Seifert forms and concordance

Similar documents
The Concordance Genus of Knots

Some non-trivial PL knots whose complements are homotopy circles

KNOT CONCORDANCE AND TORSION

SPINNING AND BRANCHED CYCLIC COVERS OF KNOTS. 1. Introduction

Whitney towers, gropes and Casson-Gordon style invariants of links

Knots, von Neumann Signatures, and Grope Cobordism

Twisted Alexander Polynomials Detect the Unknot

SIMPLE WHITNEY TOWERS, HALF-GROPES AND THE ARF INVARIANT OF A KNOT. Rob Schneiderman

L 2 ETA INVARIANTS AND THEIR APPROXIMATION BY UNITARY ETA INVARIANTS

Slice Knots. and the Concordance Group

AN EXPLICIT FAMILY OF EXOTIC CASSON HANDLES

arxiv: v3 [math.gt] 14 Sep 2008

SURGERY ON A KNOT IN SURFACE I

Some distance functions in knot theory

Satellites and Concordance

COUNTEREXAMPLES TO KAUFFMAN S CONJECTURES ON SLICE KNOTS

ON THE MAXIMAL NUMBER OF EXCEPTIONAL SURGERIES

KNOTS WITH BRAID INDEX THREE HAVE PROPERTY-P

arxiv: v1 [math.gt] 2 Jun 2015

A NOTE ON QUANTUM 3-MANIFOLD INVARIANTS AND HYPERBOLIC VOLUME

How to use the Reidemeister torsion

arxiv:dg-ga/ v2 7 Feb 1997

Local Moves and Gordian Complexes, II

Polynomials in knot theory. Rama Mishra. January 10, 2012

On orderability of fibred knot groups

arxiv: v1 [math.gt] 27 Dec 2018

HIGHER-ORDER LINKING FORMS FOR KNOTS

Smith theory. Andrew Putman. Abstract

Knot concordance, Whitney towers and L 2 -signatures arxiv:math/ v2 [math.gt] 9 Feb 2004

HEEGAARD FLOER HOMOLOGY AND KNOT CONCORDANCE: A SURVEY OF RECENT ADVANCES. Stanislav Jabuka University of Nevada Reno, USA

3. Signatures Problem 27. Show that if K` and K differ by a crossing change, then σpk`q

STRUCTURE IN THE CLASSICAL KNOT CONCORDANCE GROUP. Tim D. Cochran, Kent E. Orr, Peter Teichner

ALEXANDER-LIN TWISTED POLYNOMIALS

ON SLICING INVARIANTS OF KNOTS

ETA INVARIANTS AS SLICENESS OBSTRUCTIONS AND THEIR RELATION TO CASSON-GORDON INVARIANTS

p-coloring Classes of Torus Knots

arxiv: v1 [math.gt] 5 Aug 2015

LINK COMPLEMENTS AND THE BIANCHI MODULAR GROUPS

Signatures of links in rational homology spheres

PLANAR OPEN BOOK DECOMPOSITIONS OF 3-MANIFOLDS

Title fibring over the circle within a co. Citation Osaka Journal of Mathematics. 42(1)

Betti numbers of abelian covers

NONCOMMUTATIVE LOCALIZATION IN ALGEBRA AND TOPOLOGY Andrew Ranicki (Edinburgh) aar. Heidelberg, 17th December, 2008

arxiv: v1 [math.gt] 24 Feb 2010

DEFINITE MANIFOLDS BOUNDED BY RATIONAL HOMOLOGY THREE SPHERES

When does a satellite knot fiber? Mikami Hirasawa. Kunio Murasugi. Daniel S. Silver

RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES RIMS On self-intersection of singularity sets of fold maps. Tatsuro SHIMIZU.

