Hence, Consider the linear, time-varying system with state model. y( t) u(t) H(t, )

Similar documents
Control Systems (Lecture note #6)

Improved Exponential Estimator for Population Variance Using Two Auxiliary Variables

Linear System Review. Linear System Review. Descriptions of Linear Systems: 2008 Spring ME854 - GGZ Page 1

MECE 3320 Measurements & Instrumentation. Static and Dynamic Characteristics of Signals

Introduction to Laplace Transforms October 25, 2017

Improved Exponential Estimator for Population Variance Using Two Auxiliary Variables

Dr. Junchao Xia Center of Biophysics and Computational Biology. Fall /21/2016 1/23

Mathematical Statistics. Chapter VIII Sampling Distributions and the Central Limit Theorem

Chap 2: Reliability and Availability Models

Least squares and motion. Nuno Vasconcelos ECE Department, UCSD

Overview. Introduction Building Classifiers (2) Introduction Building Classifiers. Introduction. Introduction to Pattern Recognition and Data Mining

8. Queueing systems. Contents. Simple teletraffic model. Pure queueing system

Lecture 12: Introduction to nonlinear optics II.

DESIGN OF OBSERVER-BASED CONTROLLER FOR LINEAR NEUTRAL SYSTEMS. M. N. Alpaslan Parlakçı

3.4 Properties of the Stress Tensor

Gauge Theories. Elementary Particle Physics Strong Interaction Fenomenology. Diego Bettoni Academic year

Consider a system of 2 simultaneous first order linear equations

An N-Component Series Repairable System with Repairman Doing Other Work and Priority in Repair

EMPIRICAL STUDY IN FINITE CORRELATION COEFFICIENT IN TWO PHASE ESTIMATION

Note 6 Frequency Response

THE STOCHASTIC SEASONAL BEHAVIOR OF THE NATURAL GAS PRICE

Option Pricing in a Fractional Brownian Motion Environment

Exponential Matrix and Their Properties

Almost unbiased exponential estimator for the finite population mean

Anouncements. Conjugate Gradients. Steepest Descent. Outline. Steepest Descent. Steepest Descent

1973 AP Calculus BC: Section I

CHAPTER: 3 INVERSE EXPONENTIAL DISTRIBUTION: DIFFERENT METHOD OF ESTIMATIONS

The Method of Steepest Descent for Feedforward Artificial Neural Networks

The Signal, Variable System, and Transformation: A Personal Perspective

where: u: input y: output x: state vector A, B, C, D are const matrices

Response of LTI Systems to Complex Exponentials

Summary: Solving a Homogeneous System of Two Linear First Order Equations in Two Unknowns

k of the incident wave) will be greater t is too small to satisfy the required kinematics boundary condition, (19)

Chapter4 Time Domain Analysis of Control System

Continous system: differential equations

U1. Transient circuits response

By Joonghoe Dho. The irradiance at P is given by

Major: All Engineering Majors. Authors: Autar Kaw, Luke Snyder

Physics 160 Lecture 3. R. Johnson April 6, 2015

EE Control Systems LECTURE 11

FINITE GROUPS OCCURRING AS GROUPS OF INTEGER MATRICES

Delay-Dependent State Estimation for Time Delay Systems

Instructors Solution for Assignment 3 Chapter 3: Time Domain Analysis of LTIC Systems

Lecture 3 Topic 2: Distributions, hypothesis testing, and sample size determination

Inference on Curved Poisson Distribution Using its Statistical Curvature

COMPLEX NUMBERS AND ELEMENTARY FUNCTIONS OF COMPLEX VARIABLES

Estimating the Variance in a Simulation Study of Balanced Two Stage Predictors of Realized Random Cluster Means Ed Stanek

The far field calculation: Approximate and exact solutions. Persa Kyritsi November 10th, 2005 B2-109

Maarten C.W. Janssen 1,2 Vladimir A. Karamychev 1

15. Numerical Methods

Series of New Information Divergences, Properties and Corresponding Series of Metric Spaces

Comparisons of the Variance of Predictors with PPS sampling (update of c04ed26.doc) Ed Stanek

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018

LECTURE 6 TRANSFORMATION OF RANDOM VARIABLES

Chapter 13 Laplace Transform Analysis

ECEN620: Network Theory Broadband Circuit Design Fall 2014

Final Exam : Solutions

Problem 1: Consider the following stationary data generation process for a random variable y t. e t ~ N(0,1) i.i.d.

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia

The Variance-Covariance Matrix

Algorithms to Solve Singularly Perturbed Volterra Integral Equations

Two-Dimensional Quantum Harmonic Oscillator

Unbalanced Panel Data Models

T h e C S E T I P r o j e c t

Introduction to logistic regression

Almost Unbiased Exponential Estimator for the Finite Population Mean

Solution set Stat 471/Spring 06. Homework 2

A Simple Representation of the Weighted Non-Central Chi-Square Distribution

Akpan s Algorithm to Determine State Transition Matrix and Solution to Differential Equations with Mixed Initial and Boundary Conditions

Chapter 5 The Laplace Transform. x(t) input y(t) output Dynamic System

Total Prime Graph. Abstract: We introduce a new type of labeling known as Total Prime Labeling. Graphs which admit a Total Prime labeling are

TL 043 MODEL OF UNEXPECTED CREDIT RISK OF SUPPLY CHAIN BASED ON CATASTROPHE THEORY ZOU HUIXIA, SONG JIAO

State Observer Design

Fourier Series: main points

On the Existence and uniqueness for solution of system Fractional Differential Equations

(Reference: sections in Silberberg 5 th ed.)

