Weak Ergodicity Breaking WCHAOS 2011

Similar documents
Weak Ergodicity Breaking

Weak Ergodicity Breaking. Manchester 2016

Eli Barkai. Wrocklaw (2015)

Weak chaos, infinite ergodic theory, and anomalous diffusion

1/f Noise: the Low Frequency Cutoff Paradox HIT (2018) Eli Barkai. Bar-Ilan University

1/f Noise on the nano-scale Aeging Wiener-Khinchin approach. Pohang (2016)

Diffusion in a Logarithmic Potential Anomalies, Aging & Ergodicity Breaking

Weak chaos, infinite ergodic theory, and anomalous dynamics

Anomalous diffusion in cells: experimental data and modelling

Theory of fractional Lévy diffusion of cold atoms in optical lattices

Lecture notes for /12.586, Modeling Environmental Complexity. D. H. Rothman, MIT September 24, Anomalous diffusion

Anomalous Lévy diffusion: From the flight of an albatross to optical lattices. Eric Lutz Abteilung für Quantenphysik, Universität Ulm

Lecture 25: Large Steps and Long Waiting Times

CONTINUOUS TIME RANDOM WALK WITH CORRELATED WAITING TIMES

arxiv: v1 [q-bio.nc] 5 Dec 2015

arxiv: v1 [cond-mat.stat-mech] 23 Apr 2010

Fluctuations of 1=f Noise and the Low-Frequency Cutoff Paradox

Random walk through Anomalous processes: some applications of Fractional calculus

Local time path integrals and their application to Lévy random walks

Time fractional Schrödinger equation

Chaotic diffusion in randomly perturbed dynamical systems

Functional Limit theorems for the quadratic variation of a continuous time random walk and for certain stochastic integrals

MD Thermodynamics. Lecture 12 3/26/18. Harvard SEAS AP 275 Atomistic Modeling of Materials Boris Kozinsky

Cover times of random searches

arxiv:cond-mat/ v2 [cond-mat.stat-mech] 23 Feb 1998

On the relation between event-based and time-based current statistics

ELEG 3143 Probability & Stochastic Process Ch. 6 Stochastic Process

Anomalous Transport and Fluctuation Relations: From Theory to Biology

From normal to anomalous deterministic diffusion Part 3: Anomalous diffusion

PHYSICS 653 HOMEWORK 1 P.1. Problems 1: Random walks (additional problems)

Random walks in a 1D Levy random environment

Anomalous diffusion in biology: fractional Brownian motion, Lévy flights

Deterministic chaos and diffusion in maps and billiards

Noisy continuous time random walks

Supporting Information. Even Hard Sphere Colloidal Suspensions Display. Fickian yet Non-Gaussian Diffusion

Fractional Fokker-Planck dynamics: Numerical algorithm and simulations

1/f noise for intermittent quantum dots exhibits nonstationarity

Waiting times, recurrence times, ergodicity and quasiperiodic dynamics

The dynamics of small particles whose size is roughly 1 µmt or. smaller, in a fluid at room temperature, is extremely erratic, and is

arxiv:cond-mat/ v1 8 Jan 2004

Statistics. on Single Molecule Photon. Diffusion. Influence of Spectral

2007 Summer College on Plasma Physics

A SPATIAL STRUCTURAL DERIVATIVE MODEL FOR ULTRASLOW DIFFUSION

Théorie des grandes déviations: Des mathématiques à la physique

THREE-DIMENSIONAL HAUSDORFF DERIVATIVE DIFFUSION MODEL FOR ISOTROPIC/ANISOTROPIC FRACTAL POROUS MEDIA

The Portevin-Le Chatelier effect in the Continuous Time Random Walk. framework

Brownian motion 18.S995 - L03 & 04

Basic Concepts and Tools in Statistical Physics

Anomalous diffusion of volcanic earthquakes

Anomalous wave transport in one-dimensional systems with. Lévy disorder

Non-equilibrium phase transitions

arxiv: v1 [cond-mat.stat-mech] 23 Feb 2017

The physics of information: from Maxwell s demon to Landauer. Eric Lutz University of Erlangen-Nürnberg

arxiv: v1 [cond-mat.soft] 21 Aug 2015

Shape of the return probability density function and extreme value statistics

Classical Statistical Mechanics: Part 1

Fractional Derivatives and Fractional Calculus in Rheology, Meeting #3

Mean field simulation for Monte Carlo integration. Part II : Feynman-Kac models. P. Del Moral