RIGHT-LEFT SYMMETRY OF RIGHT NONSINGULAR RIGHT MAX-MIN CS PRIME RINGS

arxiv: v1 [math.gt] 14 Apr 2016

AN INJECTIVITY THEOREM FOR CASSON-GORDON TYPE REPRESENTATIONS RELATING TO THE CONCORDANCE OF KNOTS AND LINKS

MAXIMAL NILPOTENT QUOTIENTS OF 3-MANIFOLD GROUPS. Peter Teichner

SIGNATURES OF COLORED LINKS WITH APPLICATION TO REAL ALGEBRAIC CURVES

Section II.2. Finitely Generated Abelian Groups

Three-manifolds and Baumslag Solitar groups

The A-B slice problem

A NOTE ON E 8 -INTERSECTION FORMS AND CORRECTION TERMS

SELF-EQUIVALENCES OF DIHEDRAL SPHERES

A note on graphs and rational balls

A NOTE ON SPLITTING FIELDS OF REPRESENTATIONS OF FINITE

HIGHER-ORDER ALEXANDER INVARIANTS AND FILTRATIONS OF THE KNOT CONCORDANCE GROUP

New symplectic 4-manifolds with nonnegative signature

A NOTE ON STEIN FILLINGS OF CONTACT MANIFOLDS

CONSTRUCTIONS OF SMOOTHLY SLICE KNOTS

All two dimensional links are null homotopic

PSEUDO-ANOSOV MAPS AND SIMPLE CLOSED CURVES ON SURFACES

LONGITUDINAL SURGERY ON COMPOSITE KNOTS

AN ASPHERICAL 5-MANIFOLD WITH PERFECT FUNDAMENTAL GROUP

On boundary primitive manifolds and a theorem of Casson Gordon

The mapping class group of a genus two surface is linear

COBORDISM OF DISK KNOTS

THE VIRTUAL Z-REPRESENTABILITY OF 3-MANIFOLDS WHICH ADMIT ORIENTATION REVERSING INVOLUTIONS

MINIMAL NUMBER OF SINGULAR FIBERS IN A LEFSCHETZ FIBRATION

Homology lens spaces and Dehn surgery on homology spheres

SMALL EXOTIC 4-MANIFOLDS. 0. Introduction

Cosmetic crossing changes on knots

The Classification of Nonsimple Algebraic Tangles

Alexander polynomial, finite type invariants and volume of hyperbolic knots

THE CHARACTERISTIC POLYNOMIAL OF THE MONODROMY

A CHARACTERIZATION OF FOUR-GENUS OF KNOTS

L 2 BETTI NUMBERS OF HYPERSURFACE COMPLEMENTS

ON KIRBY CALCULUS FOR NULL-HOMOTOPIC FRAMED LINKS IN 3-MANIFOLDS

ON LINKING SIGNATURE INVARIANTS OF SURFACE-KNOTS

Rings With Topologies Induced by Spaces of Functions

ON THE CENTER OF THE GROUP OF A LINK

Knot Groups with Many Killers

DETERMINING THE HURWITZ ORBIT OF THE STANDARD GENERATORS OF A BRAID GROUP

Bipartite knots. S. Duzhin, M. Shkolnikov

FACTORING POSITIVE BRAIDS VIA BRANCHED MANIFOLDS

Relationships between Braid Length and the Number of Braid Strands

arxiv:math/ v1 [math.gt] 2 Nov 1999

arxiv:math/ v1 [math.gt] 15 Dec 2005

LIMITING CASES OF BOARDMAN S FIVE HALVES THEOREM

Classification of (n 1)-connected 2n-dimensional manifolds and the discovery of exotic spheres

All roots of unity are detected by the A polynomial

ALGEBRAICALLY TRIVIAL, BUT TOPOLOGICALLY NON-TRIVIAL MAP. Contents 1. Introduction 1

A NOTE CONCERNING THE 3-MANIFOLDS WHICH SPAN CERTAIN SURFACES IN THE 4-BALL

Lecture 17: The Alexander Module II

NONNEGATIVE CURVATURE AND COBORDISM TYPE. 1. Introduction

An obstruction to knots bounding Möbius bands in B 4

QUASI-ALTERNATING LINKS AND POLYNOMIAL INVARIANTS

Transcription:

