à FIELD EFFECT TRANSISTORS

Similar documents
Lecture 11: J-FET and MOSFET

JFET CAPACITANCE CALCULATIONS

à 10. DC (DIRECT-COUPLED) AMPLIFIERS

Chapter 6: Field-Effect Transistors

Electronic Circuits 1. Transistor Devices. Contents BJT and FET Characteristics Operations. Prof. C.K. Tse: Transistor devices

ECE-305: Fall 2017 MOS Capacitors and Transistors

Chapter7. FET Biasing

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET:

Chapter 13 Small-Signal Modeling and Linear Amplification

Chapter 4 Field-Effect Transistors

Electronics Fets and Mosfets Prof D C Dube Department of Physics Indian Institute of Technology, Delhi

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors

Field effect = Induction of an electronic charge due to an electric field Example: Planar capacitor

Spring Semester 2012 Final Exam

Vidyalankar S.E. Sem. III [EXTC] Analog Electronics - I Prelim Question Paper Solution

ECE 342 Electronic Circuits. 3. MOS Transistors

JFET Operating Characteristics: V GS = 0 V 14. JFET Operating Characteristics: V GS = 0 V 15

MOSFET Physics: The Long Channel Approximation

CHAPTER 3: TRANSISTOR MOSFET DR. PHAM NGUYEN THANH LOAN. Hà Nội, 9/24/2012

MOSFET: Introduction

Lecture 12: MOSFET Devices

Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes

Lecture 11: MOS Transistor

OPERATIONAL AMPLIFIER ª Differential-input, Single-Ended (or Differential) output, DC-coupled, High-Gain amplifier

Current mechanisms Exam January 27, 2012

Avalanche breakdown. Impact ionization causes an avalanche of current. Occurs at low doping

Introduction to Power Semiconductor Devices

Fundamentals of the Metal Oxide Semiconductor Field-Effect Transistor

Metal-oxide-semiconductor field effect transistors (2 lectures)

MOS Transistor I-V Characteristics and Parasitics

Semiconductor Physics fall 2012 problems

Introduction and Background

ECE 546 Lecture 10 MOS Transistors

Lecture 12: MOS Capacitors, transistors. Context

MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA

The Devices: MOS Transistors

Integrated Circuits & Systems

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

! PN Junction. ! MOS Transistor Topology. ! Threshold. ! Operating Regions. " Resistive. " Saturation. " Subthreshold (next class)

5. EXPERIMENT 5. JFET NOISE MEASURE- MENTS

GaN based transistors

MOS Capacitors ECE 2204

JFETs - MESFETs - MODFETs

ECE 497 JS Lecture - 12 Device Technologies

Problem 9.20 Threshold bias for an n-channel MOSFET: In the text we used a criterion that the inversion of the MOSFET channel occurs when V s = ;2 F w

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices.

8. Schottky contacts / JFETs

EE105 - Fall 2006 Microelectronic Devices and Circuits

Figure 1: MOSFET symbols.

ECE 145A/218A Power Amplifier Design Lectures. Power Amplifier Design 1

MOS Transistor Properties Review

Schottky diodes. JFETs - MESFETs - MODFETs

7. DESIGN OF AC-COUPLED BJT AMPLIFIERS FOR MAXIMUM UNDISTORTED VOLTAGE SWING

Practice 3: Semiconductors

EE105 - Fall 2005 Microelectronic Devices and Circuits

Lecture 3: CMOS Transistor Theory

Circle the one best answer for each question. Five points per question.