Introduction: the plague. The Scaling Laws Of Human Travel. Introduction: SARS (severe acute respiratory syndrom)

Improved diffusion Monte Carlo

Energy Barriers and Rates - Transition State Theory for Physicists

Nonergodicity of a Time Series Obeying Lévy Statistics

Non-Normalizable Densities in Strong Anomalous Diffusion: Beyond the Central Limit Theorem

18.175: Lecture 30 Markov chains

Non-equilibrium phenomena and fluctuation relations

Introduction to Theory of Mesoscopic Systems

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS

Full characterization of the fractional Poisson process

Today: 5 July 2008 ٢

Assignment 3. Tyler Shendruk February 26, 2010

The continuous time random walk (CTRW) was introduced by Montroll and Weiss 1.

FRACTIONAL BROWNIAN MOTION AND DYNAMIC APPROACH TO COMPLEXITY. Rasit Cakir. Dissertation Prepared for the Degree of DOCTOR OF PHILOSOPHY

arxiv: v1 [cond-mat.stat-mech] 20 Nov 2008

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 1 Feb 2000

and , (8) K = thereby turning Eq. (6) into 1 ˆψ(u) 1 ˆψ(u) K, (6)

Scaling exponents for certain 1+1 dimensional directed polymers

The Continuous Time Random Walk, still trendy: Fifty-year history, state of art, and outlook

Continuous time random walks in finite domains and general boundary conditions: some formal considerations

Path integrals in quantum mechanics

One dimensional Maps

Beyond the Gaussian universality class

Cauchy Problems in Bounded Domains and Iterated Processes

Fractional Quantum Mechanics and Lévy Path Integrals

Beyond the color of the noise: what is memory in random phenomena?

ORIGINS. E.P. Wigner, Conference on Neutron Physics by Time of Flight, November 1956

Knudsen Diffusion and Random Billiards

Random Walks A&T and F&S 3.1.2

Thermodynamics of histories: application to systems with glassy dynamics

AGAT 2016, Cargèse a point-vortex toy model

Stochastic Processes. A stochastic process is a function of two variables:

Volatility and Returns in Korean Futures Exchange Markets

Semi-Markov approach to continuous time random walk limit processes

RANDOM MATRICES and ANDERSON LOCALIZATION

arxiv: v1 [cond-mat.stat-mech] 24 Aug 2018

UNDERSTANDING BOLTZMANN S ANALYSIS VIA. Contents SOLVABLE MODELS

Latent voter model on random regular graphs

New Physical Principle for Monte-Carlo simulations

Deterministic chaos, fractals and diffusion: From simple models towards experiments

Fractional Laplacian

Statistical thermodynamics (mechanics)

Transcription:

Weak Ergodicity Breaking Eli Barkai Bar-Ilan University Bel, Burov, Korabel, Margolin, Rebenshtok WCHAOS 211

Outline Single molecule experiments exhibit weak ergodicity breaking. Blinking quantum dots, sub-diffusion of mrna in the cell. Distribution of time averages. Disordered system.

Ergodicity Ergodicity: time averages = ensemble averages. x = lim t!1 R t x()d t. hxi = R 11 xp eq (x)dx.

Main Result: DISTRIBUTION of TIME AVERAGES Let O be a physical observable, and O its time average, f O = P L 1 1 lim! Im x=1 P eq x O Ox + i P : L x=1 P eq x O Ox + i Weak Ergodicity Breaking is related to Anomalous Diffusion hx 2 i t < < 1: Ergodic case = 1 f1 O = O hoi : Rebenshtok, Barkai PRL 99 2161 (27)

Ergodicity out of equilibrium 2 ( ; t) = R t [x(t + ) x(t )] 2 dt t! 2D

Quantum Jumps: Atoms Stefani, Hoogenboom, Barkai Physics Today 62, 34 (29).

Quantum Dots Stefani, Hoogenboom, Barkai Physics Today 62, 34 (29).