Boyce/DiPrima 9 th ed, Ch 7.6: Complex Eigenvalues

Advanced Engineering Mathematics, K.A. Stroud, Dexter J. Booth Engineering Mathematics, H.K. Dass Higher Engineering Mathematics, Dr. B.S.

QR factorization. Let P 1, P 2, P n-1, be matrices such that Pn 1Pn 2... PPA

Modern Topics in Solid-State Theory: Topological insulators and superconductors

Convolution of Generated Random Variable from. Exponential Distribution with Stabilizer Constant

MAT3700. Tutorial Letter 201/2/2016. Mathematics III (Engineering) Semester 2. Department of Mathematical sciences MAT3700/201/2/2016

Least Squares Fitting (LSQF) with a complicated function Theexampleswehavelookedatsofarhavebeenlinearintheparameters

Chapter 5 Transmission Lines

LIGHT DETECTION AND RANGING (LIDAR) DATA COMPRESSION

Reliability analysis of time - dependent stress - strength system when the number of cycles follows binomial distribution

Chapter 7 Stead St y- ate Errors

CIVL 8/ D Boundary Value Problems - Triangular Elements (T6) 1/8

Transfer function and the Laplace transformation

(A) 1 (B) 1 + (sin 1) (C) 1 (sin 1) (D) (sin 1) 1 (C) and g be the inverse of f. Then the value of g'(0) is. (C) a. dx (a > 0) is

P a g e 5 1 of R e p o r t P B 4 / 0 9

Ruin Probability in a Generalized Risk Process under Rates of Interest with Homogenous Markov Chain Claims

Approximate Integration. Left and Right Endpoint Rules. Midpoint Rule = 2. Riemann sum (approximation to the integral) Left endpoint approximation

Elementary Differential Equations and Boundary Value Problems

Phys Nov. 3, 2017 Today s Topics. Continue Chapter 2: Electromagnetic Theory, Photons, and Light Reading for Next Time

Course 10 Shading. 1. Basic Concepts: Radiance: the light energy. Light Source:

1985 AP Calculus BC: Section I

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120

The Linear Regression Of Weighted Segments

Poisson Arrival Process

Transcription:

Df. h mpul rpo mar of a lar, lumpd, m-varyg ym a mar map H, : RR R rm gv by H, = [h,,, h m, ], whr ach colum h, rpr h rpo of h ym o h mpulv pu u = -, R m, = [ ] occur a h h compo, h m of applcao of h pu ad h obrvao m. Rcall ha f H, for ay gv, ad <, h h ym ocaual. O h ohr had, f H, = for <, h h ym caual. I block dagram form, u H, y Hc, y H, u d Codr h lar, m-varyg ym wh a modl B u, y C D u 95

96 horm: h mpul rpo mar for h abov ym gv by Proof: h rpo of h abov m-varyg ym o a pu u gv by Bu, - =, mpl ha L u = -, =[ ], whr h appar a h h locao, h for =,,,m,.. w pck up h corbuo du o h h pu. Rcall ha, D B C H,,,, D dq q q B q C C u u y, D dq q q B q C u u y,, D B C D dq q q B q C η η y dq q q H, y u

97 If h ym caual, h H, = for >. hu, for ad y =, for <. If u = -, h Hc, H, = C, B + D -, = < If, B, C ad D ar coa marc, h Codr aga h m-vara ym a modl dq q q H, y u, h y D B C H H H,,, u B D C u y

I h -doma, Hc, L X I Y C I I If h ym ally a r,.., =, h Df. h rafr fuco mar of h m-vara a modl gv by Df. h Lvrrr lgorhm. L h polyomal BU C I B D U Y U U C I B D H H L = X Bu X BU I X BU C I B D d I a a b h characrc polyomal of h mar R, h h coffc a, =,,, ca b compud a follow: a N = I, a = - r N = N +a I, a = -/ rn, 98

99 N 3 = N +a I, a 3 = -/3 rn 3,... N = N - +a - I, a = -/ rn, ad N + = = N + a I, whr rm h rac of h mar M. Eampl: L a dyamc ym hav h fdback mar b gv by h, N = I, a = -r = --5 = 5, N =N +a I= + a I = 4 3 3, 7 3 3 6 5 r N r a 4 3 3 I a N N

ad a3 r N3 r 3 3 o mak ur h calculao ar corrc, chck ha N4 N3 a3i Fally, h characrc polyomal of = 3 + 5 + 7 +. Faddv-Lvrrr lgorhm for Compug I - - L dj I R N N N N I d I a a a whr h characrc polyomal of, R h adjo mar of I. Propoo: L {} = I -, whr L {} h Laplac raform opraor. Proof: For h m-vara ca ad u =,,,

L{} - = L{}. Bu, = I, hu L{} = I -. Clarly, = L - {I - }. Cayly-Hamlo horm: L b h characrc polyomal of. h h mpl ha Lkw, or a a a I d I a a a a a a a a I a a a a a

Obrvao : + alo a lar combao of I,,,, -. Obrvao : Evry polyomal of R ca b prd a a lar combao of I,,,, -,.., f = I + + + - -. Furhrmor, f a polyomal f uch ha dgf > dg, h f = q + h, dg h < f = q + h = q. + h = h f dgf > dg, w ca olv for h drcly from,.., L h + + + - -, h f h gvalu of ar dc, h j ca b compud from h lar quao f q h h,,,, Eampl: Calcula f = + 3 wh

h characrc polyomal of = + + = + = = -. L h = +. h h calar polyomal f = + 3, ad f = f- = - + 3- = - = -. Bu, f = f! For h rpad gvalu ca, h oluo procdur modfd a follow: L m m Sc dgh, h coffc j, j =,,,, ca ow b obad from h followg of quao: f l = h l, l =,,, - ; =,,, m. Gog back o h prvou ampl, = ad 9 9 f 3 3 7 h 3

