LHC Higgs Signatures from Extended Electroweak Guage Symmetry

Similar documents
Decoupling and Alignment in Light of the Higgs Data. Howard E. Haber Pi Day, 2014 Bay Area ParCcle Physics Seminar San Francisco State Univ.

Higgs Property Measurement with ATLAS

The Higgs boson. Marina Cobal University of Udine

BSM Higgs Searches at ATLAS

Can the Hbb coupling be equal in magnitude to its Standard Model value but opposite in sign? Howard E. Haber July 22, 2014

Higgs boson(s) in the NMSSM

The Higgs discovery - a portal to new physics

Hidden two-higgs doublet model

Properties of the Higgs Boson, and its interpretation in Supersymmetry

Higgs Searches and Properties Measurement with ATLAS. Haijun Yang (on behalf of the ATLAS) Shanghai Jiao Tong University

Higgs Signals and Implications for MSSM

Teoria e fenomenologia dei modelli di Higgs composto. Roberto Contino - CERN

Finding the Higgs boson

New Physics Scales to be Lepton Colliders (CEPC)

5. Higgs Searches. The Higgs-mechanism in the SM Yukava-coupling, masses of fermions Higgs Production: Higgs decay channels. Higgs search at the LHC

Mass degenerate Higgs Hunters explore the 2HDM. Howard E. Haber West Coast LHC Theory UC Riverside December 7, 2012

Phenomenology of the Higgs Triplet Model at the LHC

Photon Coupling with Matter, u R

HUNTING FOR THE HIGGS

ATLAS Di-fermion Results. Koji Nakamura (KEK) on behalf of ATLAS Collaboration

Effective Theory for Electroweak Doublet Dark Matter

Higgs Coupling Measurements!

The 2HDM in light of the recent LHC results. Rui Santos

Buried Higgs Csaba Csáki (Cornell) with Brando Bellazzini (Cornell) Adam Falkowski (Rutgers) Andi Weiler (CERN)

Discovery of the Higgs Boson

Higgs in the light of Hadron Collider limits: impact on a 4th generation

Top quark effects in composite vector pair production at the LHC

Searching for the Higgs at the LHC

arxiv: v1 [hep-ex] 5 Sep 2014

arxiv: v1 [hep-ph] 10 May 2013

Probing Two Higgs Doublet Models with LHC and EDMs

Tutorial 8: Discovery of the Higgs boson

Two-Higgs-doublet models with Higgs symmetry

Lepton non-universality at LEP and charged Higgs

HIGGS&AT&LHC. Electroweak&symmetry&breaking&and&Higgs& Shahram&Rahatlou. Fisica&delle&Par,celle&Elementari,&Anno&Accademico&

Problems for SM/Higgs (I)

Dmitri Sidorov Oklahoma State University On behalf of the ATLAS Collaboration DIS2014, 04/28/2014

Higgs searches in CMS

Little Higgs at the LHC: Status and Prospects

Unitarization procedures applied to a Strongly Interacting EWSBS

J. C. Vasquez CCTVal & USM

Higgs search in WW * and ZZ *

ATLAS Discovery Potential of the Standard Model Higgs Boson

The HL-LHC physics program

Higgs Physics, after July 2012

Triple Gauge Couplings and Quartic Gauge Couplings

Channels and Challenges: Higgs Search at the LHC

Higgs couplings. beyond the Standard Model. Giacomo Cacciapaglia (IPN Lyon, France) IHEP Beijing

Dark Matter and Gauged Baryon Number

Exotic W + W Z Signals at the LHC

Phenomenology of a light singlet-like scalar in NMSSM

arxiv:hep-ph/ v1 17 Apr 2000

A SUPERSYMMETRIC VIEW OF THE HIGGS HUNTING

Study of Higgs Boson Decaying to Four Muons at s =14 TeV

Higgs physics at the LHC

Searching for neutral Higgs bosons in non-standard channels

Recent Developments in Little Higgs Searches. at LHC

Higgs couplings and mass measurements with ATLAS. Krisztian Peters CERN On behalf of the ATLAS Collaboration