ISSN 1364-0380 (on line) 1465-3060 (printed) 403 Geometry & Topology Volume 6 (2002) 403 408 Published: 5 September 2002 G G G G T T T G T T T G T G T GG TT G G G G GG T T T TT Seifert forms and concordance Charles Livingston Department of Mathematics, Indiana University Bloomington, IN 47405, USA Email: livingst@indiana.edu Abstract If a knot K has Seifert matrix V K and has a prime power cyclic branched cover that is not a homology sphere, then there is an infinite family of non concordant knots having Seifert matrix V K. AMS Classification numbers Primary: 57M25 Secondary: 57N70 Keywords Concordance, Seifert matrix, Alexander polynomial Proposed: Cameron Gordon Received: 21 August 2001 Seconded: Ronald Stern, Walter Neumann Revised: 21 April 2002 c Geometry & Topology Publications

404 Charles Livingston 1 Introduction Levine s homomorphism ψ: C G from the concordance group of knots in S 3 to the algebraic concordance group of Seifert matrices (defined in [12]) has an infinitely generated kernel, as proved by Jiang [8]. It follows that every algebraic concordance class can be represented by an infinite family of non concordant knots. However, it is also the case that every class in G can be represented by an infinite number of distinct Seifert matrices, so Jiang s result alone tells us nothing about whether a given Seifert matrix can arise from non concordant knots. In fact, all the knots in the kernel of φ identified by Jiang have distinct Seifert forms. Examples of non slice, algebraically slice, knots quickly yield pairs of non concordant knots with the same Seifert matrix. Beyond this nothing has been known regarding the extent to which the Seifert matrix of a knot might determine its concordance class. We prove the following. Theorem 1.1 If a knot K has Seifert matrix V K and its Alexander polynomial K (t) has an irreducible factor that is not a cyclotomic polynomial φ n with n divisible by three distinct primes, then there is an infinite family {K i } of non concordant knots such that each K i has Seifert matrix V K. The condition on the Alexander polynomial seems somewhat technical; we note three relevant facts. First, if the Alexander polynomial of the knot is trivial, K (t) = 1, then K is topologically slice [4, 5]. Second we have: Theorem 1.2 All prime power cyclic branched covers of a knot K are homology spheres if and only if all nontrivial irreducible factors of K (t) are cyclotomic polynomials φ n (t) with n divisible by three distinct primes. All branched covers of K are homology spheres if and only if K (t) = 1. Finally, we note that Taehee Kim [9] has applied the recent advances in concordance theory of [2] to prove that for each n divisible by three distinct primes there is a knot with K (t) = (φ n (t)) 2 for which there is an infinite family of non concordant knots having the same Seifert matrix. A good reference for the basic knot theory in this paper is [17], for the algebraic concordance group [12, 13] are the main references, and for Casson Gordon invariants references are [1, 7]. Remark We have chosen to use Seifert matrices instead of Seifert forms to be consistent with references [12, 13]. A basis free approach using Seifert forms could be carried out identically.