4 W mu olv h quao - = - ad = -7. h mpl ha = -9. Morovr, f = +3 = h = I + = -9I 7 = Suppo aga h gvalu of ar dc. h h paral fraco pao of gv by whr ad h h rdu of mar of Coquly, for 5 7 7 9 R R R R I a a a lm R R R I R L L R I I

5 Eampl: Codr h ym. Oba ug h paral fraco pao mhod wh h ym mar gv by Now, ad h characrc polyomal of h rdu marc ar foud a follow: 3 R I 3 3 3 d I 3 lm lm R R 3 lm lm R R

6 h vr of I- qual o ad h a rao mar of h ym or Suppo ow ha h mar coa rpad gvalu, h h adjo mar R ad may hav commo facor. Codr, for ampl, h mar I L L

7 h, W kow from h Cayly-Hamlo horm ha f h characrc polyomal of h mar, h =. Df. polyomal p uch ha p = calld a ahlag polyomal of h mar. Df. h moc polyomal of la dgr whch ahla h mar calld h mmal polyomal of ad dod by. Suppo g a polyomal of arbrary dgr, h p = g alo a ahlag polyomal of. horm: For vry mar, h mmal polyomal dvd h characrc polyomal. Morovr, = f ad oly f a gvalu of, o ha vry roo of = a roo of =. 3 R I

Proof: If ahla ad f a moc polyomal of mmum dgr ha ahla, h dg dg. By h Euclda algorhm hr polyomal q ad r uch ha = q+ r ad dgr < dg Bu, = = q + r = q + r r =. Howvr, dgr < dg, ad by dfo h polyomal of mmum dgr uch ha = r dvd. h rul mpl ha vry roo of = a roo of = ad hc vry roo of = a gvalu of. If ad f corrpodg gvcor, h = ad = = =. If ha rpad gvalu,,,, j, j,, j =,,,, h for m +m + +m h mmal polyomal ha h rucur m m m 8

9 horm: L R, h whr I h parcular ca, for h a rao mar gv by h ru bcau ˆ m j j j R R R I! lm m j m j m j d R I m j d! m j j j j R { }! m m j j j j j j I R R j L L

Eampl: Codr a dyamc ym wh h mar h Ug h Faddv-Lvrrr algorhm, w g N = I N = N + a I = N 3 = N + a I = 4 5 5, 4, 5 4 d 3 3 a a a I 5 4 4 4 5

So, ad 4 5 4 R N N N3 4 5 R N N N3 I I h ca, h mmal polyomal h am a h characrc polyomal,.., = = 3 + 4 +5 +. h bcau hr ar o cacllao. h vr of I R R I whr h rdu marc ar R d d I N N R I I N N 3 3 3! lm lm d d 5 4 8 3

3 I N N 3 R lm I lm I N N 3 3 3 I N N3 R lm 4I N N 4 4 8 4 hrfor, for, h a rao mar gv by 3 R Codr ow h followg block dagoal R R Â mar ˆ, whr a ogular mlary raformao. h, characrc polyomal h am a ha of h la ampl,.., ˆ

3 I h ca, Bu, provdd ha a ogular ca b corucd. Suppo ha whr ˆ ˆ ˆ J P J J J J J,

4 h whr I h ca, mar ad o b h Jorda caocal form. L hav gvalu,,, p, ach wh mulplcy, =,, p, + + + p =. Suppo ha p dpd gvcor aocad wh h gvalu,,, p. If q = - rak I- =, h J J J J P J!...,,, p

5 h h of gvcor grad by =,,, p form a ba. horm: h gralzd gvcor of aocad wh h gvalu {,, p } ach wh mulplcy, =,,, p, ar larly dpd. Eampl: L. W alrady kow ha = {-, -, -}.,...,,...,,..., p p p 3 I I I I 4 5,...,,...,,..., p p p

6 Clarly, = ad =. Morovr, Clarly, ar wo larly dpd gvcor. Furhrmor, q = - rak I- = 3 - =, ad ad mpl ha h hr gvcor ar larly dpd L u coruc h mlary raformao a follow: 3 5 3 I 4 5 3 I ad I d

7 I ohr word, h w ym mar, Jorda caocal form gv by h mar poal of h quval ym 4 J ˆ J ˆ

h mar poal of h orgal ym hrfor gv by J 5 4 3 Dcr-m Sym: Codr h lar m-vara dcr-m ym k k Bu k, y k C k Du k akg h o-dd Z raform, yld X z z zi zi BU z y z zc zi C zi B D U z h a rao mar gv by k = k = Z - {zzi- - }. h rafr fuco mar of a dcr-m lar dyamc ym dfd by H z C zi B D 8

O h ohr had, h u ampl rpo mar h gv by hk = Z - {Hz}. Df. M R ymmrc f M = M. horm: h gvalu of M = M R ar ral. Proof: L b a gvalu of M ad v rgh gvcor. h Mv = v. Now, f v* h compl cojuga rapo of v, h v*mv = v*v = v*v Bu, v*mv ad v*v ar ral mu b ral, all gvalu of M mu b ral. h ca b vrfd from h fac ha v*mv* = Mv*v = v*m*v = v*m v = v*mv. horm: L M = M R. h hr a orhogoal mar Q = [q q...q ] uch ha M = QDQ or D = Q MQ, whr D a dagoal mar corucd from h gvalu of M, q, =,, h ormalzd vro of gvcor v aocad wh h gvalu of M, =,,,.. q = v / v 9

horm: mar M = M R pov df pov m-df f ad oly f a Evry gvalu of M pov zro or pov. b ll ladg prcpal mor of M ar pov all prcpal mor of M ar zro or pov. c hr a ogular mar N a gular mar N or a m, m < mar N uch ha M = N N. W do pov df m-df by M > f M > M f M. Eampl: Codr h followg mar M: 3 M 3 h M = M, {, } = {4, }. h corrpodg gvcor ar: { v, v },

h ormalzd gvcor ar gv by hrfor, h Q ad D marc ar gv by Sably of Dyamc Sym Dyamc ym ably a vry mpora propry. I abl h rackg of drd gal or h uppro of udrd gal. Sym ably dcrbd hr rm of pu-oupu ably or rm of ral ably., }, { q q Q 4 D