EW phase transition in a hierarchical 2HDM

ATLAS+CMS Higgs run 1 Combinations

Searching for the Higgs at the Tevatron

How to tell apart non-standard EWSB mechanisms. Veronica Sanz CERN and YORK Moriond 2012

PHYSICS BEYOND SM AND LHC. (Corfu 2010)

Light Higgs Discovery Potential with ATLAS, Measurements of Couplings and

Higgs physics at the ILC

Evidence for Higgs Boson Decays to a Pair of τ-leptons

generation Outline Outline Motivation Electroweak constraints Selected flavor constraints in B and D sector Conclusion Nejc Košnik

Searches for Beyond SM Physics with ATLAS and CMS

8.882 LHC Physics. Higgs Physics and Other Essentials. [Lecture 22, April 29, 2009] Experimental Methods and Measurements

Higgs Candidate Property Measurements with the Compact Muon Solenoid. Andrew Whitbeck * for the CMS Collaboration. Johns Hopkins University

Charged Higgs Beyond the MSSM at the LHC. Katri Huitu University of Helsinki

Triplet Higgs Scenarios

B-meson anomalies & Higgs physics in flavored U(1) model

Potential Discoveries at the Large Hadron Collider. Chris Quigg

Kinematics in Higgs Fits

at the LHC OUTLINE Vector bosons self-couplings and the symmetry breaking connection

Neutrino Masses and Dark Matter in Gauge Theories for Baryon and Lepton Numbers

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

COLLIDER STUDIES OF HIGGS TRIPLET MODEL

Composite Higgs and Flavor

Dark matter and collider signatures from extra dimensions

COLLIDER STUDIES OF HIGGS TRIPLET MODEL

PoS(EPS-HEP 2013)215. WW, WZ, and ZZ production at CMS. Jordi DUARTE CAMPDERROS (on behalf of CMS collaboration)

arxiv: v1 [hep-ph] 16 Mar 2017

Physics at Tevatron. Koji Sato KEK Theory Meeting 2005 Particle Physics Phenomenology March 3, Contents

Weak boson scattering at the LHC

HIGGS + 2 JET PRODUCTION AT THE LHC

CP violation in charged Higgs production and decays in the Complex 2HDM

Implication of LHC Higgs Signal for the MSSM Parameter Regions

Higgs quantum numbers and couplings. E. Pianori University Of Warwick On behalf of the ATLAS and CMS collaborations

Effective field theory approach to the Higgs boson phenomenology

HIGGS AT HADRON COLLIDER

Low Scale Flavor Gauge Symmetries

Little Higgs Models Theory & Phenomenology

Mirror World and Improved Naturalness

The Higgs as a composite pseudo-goldstone boson. Roberto Contino - CERN

Basics of Higgs Physics

Theory of anomalous couplings. in Effective Field Theory (EFT)

Looking through the Higgs portal with exotic Higgs decays

EW Naturalness in Light of the LHC Data. Maxim Perelstein, Cornell U. ACP Winter Conference, March

Transcription:

LHC Higgs Signatures from Extended Electroweak Guage Symmetry Tomohiro Abe Tsinghua U. based on JHEP 1301 (013) 08 In collabollations with Ning Chen, Hong-Jian He Tsinghua U. HPNP013, February 15th

