONS: 1. What type of cells contains chloroplasts? Plant cells 2. What is the energy autotrophs use to make their own food?light 3. The food making process is called Photosynthesis 4. What are the raw materials for photosynthesis? CO2 and water 5. What simple sugar is produced? Glucose 6. What gas is USED? CO2 RELEASED? O2 7. Where are most photosynthetic cells in plants found?leaves 1

8. About how many chloroplasts can be found in photosynthetic cells? Thousands Chloroplasts are double membrane organelles with a smooth outer membrane and an inner membrane folded into disc-shaped sacs called thylakoids. Color and label the outer membrane light green. Thylakoids, containing chlorophyll and other accessory pigments (red, orange, yellow, brown), are in stacks called granum (grana, plural). Color and label the grana (STACK) dark green in Figure 1. Grana are connected to each other by structures called lamellae, and they are surrounded by a gel-like material called stroma. Color and label the lamellae brown in figure 1. Color and label the stroma light blue in Figure 1. FIGURE 1-CHLOROPLAST 9. How many membranes surround a chloroplast? 2 10. The outer membrane is Smooth 11. The INDIVIDUAL SACS formed by the inner membrane are called thylakoids and are arranged in disk shape like pancakes. 12. What pigment is found inside a thylakoid? What color will it be? Chlorophyll, green. 2

13. Other pigments that trap sunlight are called Accessory pigments. What colors are these pigments? (red, orange, yellow, brown) 14. STACKS of thylakoids are called Grana plural) or GRANUM (singular). 15. Stacks or grana are connected to each other by Lammela Light-capturing pigments in the grana are organized into photosystems. On Figure 2, color and label a single thylakoid (SINGLE DISK) dark green. In figure 2, color and label a granum (STACK) red. FIGURE 2-THYLAKOID Mitochondria are the powerhouses of the cell because they burn or break the chemical bonds of glucose to release energy to do work in a cell. Remember that this energy originally came from the sun and was stored in chemical bonds by plants during photosynthesis. Glucose and other carbohydrates made by plants during photosynthesis are broken down by the process of aerobic cellular respiration (requires oxygen) in the mitochondria of the cell. This releases energy (ATP) for the cell. The more active a cell (such as a muscle cell), the more mitochondria it will have. The mitochondria are bout the size of a bacterial cell and are often peanut-shaped. Mitochondria have their own DNA and a double membrane like the nucleus and chloroplast. The outer membrane is 3

smooth, while the inner membrane is convoluted into folds called cristae in order to increase the surface area. 16. Why are mitochondria called the powerhouse of the cell? because they burn or break the chemical bonds of glucose to release energy to do work in a cell. 17. What cell process occurs in the mitochondria? aerobic cellular respiration 18. Why do some cells have MORE mitochondria? Give an example. The more active a cell (such as a muscle cell), the more mitochondria it will have. 19. What simple sugar is broken down in the mitochondria? Glucose 20. Where does the energy in glucose come from ORIGINALLY? Photosynthesis 21. Where is this energy stored in glucose? chemical bonds of glucose 4

22. Why is cellular respiration an aerobic process? Because it needs Oxygen 23. What energy is released when the chemical bonds of glucose are broken? Chemical energy in the form of ATP 24. Name two other organelles besides the mitochondria that contain DNA and have a double membrane. Nucleus and chloroplasts 25. Describe the outer membrane of the mitochondria. Smooth 26. Why is the inner mitochondrial membrane folded? To increase surface area 27. What are the folds called? thylakoids Color and label the outer membrane pink and the cristae red on figure 3. This greatly increases the surface area of the membrane so that carbohydrates (simple sugars) can combine with oxygen to produce ATP, adenosine triphosphate (the energy molecule of the cell). The 5

electron transport chain takes place across the membranes of the cristae (crista, singular). Inside the folds or cristae is a space called the matrix that contains enzymes needed for the Kreb's Cycle? Color and label the matrix yellow on figure 3. FIGURE 3 - MITOCHONDRIA Mitochondria Adenosine triphosphate (ATP) is the energy molecule used by all cells to do work. It is a nucleotide consisting of a nitrogen-containing base (adenine, thymine, cytosine, or guanine), a 5-carbon sugar, and 3 phosphate groups. ATP is able to store and transport chemical energy within cells. The LAST TWO phosphate groups (PO4), are joined by HIGH-ENERGY bonds. When these bonds are broken, energy is released for cells to use and ADP forms. Enzymes help to break and reform these high-energy bonds. 28. What does ATP stand for? Adenosine triphosphate 29. What three main things make up an ATP molecule? nitrogen-containing base (adenine, thymine, cytosine, or guanine), a 5- carbon sugar, and 3 phosphate groups. 30. How many high-energy bonds does ATP contain? 6

The LAST TWO phosphate groups (PO4), are joined by HIGH- ENERGY bonds. When these bonds are broken, energy is released for cells to use and ADP forms 31. Where are these high-energy bonds found in ATP? The LAST TWO phosphate groups (PO4), are joined by HIGH- ENERGY bonds 32. What helps weaken these bonds so energy can be released and then later help reform them? Enzyme 33. When ATP loses a phosphate group energy is released for cells and a molecule of ADP forms. In Figure 4, COLOR the 5-carbon sugar RED and LABEL it RIBOSE. COLOR and LABEL the nitrogen-base DARK BLUE. COLOR and LABEL the 3 phosphate groups YELLOW, and COLOR & LABEL the 2 highenergy bonds GREEN. FIGURE 4 ATP MOLECULE 7

Questions: 34. What is the energy molecule of the cell called? ATP 35. What macromolecule made by plants is "burned" in the mitochondria? Glucose 36. Where is chlorophyll found in the chloroplast? Grana 37. In which part of a plant would you expect to find the most chloroplasts and why? Leaves because they make photosynthesis. 38. How would the number of mitochondria in an insect's wing compare to the amount found in other cells in an insect's body? Explain your answer. In the wing is more 39. What are the raw materials for photosynthesis? CO2 and water 40. What product of photosynthesis is used in cellular respiration? Glucose 41. What is the advantage of having a folded inner membrane in the mitochondria? To increase surface area 42. What is the energy for photosynthesis? Light energy 43. Besides chlorophyll, what other pigments are found in the chloroplasts? Carotene and zanthophyll 8