Ipu-oupu Sably: gl pu, gl oupu SISO lar, m-vara LI, couou m dyamc ym boudd-pu, boudd-oupu BIBO abl f ad oly f mpul rpo h aboluly grabl,.., whr M a ral coa. Proof: L h pu u b boudd,.., u k <,. h y boudd. Suppo h o aboluly grabl. h for a caual, lar m-vara ym, wh u = k > ad h >,, wh odcrag vlop. M d h M k d h k d k h d u h d u h y

h oupu gv by For, h mpl ha a, y h u d y k h d h d y o boudd v wh u boudd. hu, h mu b aboluly grabl. horm: SISO LI, couou-m dyamc ym BIBO abl f ad oly f vry pol of rafr fuco H l o h lf-half of h -pla. Proof: L H b a propr raoal fuco of, h f vry pol locad a = - p, p >, ha mulplcy, uch ha m 3

w g H m j j j p ad h mpul rpo gv by, k m m k j j h L H k jl j j p j j!, whch aboluly grabl. Codr a mulpl-pu, mulpl-oupu MIMO, LI, couou-m dyamc ym dcrbd by h mpul rpo mar H = [h j ]. Such a ym BIBO abl f ad oly f, j, h d j K j lravly, a MIMO, LI, couou-m dyamc ym dcrbd by h propr raoal rafr fuco mar H = L{H} = [H j ] BIBO abl f ad oly f vry pol of H j locad o h lf half of h -pla. p 4

w alrady kow, h oluo of h a quao gv by Morovr, h -doma w g Suppo ha h pu dcally zro ad h al a ozro,.., ad h ad ~ ~ Bu~ d X I L H I - - b h ral rafr fuco mar of om couou m LI dyamc ym. h, wh u = ad for om ~ ~ I ~ u ~ or ~ U ~ ~ ~ X I ~ ~ ~ ~ ~ BU ~ k 5

w g ~ ~ ad. h uforcd ym margally abl f ad oly f h pol of H or h gvalu of hav hr zro or gav ral par, ad ho wh zro ral par ar mpl roo of h mmal polyomal of. h uforcd ym aympocally abl f ad oly f all h pol of H all gvalu of l rcly o h lf half of h -pla. ympoc ably alo mpl ha ~ lm ~ Obrvao: h wo cocp dal wh ral ably oly. Eampl: L a uforcd dyamc ym b dcrbd by ~ ~ 6

7 h h pol of H ar locad a = ad = -5/4 ym margally abl. Suppo ow ha h pu mulu ozro ad ha h al codo zro,.., ad h ad Furhrmor, 4 5 4 5 4 5 4 5 H ~ ~. ~ ~ u ~ ~ BU I X d Bu ~ ~ Y C I B D U H U

Clarly, vry pol of H a gvalu of f vry gvalu of ha a gav ral par, h all pol of H l o h lf-half of h -pla h ym dcrbd by ~ ~ ~ Bu~, ~ ~ y C ~ Du~ BIBO abl. Howvr, bcau of pobl pol-zro cacllao, o vry gvalu of a pol of H. Hc, whl h uforcd ym ~ ~ may b uabl, may o! Eampl: Codr a LI dyamc ym dcrbd by h quao u u y 8

I block dagram form, u _ + Σ + + Σ y ~ L ~ ~ u ~ y 9

hu, d I d ym rally uabl. ma h h rafr fuco of h ym gv by H C I B Hc, h mpul rpo whr h u u hrfor, h ym BIBO abl. Howvr, a alrady pod ou, h ym rally uabl bcau of h gvalu a =! 3

3 I fac, Lyapuov ably Codr h followg LI, couou m, uforcd dyamc ym, R. h h ym aympocally abl f vry gvalu of ha a gav ral par. L I L L

3 horm: L = {,, } b h pcrum of. h R{ } <, =,,, f ad oly f for ay gv N = N >, h Lyapuov quao M + M = - N ha a uqu oluo M = M >. Eampl: L h ym mar b dcrbd by h = {-, -, -3}, whch ma ha h ym aympocally abl. L h N = N >, c N = {,, 3}. Solvg h Lyapuov quao, yld 6 6 3 N 3.9.8.8.5.8.5.858 M M

h abov mar M pov df c M = {.8,.5, 3.97}. Dcr-m Sym Sably Codr a SISO dcr-m, caual, LI ym, h f h h u ampl rpo ad u h pu appld o, y k h k u k k h k u k horm: Suppo, u K <, =,,. h a SISO dcr m, caual, LI ym BIBO abl f ad oly f h aboluly ummabl,.., h M horm: L a SISO, dcr-m, caual LI ym b dcrbd by a propr raoal rafr fuco Hz = Z{h}, whr Z h z-raform opraor. h h ym BIBO abl f ad oly f vry pol of Hz ha magud rcly l ha l d h u crcl o h z-pla. 33