Seifert forms and concordance 405 2 Proof of Theorem 1.1 Unless indicated, all homology groups are taken with integer coefficients. Let F be a Seifert surface for K with associated Seifert matrix V K. View F as a disk with 2g bands added and let {S m } m=1,...,2g, be a collection of unknotted circles, one linking each of the bands. Let K i be the knot formed by replacing a tubular neighborhood of each S m with a copy of the complement of a knot J i, identifying the meridian and longitude of J i with the longitude and meridian of the S m, respectively. The correct choice of the J i will be identified in the proof. Replacing the S m with the knot complements has the effect of adding a local knot to each band of F. The Seifert form of K i is independent of the choice of J i. Applying Theorem 1.2, proved in the next section, we assume the p k fold cyclic branched cover of S 3 branched over K has nontrivial homology. Denote this cover by M(K) and let q be a maximal prime power divisor of H 1 (M(K)). According to Casson and Gordon [1], if K i # K j is slice (that is, if K i and K j are concordant) then for some nontrivial Z q valued character χ on H 1 (M(K i # K j )) the Casson Gordon invariant σ 1 (τ(k i # K j,χ)) = 0. Using the additivity of Casson Gordon invariants (proved by Gilmer [6]), this equality can be rewritten as σ 1 (τ(k i,χ i )) = σ 1 (τ(k j,χ j )) where χ i and χ j are the restrictions of χ to H 1 (M(K i )) and H 1 (M(K j )), respectively. Notice that at least one of χ i and χ j is nontrivial. Furthermore, since according to [1] (see also [6]) the set of characters for which the Casson Gordon invariants must vanish is a metabolizer for the linking form on H 1 (M(K i # K j ),Q/Z), there are such characters for which χ j must be nontrivial. (If the metabolizer was contained in H 1 (M(K i ),Q/Z) then order considerations would show that it equalled this summand, contradicting nonsingularity.) Litherland s analysis [14] of companionship and Casson Gordon invariants applies directly to the case of knotting the bands in the Seifert surface (see also [7])). Roughly stated, there is a correspondence between characters on H 1 (M(K)) and on H 1 (M(K i )); it then follows that the difference of the corresponding Casson Gordon ( invariants is ) determined by q signatures of J i : σ a/q (J i ) = sign (1 ω)v Ji + (1 ω)vj t i where ω = e 2πai/q. More precisely, it follows readily from the results of [14] and iteration that the equality of Casson Gordon invariants for K i and K j is given by ( ) σ 1 (τ(k,χ i )) + l σ al /q(j i ) = σ 1 (τ(k,χ j )) + l σ bl /q(j j ).

406 Charles Livingston The two summations that appear have 2gp k terms in them. The values of the a l are given by the values of χ i on the 2gp k lifts of the circles S m to M(K). Similar statements hold for the b l and χ j. Observe also that since the lifts of the S m generate H 1 (M(K)) (see for instance [17]) and at least one of χ i or χ j is nontrivial, at least one of the a l or b l is nontrivial. A prime power branched cover of a knot is a rational homology sphere and hence H 1 (M(K)) is finite. A short proof of this is given in the next section. Hence, there is only a finite set of characters to consider and σ 1 (τ(k,χ 1 )) lies in a bounded range, say [ N 0,N 0 ]. If we can choose J 1 so that l σ al /q(j 1 ) lies in a range [2N 0 + 1,N 1 ] (for some N 1 and for all possible sums with some a l 0 Z q ) then it would follow that K and K 1 are not concordant. Similarly, by selecting each J i+1 so that the sum lies in the range [2N 0 + N i + 1,N i+1 ] we will have that the equality ( ) cannot hold for any pair i and j and the theorem is proved. The desired J i are constructed by taking ever larger multiples of a knot T for which σ a/q (T) 2 for all a 0 Z q. Such a knot is given in the following lemma, which completes the proof of Theorem 1.1. Lemma 2.1 The (2,q) torus knot T 2,q has σ a/q (T) 2 for all a 0 Z q. Proof The signature function of a knot K, sign ((1 ω)v K + (1 ω)v K ), has jumps only at roots of the Alexander polynomial, and if these roots are simple the jump is either ±2 [15]. The (2, q) torus knot has cyclotomic Alexander polynomial φ 2q with (q 1)/2 simple roots on the upper unit circle in the complex plane. Hence the signature σ 1 (T 2,q ) q 1. On the other hand, this 1 signature is easily computed from the standard rank q 1 Seifert form for T 2,q to be exactly q 1, and so all the jumps must be positive 2. The first of these jumps occurs at a primitive 2q root of unity, so all q signatures must be positive as desired. 3 Proof of Theorem 1.2 We have the following result of Fox [3] and include as a corollary a result used above. Theorem 3.1 If M(K) is the r fold cyclic branched cover of S 3 branched over K, then H 1 (M(K)) = r 1 i=0 K (ζ i r )