Operation and Modeling of. The MOS Transistor. Second Edition. Yannis Tsividis Columbia University. New York Oxford OXFORD UNIVERSITY PRESS

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

MOS Transistor Theory

R. Ludwig and G. Bogdanov RF Circuit Design: Theory and Applications 2 nd edition. Figures for Chapter 6

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region

Lecture 04 Review of MOSFET

The Gradual Channel Approximation for the MOSFET:

Physics of Semiconductors 8 th

Semiconductor Integrated Process Design (MS 635)

ID # NAME. EE-255 EXAM 3 April 7, Instructor (circle one) Ogborn Lundstrom

Field-Effect (FET) transistors

Device Models (PN Diode, MOSFET )

Device Models (PN Diode, MOSFET )

Typical example of the FET: MEtal Semiconductor FET (MESFET)

FEEDBACK, STABILITY and OSCILLATORS

Biasing the CE Amplifier

EC/EE DIGITAL ELECTRONICS

ECE315 / ECE515 Lecture-2 Date:

Lecture 15 OUTLINE. MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor

UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences

ECE-305: Spring 2016 MOSFET IV

6.012 Electronic Devices and Circuits Spring 2005

Capacitors Diodes Transistors. PC200 Lectures. Terry Sturtevant. Wilfrid Laurier University. June 4, 2009

Metal-Oxide-Semiconductor Field Effect Transistor

Microelectronics Part 1: Main CMOS circuits design rules

Chapter 3. FET Amplifiers. Spring th Semester Mechatronics SZABIST, Karachi. Course Support

Monolithic Microwave Integrated Circuits

EE105 - Fall 2006 Microelectronic Devices and Circuits. Some Administrative Issues

Lecture 4: CMOS Transistor Theory

FIELD-EFFECT TRANSISTORS

in Electronic Devices and Circuits

Lecture 15 OUTLINE. MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor

figure shows a pnp transistor biased to operate in the active mode

Lecture 3: Transistor as an thermonic switch

Session 0: Review of Solid State Devices. From Atom to Transistor

(Refer Slide Time: 1:49)

MOS Transistor Theory MOSFET Symbols Current Characteristics of MOSFET. MOS Symbols and Characteristics. nmos Enhancement Transistor

Bipolar Junction Transistor (BJT) - Introduction

GATE SOLVED PAPER - EC

Workshop: Average values and uncertainties Quantum aspects of physical chemistry

N Channel MOSFET level 3

Lecture 5 Review Current Source Active Load Modified Large / Small Signal Models Channel Length Modulation

EE 230 Lecture 33. Nonlinear Circuits and Nonlinear Devices. Diode BJT MOSFET

Transcription:

Prof.M.G.Guvench à FIELD EFFECT TRANSISTORS ü FET: CONTENTS Principles of Operation Models: DC, S.S.A.C. and SPICE Applications: AC coupled S.S. Amplifiers ü FET: NAMES JFET Junction Field Effect Transistor (Silicon) MOSFET Metal - Oxide - Semiconductor FET (Silicon) MESFET Metal - Semiconductor FET (GaAs, III-V Semiconductor Alloys) HEMT High - Electron Mobility Transistor (GaAs, III-V Semiconductor Alloys) Univ. of Southern Maine 1 ELE342/343 Electronics 1999/2000

Prof. M. G. Guvench ü PRINCIPLES OF OPERATION AND CHARACTERISTICS of JFETs r= 1 ÄÄÄÄÄÄ s and s=enm n + epm p where r - Resistivity (Ohms) s - Conductivity (Siemens) e = 1.6 * 10-19 Coulomb n electron density Hcm -3 L p hole density Hcm -3 L m mobility I ÄÄÄÄÄÄÄÄ cm2 V. S M Current For N - Type s @ enm n @ en D m n Current Density J =s Intrinsic Ohm' s Law I = G.V Ohms Law I D = J.dA = J.A area Electric Field =- dv ÄÄÄÄÄÄÄÄÄÄÄ dx H or, = - F in 3 - Dimensions L V DS =-.dx =.L or I D = J.A =s.a =s V DS ÄÄÄÄÄÄÄÄÄÄÄÄÄ L.A = G.V DS Univ. of Southern Maine 2 ELE342/343 Electronics 1999/2000