1. Motivation. Model 3. LHC signatures of the Higgs bosons 4. Summary

Introduction LHC found a new particle around 15 GeV! photon signal is larger than the SM Higgs prediction Are there any new physics? (or statistics...) 4"! +, &(5(=(7%89(:(5(;<,()0 +, &(5(6(7%89(:(5(;</()0 ATLAS 011-01 W,Z H # bb s = 7 TeV: "Ldt = 4.7 fb H # & & s = 7 TeV: "Ldt = 4.6-4.7 fb (*) H # WW H # $ $ s = 7 TeV: "Ldt = 4.8 fb s = 8 TeV: "Ldt = 5.9 fb (*) H # ZZ Combined -1 # l%l% -1 s = 7 TeV: "Ldt = 4.7 fb -1 s = 8 TeV: "Ldt = 5.8 fb -1-1 # 4l -1 s = 7 TeV: "Ldt = 4.8 fb -1 s = 8 TeV: "Ldt = 5.8 fb -1 s = 7 TeV: "Ldt = 4.6-4.8 fb -1 s = 8 TeV: "Ldt = 5.8-5.9 fb -1 µ = 1.4 ± 0.3 m H = 16.0 GeV 1 γγ 1 (33 1 ( 1 ττ 1 (00 (? 1 (5(,.;<;(>%8-1 0 1 Signal strength (µ) +, -,. / $%&'()*'(σ#σ!"

How to enhance di-photon signal? h γ γ is loop induced process h t γ h γ W γ γ new particle modify the amplitude of this process new particle s spin = 0, 1/, 1... which is better? naively, if new particle coupling to the higgs is the same sign as the SM case, gauge boson loop enhance the amplitude Does W help enhancing this signal? h W Let us extend gauge sector and see what happen! γ γ

1. Motivation. Model 3. LHC signatures of the Higgs bosons 4. Summary

Model : gauge sector electroweak gauge symmetry SU() 0 SU() 1 U(1) two Higgs fields for electroweak symmetry H 1 = (, ) 0 ( breaking h 1,π1,π 1 1,π 1 3 ) H = (1, ) 1/ ( h,π,π 1,π 3 ) All π s are eaten by the gauge bosons mass eigenstates are given as linear combinations spin 1: spin 0: W ±, Z, γ, W ±,Z h, H h = cos αh 1 sin αh H = sin αh 1 + cos αh

) Model : fermion sector vector like fermions as well as chiral fermions Fermions SU() 0 SU() 1 U(1) SU(3) c ( ) 1 Ψ 0L 1 6 1 3 (1) ( ) 1 Ψ 1L 1 6 1 3 (1) ( ) 1 Ψ 1R 1 6 1 3 (1) Ψ u R 1 1 3 (0) 3 (1) Ψ d R 1 1 1 3 ( 1) 3 (1) chiral vector like chiral chiral reasons why we introduce vector like fermions: 1. they are mixed with chiral fermions, and relax S parameter constraint mw constraint. they can enhance σ(gg h)

Model: W ff coupling and mw gw ff ~ 0 is possible by tuning parameter (ideal delocalization) ( ) 1+r g W ff g 1 sin θ f Then r S parameter is OK with light m W m W m W r = H H 1 fermion mixing angle αs 4 sin θ W M W M W g W ff g W ff direct detection bounds through Drell-Yan process can be ignored Hereafter we set gw ff = 0 fermion sector depend on m w/mw

Model : Higgs couplings (1) g WWh = m W v ( r 3 ( )) (1 + r ) cos α 1 m sin α + O W 3/ (1 + r ) 3/ m W g SM WWh gwwh gwwh SM 1.0 0.5 0.0 0.5 r 1 r r 1 1.0 0.0 0.5 1.0 1.5.0 Α Π smaller than SM Br( h γγ, WW, ZZ) highly depend on r and α

Model : Higgs couplings () g W W h = m W v ( r (1 + r ) cos α r sin α + O 3/ (1 + r ) 3/ ( m W m W )) gw' W' h MW' v 1.0 0.5 0.0 0.5 r 1 r r 1 1.0 0.0 0.5 1.0 1.5.0 Α Π

Model : summary of matter contens Extra particles ( u c t d s b )( ν e ν µ ν τ e µ τ ( u c t d s b W Z SM particles )( νe ν µ ν τ e µ τ γ W Z g Higgs bosons hh ) ) W ±,Z 380 (wwz coupling) W ± 91,Z 80 Mass(GeV) 170 t u,d,c,s,t,b e,µ,τ,ν e,ν µ,ν τ a few TeV (T parameter) 15 h O(1)TeV H