Blinking Nano Crystals (coated CdSe) Intensity 1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 25 26 27 28 29 3 31 32 33 34 35 time (sec)

Non-ergodic Intensity Correlation Functions Intensity correlation function 1.8.6.4.2 1 4 1 2 1 t / T Experiment Brokmann, Dahan et al Phys. Rev. Lett. (23). Theory: Margolin, EB Phys. Rev. Lett. 9, 1411 (25).

Power Law Distribution of on and Off times τ on 1 1 τ off.39τ 1.51 1 PDF 1 1 1 2 1 3 1 4 1 1 1 1 1 τ Power law waiting time ( ) ( 1+ of f ). Averaged time in States On and Off is infinite h i = 1.

Weak and strong Ergodicity Breaking System is decomposed! strong ergodicity breaking. System s space explored! weak ergodicity breaking. J. Bouchaud J. Phys. I France (1992).

Continuous Time Random Walk (CTRW) Dispersive Transport in Amorphous Material Scher-Montroll (1975). Bead Diffusing in Polymer Network Weitz (24).

Average Waiting Time is 1. Diffusion is anomalous hr 2 i / t.

mrna diffusing in a cell Golding and Cox

Golding and Cox PRL (26) He Burov Metzler EB PRL (28). Lubelski, Sokolov Klafter (ibid).... EB, Garini PRL (29).

CTRW Renewal type of Random walk on lattice. Jumps to nearest neighbors only. q x (1 q x ) Prob. of jumping from x to x 1 (x + 1). waiting times are i.i.d r.v with pdf (t) / t 1 < < 1

Time Averages Occupation fraction p x = t x t : Time average: O = X x= L;L O x p x For example X = LX x= L xp x :

Trajectory Unbiased RW q = 1=2 = 1=2 4 Cell Number 2-2 -4 2 4 6 8 1e+5 time

Ergodic vs Non-ergodic Phases α=2 α=.5 1 1 Fraction Occupation time.8.6.4.2 Fraction Occupation time.8.6.4.2-4 -2 2 4 Cell Number -4-2 2 4 Cell Number

Population Dynamics in Step Number P x (n + 1) = q x+1 P x+1 (n) + (1 q x 1 ) P x 1 (n) : When n! 1, an equilibrium is obtained P eq x (n + 1) = P eq x (n)

Levy Statistics n x number of times particle visits site x. When n! 1 n x =n = P eq x t x total time spent in state x. Sum i.i.d r.v. whose mean is infinite. Apply Lévy s limit theorem f (t x ) = l ;A P eq x n (t x) : Use p x = t x P L x= L t x

The PDF of TIME AVERAGES Using O = P x p xo x f O = Ergodicity if! 1 1 lim P L Im x=1 P eq 1 x O O x + i P! L x=1 P eq f =1 O = O hoi : x O O x + i : Localization when! lim f O =! LX x=1 P eq x O O x : Rebenshtok, Barkai PRL 99 2161 (27)

PDF of X UNBIASED CTRW f( X / L ) 6 4 α= α=.2 α=.5 α=.8 α=1 2.5.25.25.5 X / L

Directions Blinking QDs Margolin, Kuno. Stochastic Models: CTRW model Bel, Rebenshtok. Deterministic models, relation with weak chaos Bel, Korabel. Disordered systems Burov. Distribution of Diffusion and Transport Coefficients Burov, Metzler. Transition from single particle to the ensemble Burov. Fractional Feynman-Kac functionals Turgeman, Carmi.

Intensity 1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 25 26 27 28 29 3 31 32 33 34 35 time (sec)

Group Material Nu. Radii T on of f Dahan CdSe-ZnS 215 1:8nm 3 K :58(:17) :48(:15) Orrit CdS 2:85 1:2 EXP :65(:2) Bawendi CdTe... 2 1:5 1 3 :5(:1) :5(:1) Kuno CdSe-ZnS 3 2:7 3 :8 1: :5 Cichos Si 3 :8 1: :5 Ha CdSe(coat) 3 Exp? 1

Uncapped NC on (short) off (long) Capped NC on (short) on (long) off (long) Efros, Orrit, Onsager, Hong-Noolandi r Ons = e2 k b T ' 7nm (1)