Prof.M.G.Guvench V DS = 1 ÄÄÄÄÄÄ G I D = R.I D Ohm' s Law where G = s A ÄÄÄÄÄÄÄ L or R = s -1 L ÄÄÄÄÄ A Note that, for the N - type slab resistor shown above, majority carriers, i.e. electrons, dominate the current, therefore, I D @ HeN D m n L.A ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ L V DS How can I make I D be controlled by a variable other than V DS? Options: A, L and N D Which one of these can be controlled by a voltage or current? How? Answer: A, through depletion around a PN junction => JFET Obviously the smaller the cross sectional area the smaller the current flow becomes. Univ. of Southern Maine 3 ELE342/343 Electronics 1999/2000

Prof. M. G. Guvench ü JFET STRUCTURE and PRINCIPLE OF OPERATION JFETs have been invented using this idea that current can be cotrolled by varying the cross section of a resistor made from an N -type semiconductor. In JFETs the cross sectional area of a conducting channel is controlled by employing PN junctions. The facts that (1) a PN junction creates a space charge layer around it which is depleted of carriers, (2) the thickness of this layer increases with the reverse bias applied to it, and (3) if the junction is made "one-sided" by heavily doping one side of the junction (P+) this depletion layer extends predominantly into the lowly doped side, are used. When the two P+/N junctions in a P+/N/P+ sandwich structure are reverse biased their depletion layers take away thickness from the cross sectional area of the conducting N-type semiconductor channel in the middle, constricting electron flow and reducing (controlling/modulating) the current, I D. p + heavily doped so voltage throughout these regions will be same in everywhere. Total junction potential DV = V Bi - V where V = V GS I G > 0 since gate is reverse biased. Power Controlled : P D = I D.V DS Univ. of Southern Maine 4 ELE342/343 Electronics 1999/2000

Prof.M.G.Guvench Controlling Power : P G = I G.V GS > 0 ï Power Gain = P D ÄÄÄÄÄÄÄÄÄÄÄ > Infinite HpotentiallyL P G 1. What if V GS <-» V PO»? I D remains to be zero. G remains to be zero. R remains to be infinite. 2. What if V GS > 0, forward biasing? Do not forward bias it. It will diminish the power gain. Keep V GS < 0.6-0.7 V to prevent turning on of the gate junction Hfor Silicon made JFETsL. 3. What if V GS < -Gate Breakdown Voltage? Univ. of Southern Maine 5 ELE342/343 Electronics 1999/2000

Prof. M. G. Guvench Breakdown! large currents flow with no control.the device stops working properly.possibly damaged by high current. ü JFET I-V CHARACTERISTICS HAssumption : Uniform channel dopingl en D m n I D = ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ Z H2 a - 2 dl V DS where the depletion layer thickness, L d = d HV Bi - V applied L = $%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 2 e H V Bi - V applied %%%%%%%% L ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ en V applied = HGate - to - ChannelL bias = i k j V GS at source side of the channel, V GS < 0 y z V GS - V DS at drain side of the channel, V GS < 0 { Therefore, HdL source side < HdL drain side HNonuniform Cross Sectional AreaL and HI D = constant, independent of positionl Univ. of Southern Maine 6 ELE342/343 Electronics 1999/2000