1. Motivation. Model 3. LHC signatures of the Higgs bosons 4. Summary

ggh ggh ggh W (left panel) and M W = 600 GeV (right panel). The heavy fermion mass is set as, M F =.5TeV for both panels. The maximal enhancement factor is R ggh 1.6 (left panel) and R ggh 1. (right panel). σ(gg h)/σ(gg h)sm.0 1.5 M W' 400 GeV M W' 600 GeV r =1 ggh 1.0 0.5 0.0 0.0 0.5 1.0 1.5.0 Α Π highly depending on mixing angle, α. depending on mw. bigger than SM due to the heavy fermion loops. Figure 7. The ratio R ggh of the production cross section via gluon fusion process as a function of Higgs mixing angle α. We take the Higgs mass M h = 15 GeV and input f 1 = f. The heavy masses are taken to be, M F =.5TeV and M W = 400 GeV (blue curve) or M W = 600 GeV (red curve).

σ(gg h) x BR / SM.5!!.5!!.0 WW ZZ.0 WW ZZ 1.5 1.5 $ Br / SM 1.0 0.5 $ BR / SM 1.0 0.5 0.0 0.0 0.5 1.0 1.5.0 "/# 0.0 0.0 0.5 1.0 1.5.0 "/# depending on α and mw In r =1 case γ γ signal can be enhanced! WW and ZZ signals are suppressed

σ(gg h) x BR / SM.5 ##.5 ##.0 WW ZZ.0 WW ZZ $ Br / SM 1.5 1.0 0.5 $ Br / SM 1.5 1.0 0.5 0.0 0.0 0.5 1.0!/" 1.5.0 0.0 0.0 0.5 1.0!/" 1.5.0 In r 1 case γ γ signal can be enhanced! WW and ZZ signals are compareble with the SM case

σ(vbf/wh/zh) other production processes W W W /Z h W/Z W does not propagate because gw ff = 0 in our set up difference from the SM is gwwh coupling σ(pp hqq ) σ(pp hqq ) SM = ( ) ( σ(pp hw ) gwwh r 3 ) = σ(pp hw ) SM gwwh SM (1 + r ) cos α 1 sin α 1 3/ (1 + r ) 3/ These production xsec is always smaller than SM

σ(vbf/wh/zh) x BR(h ff) / SM Σ Br 3 site Σ Br SM Σ Br 3 site Σ Br SM 1.0 0.8 0.6 0.4 0. a 0.0 0.0 0.5 1.0 1.5.0 Α Π 1.0 0.8 0.6 0.4 0. c 0.0 0.0 0.5 1.0 1.5.0 Α Π Σ Br 3 site Σ Br SM 1.0 0.8 0.6 0.4 0. b m W = 400GeV, r =1 0.0 0.0 0.5 1.0 1.5.0 Α Π (ex) σ(vbf) Br(h ττ bar ) < SM suppressed to improve the result, for example, we need to change parameter space give up ideal delocalization change fermion sector itself...

1. Motivation. Model 3. LHC signatures of the Higgs bosons 4. Summary

Summary LHC found a new particle around 15 GeV γγ signal is larger than the SM Higgs boson case We consider SU()xSU()xU(1) model σ(gg h γγ)/σsm > 1 is possible σ(gg h WW/ZZ) /σsm 1 these are compatible with the current LHC data other production process is suppressed, for example σ(vbf) Br(h ττ bar ) < SM These results highly depend on parameter choice and structure of fermion sector. It is worthwhile to study more general analysis in this gauge symmetry.