Distribution of time averaged intensity I 3 2 P (I) Experiment T = 36s 3 2 P (I) Simulations T = 36s 1 1 2 P (I).2.4.6.8 1 I 3 1 2 P (I) Experiment T = 36s.2.4.6.8 1 I 3 1 Experiment T = 36s.2.4.6.8 1 I 2 P (I).2.4.6.8 1 I 3 1 2 P (I) Simulations T = 36s.2.4.6.8 1 I 3 1 Simulations T = 36s.2.4.6.8 1 I CdSe-ZnS NC. Margolin, Kuno, Barkai (26)

Quenched Trap Model U(x)/kT x x x x x x (E) = 1 T g exp( U x = U det x E x : E T g ):

Dynamics and Occupation Fraction The dynamics are described by the master equation d dt P x(t) = 1 P x (t) + 1 P x+1 (t) + 1 P x 1 (t) x 2 x+1 2 x 1 i = exp( E x T ): Since E i are exponentially distributed ( ) = T T g 1 T Tg When T=T g < 1 the model exhibits anomalous diffusion.

Occupation Fraction for the Quenched Trap Model The occupation fraction in a domain x 1 < x < x 2 p t x = t ZObs Z = P x2 x=x 1 exp U det where Z is the normalizing partition function. Z x E x T For a single realization of disorder, and for a finite system, the occupation fraction is given by Boltzmann statistics. The occupation fraction is a random variable since fe x g are random variables.

T g < T is the effective temperature of the system. Our main result for T=T g < 1 f (p) T =Tg [R x (T g ) ; p] The temperature T g fraction. R x (T P B(T g ) g ) = 1 P B (T g ) P B (T g ) = P x2 x=x 1 exp Z U det T g yield the statistical properties of the occupation For T > T g standard Boltzmann Gibbs statistics is valid, even after averaging over disorder f (p) (p P B ): :

PDF of occupation fraction = T =T g = :3 2.5 2 Theory Simulation 1.5 PDF 1.5.2.4.6.8 1 t x /t

PDF of occupation fraction = T =T g = :7 4 Theory Simulation 3 PDF 2 1.2.4.6.8 1 t x /t U (x) = x, T g = 1, observation domain < x < 1.

PDF of occupation fraction = T =T g = 3 3 25 2 PDF 15 1 5.2.4.6.8 1 t x /t U (x) = x, T g = 1, observation domain < x < 1.

The Averaged Occupation Fraction U det (x) = x.8 Simulation Theory.6 <t x /t>.4.2 1 2 3 4 5 T/Tg

Generality of Result for Quenched Disorder Quenched disorder: p = t x t ZObs Z. Weak Ergodicity Breaking: p = t x t = P i i(x) t. If Z is Lévy distributed behavior similar to weak ergodicity is found. Models of anomalous diffusion in disorder systems: Z Lévy distributed.

Boltzmann--Gibbs normal diffusion WEB anomalous diffusion hr 2 i t Gaussian Lévy -- Lamperti P L 1 f 1 O = O hoi f O = lim! Im x=1 P eq x (O O x +i) 1 P L : x=1 P x eq (O O x +i) Chaos =, Infinite Invariant Density 2 = hx 2 i Transport Coefficients Random

Refs. and THANKS Stefani, Hoogenboom, and Barkai Beyond Quantum Jumps: Blinking Nano-scale Light Emitters Physics Today 62 nu. 2, p. 34 (February 29). Rebenshtok, Barkai Weakly non-ergodic Statistical Physics Journal of Statistical Mechanics 133 565 (28). Burov, Barkai, Occupation Time Statistics in the Quenched Trap Model. Phys. Rev. Lett. 98 2561 (27). Bel, Barkai Weak Ergodicity Breaking in the Continuous-Time Random Walk Phys. Rev. Lett. 94 2462 (25). Margolin Barkai Non-ergodicity of Blinking Nano Crystals and Other Lévy Walk Processes Phys. Rev. Letters 94 861 (25).