Prof.M.G.Guvench Therefore, current density increases from Source to Drain, making the horizontal gradient of channel potential, i.e., channel electric field nonuniform along the channel. Solutions to the mathematical problem is found in Streetman's or other textbooks (ELE 262) I D = Zm n e2 N 2 a 3 V DS ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ 9 ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ e L» V PO» - i j ÄÄÄÄÄ 2 k 3 A V DS + V GS + V Bi ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ E y z V PO { 3 ÄÄÄÄ 2 + ÄÄÄÄÄ 2 3 A V GS + V Bi ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ This nonlinear equation for I D is applicable to JFETs with uniform channel doping, only. It is nonlinear and too complicated to use in the analysis and design of JFET circuits. For nonuniformly doped JFETs (and for uniformly doped channel JFETs as well) a simpler square law empirical model (which is best fitted to measured I-V data) described by the equations below is used for hand calculations and in design. I D = i j k 0 Cut - off V GS <-» V PO» I DSS ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ H»VL PO» 2 @2 HV GS - V PO L V DS - V DS 2 D Linear I DSS A1 - V GS ÄÄÄÄÄÄÄÄ E 2 V PO Saturation Note that if the reverse potential across the depletion layer at the drain side becomes equal to a value, HV GS - V DS L =-» V PO», the drain end of the channel gets "pinched-off", the shape of the conducting channel becomes same as a bullet with a sharp tip. If VDS is increased beyond this point, the shape remains the same, resulting in the saturation of drain current. V PO E 3 ÄÄÄÄ 2 = Univ. of Southern Maine 7 ELE342/343 Electronics 1999/2000

Prof. M. G. Guvench The above I-V relationship applies to uniformly doped channel JFETs as well as nonuniformly doped channel JFETSs. Its modified forms are also used for other FETs, namely, MESFETs, HEMPTs and MOSFETs. Linear ñ HV GS - V DS L >-» V PO» Saturation ñ HV GS - V DS L <-» V PO» HDrain side of the channel is pinched offl Proof of I D HV GS L in saturation : At the transition point : V GS - V DS = V PO or, V DS = V GS - V PO Substitute this in I D HV GS,V DS L I D = I DSS ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ»V PO» 2 @2 HV GS - V PO L HV GS - V PO L - HV GS - V PO L 2 D I DSS I D = ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ ÄÄÄÄÄÄÄÄÄÄÄ» V PO» HV 2 GS - V PO L 2 Univ. of Southern Maine 8 ELE342/343 Electronics 1999/2000

Prof.M.G.Guvench 2 z I D = I i DSS j V GS ÄÄÄÄÄÄÄÄÄÄÄÄ - 1 y k V PO { 2 z = I i DSS j1 - V GS y ÄÄÄÄÄÄÄÄÄÄÄÄ k V PO { H In saturation L ü SYMBOLS ü MODELS As long as V GS reverse biases the gate junction with negligible leakage current the JFET can be represented with an open circuit at the Gate-Source and a dependent current source at the Drain-Source terminal as shown in Figure 10. where I G > 0 and Univ. of Southern Maine 9 ELE342/343 Electronics 1999/2000

Prof. M. G. Guvench I D = i j k 0 Cut - off V GS <-» V PO» I DSS ÄÄÄÄÄÄÄÄÄÄÄÄÄÄ»V PO» 2 @2 HV GS - V PO L V DS - V DS 2 D Linear V GS >-» V PO» and V DS < V GS - V PO I DSS A1 - V GS ÄÄÄÄÄÄÄÄ E 2 V PO Saturation V GS >-» V PO» and V DS > V GS - V PO ü SMALL SIGNAL AC : The small signal variations in drain and gate currents around an operating point of I DQ HV DSQ,V GSQ ) and I GQ > 0 are, Di D = i j i D y ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ z GS + k v GS { Q.Dv i j i D y ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ z k v DS { Q.Dv DS and Di G = 0 where, g m = i j i D y ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ z k v GS { Q g ds = i j i D y ÄÄÄÄÄÄÄÄÄÄÄÄÄÄ z k v DS { Q Drain Transconductance: Gate Voltage Æ Drain Current Drain Conductance : Drain Voltage Æ Drain Current This implies a simple small signal AC equivalent circuit shown in Figure 11. below. ü IN SATURATION: In most amplifier applications JFETs are operated in their saturation region. In saturation, i j i D y ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ z k v DS { Q = 0 î g ds = 0 and, Univ. of Southern Maine 10 ELE342/343 Electronics 1999/2000