horm Iral Sably: uforcd dcr m, LI dyamc ym dcrbd by k k,. I margally abl f ad oly f h gvalu of hav magud l ha or qual o, ad ho qual o ar mpl roo of h mmal polyomal of. I aympocally abl f ad oly f all gvalu of hav magud l ha. Lyapuov Sably horm: ll gvalu of R hav magud l ha f ad oly f for ay gv N = N > h dcr Lyapuov quao M M = N ha a uqu oluo M = M >. Eampl: Codr a dcr-m, LI dyamc ym dcrbd by k k k.5..5 34

h = {-.,.,.5}. Furhrmor, f Q = dag,, 3, h h dcr Lyapuov quao wh N = Q ha h oluo M 7..5.63.5 6..5.63.5 4. M Bu, M = {.753, 4.87, 9.437} M > all gvalu of mu l d h u crcl whch w alrady kw. Df. a = R corollabl ovr [, ] f hr a pu u dfd ovr [, ] uch ha Bu d Df. h a modl d/d = + Bu ad o b corollabl complly corollabl f ad oly f vry a R corollabl. 35

Df. h of all corollabl a h corollabl ubpac. Propoo: h corollabl ubpac a lar ubpac,.., l V R b h corollabl ubpac, h f ad V, h vcor = + V for ay, R. Lmma: For ay gr p >, rak [B B p- B] = rak [B B - B]. Corollary: L Q = [B B - B]. h for ay Col-p [Q], Col-p [Q],.., h colum pac of Q -vara. L rak[q] = p <, U b a p mar who colum form a ba for h colum pac of Q ad l U b a -p mar who colum oghr wh ho of U form a ba for R,.., Col-p [U U ] = R. Propoo: Gv d/d = + Bu, h a raformao [U U ]z =, yld z z B u z z 36

~ ~ p whr rak [ B B B ] corollabl form. p, ad q. kow a h Kalma Proof: Now, U Col-p [Q] ad U ~ ~ ~ [ u u u p] mpl ha ach ~ colum of U a lar combao of h colum of U or U U for a ~ appropra R pp. Each colum U R c h colum of [U U ] ar a ba R ~ ~, hrfor, hr mu marc ad uch ha ~ ~ ~ U U U ~ U U hu, or [ U U ] z Bu [ U U ] z Bu [ U U U U z U U z Bu z z U U Bu ] z Bu 37

By coruco, Col-p [Q] = Col-p [B B - B] Col-p [B], hu, hr a pm mar B uch ha B = U B or B B B U U U U B or B z z u Lmma: h corollably Gramma mar ogular whvr rak [ Q ~ ] = p, whr K ~ Q [ B ~ ~ ~ BB ~ d p B B ] 38

Proof: Suppo ha rak [ Q ~ ] = p ad ha hr v, v R p uch ha v K =, h L c v Kv v B B v d ~ B v c c p, h p v Kv c c d c c d f ad oly f c for [, ]. j Now, f c = for [, ] h d c, j j d Clarly, for j = ad =, c = v B =. For j = ad =, dc d ~ ~ v B v ~ B 39

For j j d c j ~ j v j B d hu, p p v Q v [ B B B ] B B B v v v h mpl ha rak [ Q ~ ] p, whch coradc h hypoh ha rak [ Q ~ ] = p, hc, K ogular. Eampl: Codr h dyamc ym dcrbd by u Clarly, h ym o corollabl, a h pu u ad do o affc. Now, Q B B rak [Q] = ym o corollabl. L U = [ ]. Sc [ ] pa Col-p [Q], h, f U = [ ], h colum of [U U ] pa R. 4

4 Now, ad [U U ] - B = hrfor, h quval ym h Kalma corollabl caocal form dcrbd by horm: h followg am abou corollably ar quval:. h par, B corollabl. Rak [ I- B] = for ach gvalu of 3. Rak [Q] = 4. Rak [ - B] =,.., hr ar larly dpd row fuco of - B for [, ~ ~ ~ ] [ ] [ U U U U u z z

4 5. h mar pov df. Furhrmor, h pu rafr o. Proof: 3, c, B corollabl rak [Q] = rak [B B - B] =. Suppo hr uch ha rak [ I B] <, h hr a v R, v, uch ha, v [ I B] = [v I v B] = v I = ad v B =. Bu, v I = v = w *, a lf gvcor of aocad wh. Now, v Q = [v B v B v - B] = [v B v B - v B]= [ ] = Hc, rak [Q] <, whch coradc h hypoh ha rak [Q] =, hc, 3. h proof ha 3 bacally u h am yp of argum. ˆ d BB K ˆ K B u * * * * * * k k k k k k k w w w w w w v

um ha rak [ - B],.., hr v uch ha v - B =. k d k k Bu, v B v B, k v Q =, whch coradc k d h aumpo ha rak [Q] =. hu, rak [Q] = rak [ - B] =,.., - B ha larly dpd row. Suppo Kˆ o pov df. From h prvou lmma, Kˆ alo o gav df, hu, Kˆ ca oly b gular pov m-df. hrfor, hr v uch ha v Kˆ = v Kˆ v = or v Kˆ v l = -, h v BB vd ˆ v Kv v BB vd h mpl ha h grad. v B = row of B ar larly dpd whch coradc ha rak[ B] =. hrfor, rak [ B] = pov df. ˆK 43

44 Fally, Eampl: Codr h followg lar m-vara dyamcal ym h, d Bu ˆ ˆ ˆˆ BB K d BB d K KK u Q

Hc, rak [Q] = 3 =. Morovr, h pcrum of = {-.43, -.7849 j.37} = {,, 3 }, whch ma ha.5698 rak [ I B] = rak.43.5698 c h hrd colum a lar combao of h fr ad cod colum. Lkw, rak [ I B] = 3, =, 3. 3 Dcr-m Sym L k+ = k + Buk, R ad B R m. Df. a c R corollabl rachabl f ad oly f hr a f N ad a pu quc {u, u,, un-} uch ha f =, h N = c. 45