The Geisel Map 3 mapping rule path 2 x t+1 1-1 -.5.5 1 1.5 2 2.5 x t In a unit cell x t+1 = x t + ax z ; < x < :5

CTRW Dynamics In vicinity of fixed point dx dt = axz Smooth injection of trajectories (t) / t (1+) ; = 1 z 1 :

Random Occupation Times Cell Number(t) Fraction of Occupation Time 4 2-2 -4 1.8.6.4.2 2 4 6 8 1 time (a) -4-2 2 4 Cell Number (c) Fraction of Occupation Time Fraction of Occupation Time 1.8.6.4.2 1.8.6.4.2-4 -2 2 4 Cell Number (b) -4-2 2 4 Cell Number (d)

Occupation Time Statistics Theoretical Simulation.5.3.5.4.25.4.3.2 f(t m /t).3.2.15.2.1.1.1.5.2.4.6.8 1 (a).2.4.6.8 1 t m /t (b).2.4.6.8 1 (c) Bel, Barkai Europhysics Letters 74 15 (26).

Visitation Fraction Visitation Fraction.1.5.1.5-4 -2 2 4-4 -2 2 4 (a) Cell Number (b) Visitation fraction is uniform, in and out of the ergodic phase, hence weak ergodicity breaking.

Intermittency, Zero Lyapunov Exponent Pesin identity = h ks. Intermittent dynamics: zero Lyapunov exponent =. Stretched exponential separation of nearby trajectories: x = x exp( t ): Our aim: Generalize Pesin Identity. Take Away: Intermittency is related to Weak Ergodicity Breaking.

Pomeau Manneville Map 1, M (x ),5 x,,,5 ξ 1, x x t+1 = M (x t ) M (x t ) x t + a(x t ) z x t! = P t 1 t= ln M (x t ) t

Trajectory 1,5 ln( M'(x t ) ) 1, S,5 1, 2 4 t Xt 1 t= ln M (x t ) / t=hi / t R t tt 1 dt / t Distribution of number of renewals in (; t) yields distribution of.

Distribution of generalized Lyapunov Exp. = =h i Renewal Theory: distribution of is Mittag-Leffler. Korabel Barkai Phys. Rev. Lett. 12, 561 (29).

Infinite Invariant Measure (Aaronson, Thaler, ) x c (t 4 ) 1 4 x c (t 3 ) (x) 1 3 1 2 x c (t 2 ) 1 1 ~x -1/ 1 1-2 1-1 1 x (x) = (x; t) t 1 (x) / x 1= Non Normalizable.

Generalized Lyapunov Exp. 5 4 < > 3 2 1 1 2 3 4 5 z h i = Z ln jm (x)j(x)dx Even though (x) non normalizable, it yields the average.

Pesin Type of Identity Krengel Entropy h is the Kolomogorov Sinai entropy of the first return map (Zweimüller, Thaler). s t = left branch. s t = 1 right branch. S = 111111 = ()()(1)(11)(1)(11). n(t) number of words (n(t) = 6). h = h n log 2 n i t h = h i: A link between separation of trajectories and entropy.

Boltzmann--Gibbs normal diffusion WEB anomalous diffusion hr 2 i t Gaussian Lévy -- Lamperti P L 1 f 1 O = O hoi f O = lim! Im x=1 P eq x (O O x +i) 1 P L : x=1 P x eq (O O x +i) Chaos =, Infinite Invariant Density 2 = hx 2 i Transport Coefficients Random

Refs. and THANKS Turgeman, Carmi, Barkai Phys. Rev. Lett. Fractional Feynman-Kac Equation for non Brownian Functionals Phys. Rev. Lett. 13, 1921 (29). Stefani, Hoogenboom, and Barkai Beyond Quantum Jumps: Blinking Nano-scale Light Emitters Physics Today 62 nu. 2, p. 34 (February 29). Korabel, Barkai Pesin-Type Identity for Intermittent Dynamics with a Zero Lyapunov Exponent Phys. Rev. Lett. 12, 561 (29). Rebenshtok, Barkai Weakly non-ergodic Statistical Physics Journal of Statistical Mechanics 133 565 (28). He, Burov, Metzler, Barkai Random Time-Scale Invariant Diffusion and Transport Coefficients Phys. Rev. Lett. (28). Burov, Barkai, Occupation Time Statistics in the Quenched Trap Model. Phys. Rev. Lett. 98 2561 (27). Bel, Barkai Weak Ergodicity Breaking in the Continuous-Time Random Walk Phys. Rev. Lett. 94 2462 (25). Margolin Barkai Non-ergodicity of Blinking Nano Crystals and Other Lévy Walk Processes Phys. Rev. Letters 94 861 (25).