Prof.M.G.Guvench i j i D y ÄÄÄÄÄÄÄÄÄÄÄÄÄÄ Ä z = i j ÄÄÄÄÄÄÄÄÄÄÄÄÄÄ Ä AI i DSS j1 - V GS ÄÄÄÄÄÄÄÄÄÄÄÄÄ k v GS { SAT k v GS k 2 z y V PO { E y z { Q î g m = i j 2I i DSS j- 1 y ÄÄÄÄÄÄÄÄÄÄÄÄÄ z i j1 - V GS y ÄÄÄÄÄÄÄÄÄÄÄÄ z y z k k V PO { k V PO { { g m = g mo i k j1 - V GSQ y ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ z { V PO Q Note that g m varies linearly with V GSQ. This property can be used to design amplifiers with electrically variable gains (voltage-controlled-amplification). ü A SIMPLE SSAC JFET AMPLIFIER : Univ. of Southern Maine 11 ELE342/343 Electronics 1999/2000

Prof. M. G. Guvench Dv out =-g m Dv GS.Hg ds -1 R D R L L Dv GS =Dv in = v gs Dv out = v out A V = Dv out ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ Dv in = -g m H g ds -1 R D R L L where g m is linearly dependent on V GSQ = V GG, as shown before. APPLICATION: Automatic Volume Control in AM / Short Wave Receivers, where loudspeaker voltage is rectified and used to push V GSQ toward V PO when the sound volume increases. Univ. of Southern Maine 12 ELE342/343 Electronics 1999/2000

Prof.M.G.Guvench ü IMPROVED JFET MODEL In a real JFET two major deviations from our previously developed model are found. 1. Breakdown V DG =» V DS» +» V GS» H V DS is positive, V GS is negativel» V DS» Breakdown =» V DG» Breakdown -» V GS»» V DS» Breakdown varies with» V GS» since» V DG» Breakdown is a constant junction breakdown voltage. 2. Channel Length Modulation l (Non-zero slope in saturation) I D = i j k 0 Cut - off V GS <-» V PO» I DSS ÄÄÄÄÄÄÄÄÄÄÄÄÄÄ»V PO» 2 @2 HV GS - V PO L V DS - V DS 2 D.H 1 + lv DS L Linear V GS >-» V PO» and V DS < V GS - V PO I DSS A1 - V GS ÄÄÄÄÄÄÄÄ E 2.H 1 + lv V DS L PO Saturation V GS >-» V PO» and V DS > V GS - V PO Univ. of Southern Maine 13 ELE342/343 Electronics 1999/2000

Prof. M. G. Guvench H I D L SATURATION : ü IMPROVED SMALL SIGNAL EQUIVALENT PARAMETERS IN SATURATION Univ. of Southern Maine 14 ELE342/343 Electronics 1999/2000

Prof.M.G.Guvench g m = i i D y j ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ k v GS { z VDS = V DSQ = constant g m = 2 I DSS i ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ ÄÄÄÄÄÄÄ j1 - V GSQ y ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ z.i 1 + lv DS M H-V PO L k { V PO g ds = i j i D y ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ z k v DS { Q I DSQ g ds = ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ ÄÄÄÄÄÄÄÄÄ IV DSQ +1 ë lm = l I DSS H1 - V GSQ ê V PO L 2 = l I DSQ ë 1 + l V DSQ Univ. of Southern Maine 15 ELE342/343 Electronics 1999/2000

Prof. M. G. Guvench ü TEMPERATURE EFFECTS 1. Thermally more stable than BJT : I DSS is proportinal to m which decreases as temperature increases. Therefore, I D can not run off at high temperatures. In BJTs, however, b H+1 % ê CL and I CEO Hdoubles every 7 CL increase with temperature, therefore, BJTs are vulnarable to thermal runaway of their operating point currents. 2. Pinch - Off Voltage decreases in magnitude when temperature increases. d» V PO» dt H 2mVto2.5 mv per 0 CL Univ. of Southern Maine 16 ELE342/343 Electronics 1999/2000