Eampl: Codr h followg lar hf-vara dcr-m dyamc ym h f = [ ] ad u =, = [ ], a corollabl a bcau ca b rachd o p wh N =. Now, Q B B rak [Q] =!.., ym o complly corollabl. Howvr, h ubpac dcrbd by h ba vcor [ ] corollabl. horm: h followg am abou dcr-m corollably ar quval: k k u k. hr a f d N uch ha k = ca b drv o c = k+n by om pu quc {uk, uk+,, uk+n-}.. c Col-p [Q], Q = [B B - B] 46

47 3. If c ad c Col-p [Q], h hr N uch ha c k ca b drv o c k+n by om pu quc {uk, uk+,, uk+n-}. Pol Placm By Sa Fdback Codr h lar m-vara couou m dyamc ym dcrbd by L u = u c + u r, whr u c h corol gal ad u r h ral rfrc gal. L u c = F b h a fdback corol gal, h h w clod-loop ym. Gv a pr-pcfd ymmrc pcrum of compl umbr, coruc h fdback mar F uch ha + BF =. If h ym udr codrao h corollabl caocal form,.., u B u a a u r B BF

48 h h characrc polyomal gv by Now, f u c = F = [f f ], h ad h clod-loop characrc polyomal gv by +BF = + a - f - + + a - f - + a f. L h drd pcrum b gv by + BF = = { d, d,, d }, h choo F uch ha a a a r r u f a f a Bu BF +BF d

Now, a a a +BF d, d, d, d a f a f a f. h, w qua coffc of qual powr,.. o compu h fdback ga a, d a f,,,,. f a a, d,,,,. W lc h drd clod-loop gvalu d,,,,, accordg o h dg prformac crra, whch ca b pd of rpo of h ym, amou of corol ffor, c. Wh h a modl of h phycal ym o h corollabl caocal form, bu complly corollabl, w ca raform o h corollabl caocal form ug a mlary raformao. 49

5 Gral Sgl Ipu Ca, B corollabl rak [Q] =, Q R Q -. L v b h la row of Q - ad z = V, whr h mlary raformao V gv by h, h w ym gv by Clam : VB = B c = [ ]. Proof:. V v v v c c VV VBu B u z z = z + B B B B VB v v v v v v

5 Bu, c v h la row of Q -. hrfor, VB = B c = [ ]. Clam : VV - = c = Proof: VV - = c V = c V. Now, ] [ ] [ ] [ B B B B B B Q I Q Q v v v v v a a c V V V a a v v v v v v

5 Now, From Cayly-Hamlo, = + a - + + a - + a I =. = -a I a - - - a - v = -a v a - v - - a v -. Hc, h rgh-had d h am a h lf-had d. Clarly, h abov a raformao z = V chag ad B o c ad B c, whr c ad B c ar h corollabl caocal form. c a a a a a a V v v v v v v v v

53 Dg Procdur: raform, B o c, B c g d = { d, d,, d } by F c,.., c + B c F c = Fd F o ha +BF =,.., +BF = V - c +B c F c V = +BF c V F = F c V h fdback ga mar h phycal doma. Eampl: Codr h ym dcrbd by L h drd pcrum b = {-5, -, -5}. Now, Q = [B B B] = u 4 8

Sc Q of full rak, w ca compu vr,...6..6 Q.56..56.4.8.4 Morovr, v.4.8.4 V v.4.68.4 v.4.68.96 Hc, c VV 4 54 5 c 3 5 54 4 ad h pcrum of gv by = {-, -4, -}. L F [ f f f ]. c c3 c c 54

h h clod-loop ym characrc polyomal gv by B F c c c 3 5 fc 54 fc 4 fc3 5 5 3 5 75 5 or 5 f c = 5 f c = -35; 54 f c = 75 f c = -67; 4 f c3 = 5 f c3 = -46. hu, F c = [-46-67 -35] ad F = F c V = [-7.96-8.3-37.96]. Fally, h clod-loop ym gv by, BF Bu r 73.96 7.96 79.3 4 8.3 37.96 7.96 u r ad pcrum +BF = {-5, -, -5}. 55

Obrvably Rvd: Codr h dyamc ym dcrbd by y Bu C Du Df. R obrvabl f ad oly f hr > uch ha h kowldg of y ad u ovr [, ] ad of h ym marc, B, C ad D uffc o drm. Df. h par C, q. complly obrvabl f ad oly f vry R obrvabl. horm: For h ym dcrbd by, h followg ar quval:. h par C, obrvabl C. Rak, for ach gvalu of I 56

57 3. Rak [] =, whr h obrvably mar = 4. Rak [C ] =,.., C ha larly dpd colum ach of whch a vcor-valud fuco of m dfd ovr [, 5. h obrvably Gramma mar ogular >. Eampl: Codr h larzd modl of a orbal all dcrbd by C C C, W C C d u.75

58 h obrvably mar for h ym gv by = Clarly, rak [] = 4. Morovr, = {,, j.5, -j.5}. For = =, rak, y.75.5.75 4 I C

59 Sc Df. Suppo rak [] <, h N[] h uobrvabl ubpac of h a pac. hrfor, f N[] h w cao rcoruc from pu-oupu maurm. Propoo: L N[], h N[]. h uobrvabl ubpac vara..75 C I C