BACKUP SLIDES 0

Model : fermion mass terms mass terms ( Ψ u 0L Ψu 1L ) ( 1 y 1f 1 0 M 1 y uf )( Ψ u 1R Ψ u R ) ( Ψ d 0L Ψd 1L ) ( 1 y 1f 1 0 M 1 y df )( Ψ d 1R Ψ d R ) +(h.c.) mass m u 1 y 1 y u f 1 f 4 M m u M + 1 4 y 1 f 1 + 1 4 y u f M H 1 = f 1 /, H = f / We assume M >> y1f1, yf yx determine the SM fermion masses yx 0 except top sector

Model : why gwwh/sm < 1? perturbative unitarity of longitudinal gauge boson scattering In the SM, Higgs cancels the E behavior W h

Model : why gwwh/sm < 1? perturbative unitarity of longitudinal gauge boson scattering In the SM, Higgs cancels the E behavior W h In our model, W and heavy Higgs as well as light Higgs W W h H both spin 1 and spin 0 particles contribute WWh coupling is smaller than the SM one

Model : perturbative unitarity () unitarity sum rules for couplings (here W stands for both W ± and Z) to cancel O(E 4 ) terms g WWWW = g WWW + g WWW to cancel O(E ) terms 4g WWWW M W =3g WWWM W +3g WWW M W + g WWh + g WWH gwww gwww SM by precision measurement now we see the following realtion (g WWh ) ( gwwh SM )

Model : lower bound on Mw R.S.Chivukula et.al Phys.Rev.D74:075011 (006) triple gauge boson coupling L = igwwz SM (1 + κ Z ) W µ + Wν Z µν ( )( 1 + g Z 1 W + µν W µ WµνW +µ) Z ν ig SM WWZ K.Hagiwara, R.D.Peccei, D.Zeppenfeld, and K.Hikasa, Nucl.Phys. B8,53(1987) This model prediction κ Z = g Z 1 = 1 c M W M W ( M 4 + O W M 4 W ) c = M W M Z constraint from LEP-II g Z 1 < 0.08 (95%C.L.) M W 380GeV

Model : parameters in Higgs sector Higgs VEVs H 1 = f 1 /, H = f / They are related to the Fermi constant GF 1 f1 + 1 f 1 v we introduce the VEV ratio r r = f /f 1 we use GF (or v) and r = f/f1 instead of f1 and f mixing angle between two Higgses α h = cos αh 1 sin αh H = sin αh 1 + cos αh two input parameters in Higgs sector: α and r

σ(gg h) x BR / SM!(gg " h)!br /SM 4 3.5 3.5 1.5 1 0.5 0 gg && WW Z& ZZ bb -,%% -, cc - 0 0.5 1 1.5.5 # H /$!(gg " h)!br /SM 4 3.5 3.5 1.5 gg 1 bb -,%% -, cc - && 0.5 Z& 0 WW, ZZ 0 0.5 1 1.5.5 # H /$ α /π α /π depending on α and mw In r =1 case γ γ signal can be enhanced! WW and ZZ signals are suppressed

Model : Higgs couplings (3) g ffh m f v ( ) r cos α 1 sin α g SM 1+r 1+r ffh gffh gffh SM 1.0 0.5 0.0 0.5 r 1 r r 1 1.0 0.0 0.5 1.0 1.5.0 Α Π gffh is smaller than SM

Model : Higgs couplings (4) g FFh m F v ( 1+r r m W m W cos α m f m F m W m W ) r sin α (1 + r ) 3/ 0.1 m F v gffh mf v 0.10 0.05 0.00 0.05 r 1 r r 1 0.10 0.0 0.5 1.0 1.5.0 Α Π

Model : Higgs couplings (4) g FFh m F v ( 1+r r m W m W cos α m f m F m W m W ) r sin α (1 + r ) 3/ 0.1 m F v suppression factors gffh mf v 0.10 0.05 0.00 0.05 r 1 r r 1 0.10 0.0 0.5 1.0 1.5.0 Α Π gffh is much suppressed, because F is almost vector like fermion

Comment on the heavy higgs constraint on heavy Higgs mass from LHC Σ Br 3 site Σ Br SM 10 1 10 1 10 c H ZZ 4 leptons 3site: Α 0.5Π CMS 7 8 TeV H ZZ 4 ATLAS 7 8 TeV H ZZ 4 3site: Α 0.8Π 3site: Α 0.6Π Σ Br 3 site Σ Br SM Text 10 1 10 1 10 d H WW leptons + MET 3site: Α 0.5Π CMS 7 8 TeV H WW Ν ATLAS 7 TeV H WW Ν 3site: Α 0.6Π 3site: Α 0.8Π 10 3 00 300 400 500 600 M H GeV 10 3 00 300 400 500 600 M H GeV mw = 400 GeV, r =1 case mh < 600 GeV is allowed because gwwh < gwwh SM very loose constraint on α 0.8π ( α 0.8π is prefered for h γγ enhancement)