Seifert forms and concordance 407 where ζ r is a primitive r root of unity. If the product is 0 then H 1 (M(K)) is infinite. Corollary 3.2 If r is a prime power, then M(K) is a rational homology sphere: H 1 (M(K),Q) = 0. Proof Suppose that r = p k and K (ζr i ) = 0. Then the r cyclotomic polynomial, φ r (t) = (t pk 1)/(t pk 1 1) would divide K (t). But φ r (1) = p while K (1) = ±1. We now proceed with the proof of Theorem 1.2. Proof of Theorem 1.2 According to Riley [16] the order of the homology of the k fold cyclic branched cover of a knot K grows exponentially as a function of k if the Alexander polynomial has a root that is not a root of unity. Hence, we only need to consider the case that all irreducible factors of the Alexander polynomial are cyclotomic polynomials, φ n (t). Using Theorem 3.1, the result is reduced to the case that that K (t) = φ n (t). As in the proof of Corollary 3.2, n cannot be a prime power. An elementary argument using the resultant of polynomials (see for instance [10]) gives p k 1 φ n (ζ i p ) = ((ω k n ) pk 1) i=0 where the second product is taken over all primitive n roots of unity. Let g = gcd(n,p k ) and let m = n/g. One has that ωn pk = ω m for some primitive m root of unity and with a bit of care one sees that the product can be rewritten as (ωm 1) b where now the product is over all primitive m roots of unity and b 1. (Though we don t need it, a close examination shows that if k is greater than or equal to the maximal power of p in n then b = p k p k 1, otherwise b = p k.) If n has three distinct prime factors then m has at least two distinct prime factors and this product is 1 (see for instance [11, page 73]). On the other hand, if n has two distinct prime factors, then by letting p be one of those factors and letting k be large, it is arranged that m is a prime power and the product yields that prime and in particular is greater than 1. This concludes the proof of the first statement of Theorem 1.2.

408 Charles Livingston Finally, suppose that all cyclic branched covers of K are homology spheres. By the above discussion we just need to show that no factor of the Alexander polynomial is φ n (t) for any n. But from Theorem 3.1 we see that if φ n (t) divides the Alexander polynomial then the n fold cyclic branched cover would have infinite homology. This concludes the proof. References [1] A Casson, C Gordon, Cobordism of classical knots, from: A la recherche de la Topologie perdue, (Guillou and Marin, editors) Progress in Mathematics, Volume 62 (1986) originally published as Orsay Preprint (1975) [2] T Cochran, K Orr, P Teichner, Knot concordance, Whitney towers and L 2 signatures, arxiv:math.gt/9908117 [3] R Fox Free differential calculus. III. Subgroups, Ann. of Math. 64 (1956) 407 419 [4] M Freedman, The topology of four dimensional manifolds, J. Differential Geom. 17 (1982) 357 453 [5] M Freedman, F Quinn, Topology of 4 manifolds, Princeton Mathematical Series, 39, Princeton University Press, Princeton, NJ (1990) [6] P Gilmer, Slice knots in S 3, Quart. J. Math. Oxford 34 (1983) 305 322 [7] P Gilmer, C Livingston, The Casson Gordon invariant and link concordance, Topology 31 (1992) 475 492 [8] B Jiang, A simple proof that the concordance group of algebraically slice knots is infinitely generated, Proc. Amer. Math. Soc. 83 (1981) 189 192 [9] T Kim, Filtration of the classical knot concordance group and Casson Gordon invariants, arxiv:math.gt/0207221 [10] S Lang, Algebra, Addison Wesley, Reading, Mass. (1984) [11] S Lang, Algebraic Number Theory, Addison Wesley, Reading, Mass. (1970) [12] J Levine, Knot cobordism groups in codimension two, Comment. Math. Helv. 44 (1969) 229 244 [13] J Levine, Invariants of knot cobordism, Invent. Math. 8 (1969) 98 110 [14] R Litherland, Cobordism of satellite knots, from: Four Manifold Theory, Contemporary Mathematics, (C Gordon and R Kirby, editors) American Mathematical Society, Providence RI (1984) 327 362 [15] T Matumoto, On the signature invariants of a non-singular complex sesquilinear form, J. Math. Soc. Japan 29 (1977) 67 71 [16] R Riley, Growth of order of homology of cyclic branched covers of knots, Bull. London Math. Soc. 22 (1990) 287 297 [17] D Rolfsen, Knots and Links, Publish or Perish, Berkeley CA (1976)