C Proof: If N[], h = C = C = C = = C - = C Now, C C = C = C C C C Bu, = -a - - - a I C = -a C - - - a C = N[]. Propoo: L Im[ ], h ca b rcorucd wh cray from pu-oupu maurm ad Im[ ] calld h obrvabl ubpac of h a pac. Propoo: Each R ha h dcompoo = ob + uob, whr ob Im[ ] ad uob N[]. 6

6 Corollary: R obrvabl f ad oly f uob =. L h mar form a ba for h obrvabl ubpac ad b a mar who colum oghr wh ho of form a ba for R. h z =, rul h Kalma obrvabl form whr z o obrvabl ad z uo uobrvabl,.., h par, obrvabl. u z z z z uo o uo o uo o uo o B B uo o C o z z y o C o

6 Eampl: Codr h dyamc ym dcrbd by h obrvably mar gv by Clarly, h rak of h obrvably mar ym o obrvabl. y u -. 9 9 3 3

L h obrvabl ubpac b dcrbd by = C ad = [ ]. h, h mlary raformao gv by:. pplcao of h mlary raformao rul h quval ym 3.5 zo zo u z uo z uo 5.5 zo y I, z uo whr I a by dy mar ad z. 63

horm: h modl, B, C complly corollabl obrvabl f ad oly f, C, B complly obrvabl corollabl. Proof: If, B, C complly corollabl, h rak [Q] = rak [B B - B] =. Bu, rak B B B = rak [Q ] =, C, B complly obrvabl. 64

C If, B, C complly obrvabl, h rak [] = rak C =. C Now, rak [C C - C ] = rak [ ] =, C, B complly corollabl. Suppo ow ha, C, B complly obrvabl, h rak [ ] qual o B rak B = rak [ ] =. Now, rak [B B - B] = rak [ ] = B mpl ha, B, C complly corollabl. Suppo ow ha, C, B complly corollabl, h rak [Q ] = rak [C C - C ] =. 65

Bu, rak[q ] = rak C C C =, B, C complly obrvabl. Dyamc Obrvr Dg Drmc Ca Codr h calar a modl u y Suppo alo ha h calar,,, u ad y ar kow ad ha =. W would lk o coruc a ma uch ha a cra. L u ad -, h ε ε ε ε If =,.., =, h = rgardl of. If, o h ohr had,, h dpdg o, may or may o go o zro a cra,.., may or may o covrg aympocally o. 66

Mor ralcally, howvr, or y h maurm proporoal o h a. L k y u h, f = - w g ε ε k y ε k k ε ε k ε a f k cho proprly. Suppo ha R, u R m, y R p, ad ha h ym dyamc ar dcrbd by Bu y C h f h par C, obrvabl, w ca aympocally rcoruc wh h obrvr dyamc a maor = K y y Bu K y C Bu KC Ky Bu, whr K R p. 67

Schmacally, h dpcd a follow: wh h choc of obrvr rucur, [ - ] = KC [ - ] ad ordr for a cra, h fdback ga mar K mu b cho uch a way ha h gvalu of KC l rcly o h lf half of h -pla. 68

horm: h par C, complly obrvabl KC ca b arbrarly agd by h propr choc of K. Proof: C, obrvabl, C corollabl by dualy + C K ca b arbrarly agd by proprly choog K. L K = -K, h KC ca b arbrarly agd bcau + C K = KC. Codr h ym ˆ ˆ C u ˆ. From dualy, f h par C, of h orgal ym obrvabl, h h par, C corollabl ad w ca fd a fdback ga mar K ad uˆ K ˆ uch ha h pcrum of KC ca b arbrarly agd,.. C K KC,,. d d d L ˆ ad ˆ B C, h ˆ ˆ ˆ Bˆ u ˆ ad for dg purpo, raform  o ˆc ad ˆB o B ug h raformao ˆc ˆ Vˆ z, 69

whr V v ˆ v v ˆ ad v h la row of h vr of ˆ ˆ ˆ ˆ ˆ Q B B Bˆ. Spcfcally, z ˆ = V VV ˆ zˆ VBˆu = ˆ zˆ Bˆ u or ˆ ˆ ˆ c c z ˆ = ˆ ˆ ˆ ˆ ˆ ˆ cz Bcu = z u. a a a a u ˆ z ˆ z ˆ, h L = -K = - kc, kc, kc, 7

z ˆ= z ˆ. a kc, a kc, a kc, a kc, Now, hu, ˆ ˆ B K d d d c c c a a a a, d, d, d, d a k a k a k a k c, c, c, c, a k a k a a c, d c, d a k a k a a c, d c, d a k a k a a c, d c, d 7

h, K K V ad w ca mplm h maor c ˆ KC Ky Bu Eampl: Codr h couou-m lar m-vara ym dcrbd by u y. h h a maor dcrbd by K y y u. y 7

Now, I ad d I d d 3.73.73 Furhrmor, 3 Q 4 B B B 6 ad d Q rak Q 3, C C C ad d 4 rak 3 73

Whch ma ha h ym complly corollabl ad obrvabl. Codr h ym ˆ ˆ ˆ ˆ Bu ˆ = ˆ C uˆ ˆ uˆ. h ˆ ˆ ˆ ˆ ˆ ˆ Q B B B C C C, whch mpl ha h ym corollabl bcau h par C, obrvabl. L u coruc h raformao V v ˆ v ˆ v, whr v h la row of ˆQ,.. 74

vqˆ v v v 3 v v3 v v v3 v v v3 Solvg h 3 mulaou quao vv3, v v v3 ad v v v3, yld Hc, v.5.5.5.. V.5.5.5.5 3 4 ad V 4 4 4. W ca aly how ha ˆ zˆ VV z ˆ + VBu ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ cz Bcu z u. 3 75