Model : constraint from S parameter S parameter at tree level two ways to reduce S parameter (i) Heavy W mass αs 4 sin θ W M W M W g W ff g W ff f : SM fermion... but light W seems good for changing Br(h γ γ) we do not consider this case here (ii) small gw ff couplings gw ff = 0 by tuning the mixing angle (ideal delocalization) we consider this case in this talk

W decay mode 1.0 0.8 c 1.0 0.8 a m W = 400GeV, r =1 W' WZ Br W' Br W' 0.6 0.4 0. W' WZ W' hw 0.0 0.0 0. 0.4 0.6 0.8 1.0 Α Π 1.0 0.8 0.6 0.4 0. d W' WZ W' hw 0.0 0.0 0. 0.4 0.6 0.8 1.0 Α Π Br W' 0.6 0.4 0. W' hw 0.0 0.0 0. 0.4 0.6 0.8 1.0 Α Π yellow reasion is consistent with ATLAS and CMS within 1σ W WZ is dominant W hw is subdominant other channels are negligible

σ(gg h)/σ(gg h)sm contributions from top and extra fermions t, t u,d,s,c,b σ(gg h) r σ(gg h) SM cos α 1 sin α +5 m 1 1+r 1+r M + m 1 r cos α 1 1+r sin α +5 1+r 1+r r r cos α 1+r MW MW cos α first two terms : sum of the top and heavy top contritutions last term : contributions from u, d, s, c, and b. m1 /(M + m1 ) : mixing angle in fermion sector. assume ideal delocalization in the second line g W ff g 1 1+r r ( M W M W m 1 = y 1f 1 M ) + y 1 v 4M

partial decay width / SM partial decay width (tree processes) Γ(h f f) Γ(h f f) SM = Γ(h WW) Γ(h WW) SM = ( g ffh gffh SM ( gwwh g SM WWh ) ( ) ( ) r cos α 1 sin α 1 1+r 1+r r 3 ) (1 + r ) cos α 1 sin α 1 3/ (1 + r ) 3/ Γ(h ff) and Γ(h WW) is smaller than the SM

partial decay width / SM partial decay width (loop induced processes) Γ(h gg) Γ(h gg) SM Γ(h γγ) Γ(h γγ) SM r cos α 1 1+r sin α +5 1+r 1+r r r cos α 1 80 1+r sin α 1+r 1+r 47 r MW MW MW MW cos α cos α first two terms: t, t ( and W, W ) contributions last terms: others

Model : Yukawa interaction Yukawa y ij 1 Ψi 0L H 1Ψ j 1R M ij Ψ i 1L Ψj 1R Ψi 1L H ( y ij u 0 0 y ij d )( ) Ψ u j R +(h.c.) Ψ d R i and j : generation indices To avoid FCNC, we assume Minimal Flavor Violation y ij 1 = y 1δ ij, M ij = Mδ ij Flavor structure is determind by yu and yd y1 is constrained by S parameter or gw ff coupling

Model: W ff coupling and mw gw ff ~ 0 is possible by tuning parameter (ideal delocalization) 1+r ( g W ff g 1 r M W ) MW + y 1 v 4M S parameter is OK with light mw A Bonus: direct detection bound is also OK we often see the lower bound on m W ~ TeV this is derived with the following assumptions: gw ff = gwff W is produced via Drell-Yan process therefore constraint is changed if gw ff < gwff

BR / SM BR /SM 1.5 1 ff gg # # Z # WW ZZ 0.5 0 0 0.5 1 1.5.5 3!/" example: mh = 15 GeV, mw = 400 GeV, M = 500 GeV, and r = 1 γγ can be ehnahced.