ˆ ˆ z, ˆ h L u Kc z kc,3 kc, kc, ˆ ˆ c Bc Kc. kc,3 kc, kc, 3 Suppo,, 3 d C K KC. h ˆ 3 ˆ B K c c c 3 6 6 mpl ha 3 k c, 6, kc,, ad k c,3 6 3 k k k 3 c, c, c,3 or ha 4 9 K. Fally, c K.5.5.5 Kc V 3 4 4 9.5 4 54.5 3 ad K 4 54.5 3. Oc aga, o ca aly how ha KC, 3. 76

Prformac Evaluao: h followg fgur how how wll h a maor rack h orgal ym a wh.5. : u,.. ad 77

78

79

8

8 Eampl: Oba a full-ordr a maor for h d ordr ym y = [ ] uch ha h drd maor pcrum KC = {-5, -5}. =, rak [] = ym obrvabl. Now, h phycal ym pcrum = {-, } ym uabl. u C C

8 L h, ad KC = + k + k = +5 = + + 5 k = 5, or k = 6 ad k =. Hc, L h al codo of h a maor b ad l h rfrc pu b a p pu,... h, h prformac of h a maor how h followg fgur: u y k k ε ε ε ε k k k k k k. 6 K., r u u

.7 Full Sa Emaor.6.5 a.4.3.....3.4.5.6.7.8.9 m c 83

.4 Full Sa Emaor. a.8.6.4....3.4.5.6.7.8.9 m c 84

85 Fdback From Sa Ema: L a lar m-vara dyamc ym b dcrbd by L h ym dcrbd by b corollabl ad obrvabl, h, f h a varabl ar o avalabl for fdback, w ca dg a a maor ad fdback h ma lu of h acual a varabl. L h pu gal b gv by h h clod-loop ym gv by ad h a maor ow dcrbd by. F r u u B BF r u F B C K r u y u y u D C B

I block dagram form, h compl ym how blow u r + S u Dyamc Sym y - F Emaor h calld h corollr-maor cofgurao. 86

87 I ca b how ha h abov ym ha h am gvalu ad h am rafr fuco a h ym wh pu gal corol + rfrc gal I augmd form, Codr h followg ogular mlary raformao F r u u r C B B BF KC KC BF y u ε I I I

h, h w quval ym gv by BF ε y ε C BF KCε B u r o how ha h maor do o affc h locao of h gvalu of h orgal a fdback ym, w calcula h augmd ym rafr fuco. L ovrall BF BF, KC B ovrall B ad C ovrall C. h, Y C ovrall I B U, ovrall ovrall 88

89 whr So, Whch ablh ha h rafr fuco of h orgal clod-loop ym do o chag wh h roduco of h a maor h loop. Eampl: Codr h am ym of h la ampl. h ym uabl wh gvalu a - ad. L h drd clod-loop ym hav gvalu a - j,.., h drd characrc polyomal gv by KC I KC I BF BF I BF I I ovrall. U H BU BF C I Y d d 8 4 f f f f BF I j j BF

h mpl ha f = 9 ad f = 4. L u ow apply h fdback corol bad o h ma rahr ha o h acual valu of h a,.., u h, h prformac of h maor-bad clod-loop ym how h followg fgur wh h rfrc pu a u p ad h al valu of h ym a ad ha of h maor ar rpcvly. 9 4 u..5, ad. r 9

Sym wh mad a fdback corol.6 Emaor a fdback corolld ym wh u p rfrc pu.4. a ad -. -.4 -.6 -.8 -.5.5.5 3 3.5 4 4.5 5 m c 9

Sym wh acual a fdback corol.6 Sa fdback corolld ym wh u p rfrc pu.4. a ad..8.6.4. -..5.5.5 3 3.5 4 4.5 5 m c 9

Fdback Corol Dg for Mulpl-Ipu Lar m Ivara Sym L a op-loop lar m-vara dyamc ym b dcrbd by d d m Bu,, u. Suppo h ym complly corollabl. h a fdback ga mar F ca b foud, uch ha h applcao of h pu u F u rul a clod-loop ym r d d BF Bu,, u r m ha aympocally abl. Now, h characrc polyomal of h clod-loop ym gv by BF I BF. d 93

Problm Sam: Fd h fdback ga mar uch ha h quao afd by d d BF d I BF *,,,,. d d d d If quao * ru, h hr a ozro vcor v uch ha Equvally, I BF v # d BF v d v ay ha v a gvcor of h clod-loop ym mar h drd clod-loop gvalu d. BF aocad wh 94

Equao # ca b rwr a v di B Fv m. + h ag, boh v ad F ar ukow. Df h ukow vcor m w a w v Fv. h h problm ca b olvd by fdg h of vcor ha afy quao +, amly, I B d m w. w pobly mor ha o h quval o compug h ull pac of I d B. If a uffc umbr of larly dpd vcor foud, h a fdback ga mar F ca b obad. 95

No ha h fr lm of w corrpod o h lm of h vcor v ad h rmag m lm of w corrpod o h lm of h vcor Fv. Now, h ull pac of I d B ha mamal dmo m, amly, dcrbd by a of m larly dpd colum of a mar U d wh dmo m m, ohr word, U w w w. d m L w j v j zj, h v v vm V d U d,,,, z z z Z m d, whr zj Fv j. 96

Hc, F ca b foud by olvg h mar quao F V V V Z Z Z d d d d d d. @ Sc m, h ym of quao @ ovrdrmd ad cao b olvd drcly. Howvr, f h ym, B complly corollabl, a of larly dpd colum, o for ach d, ca b foud ach of h marc V d V d V d ad Z Z Z d d d h lcd colum from h lf-had d V V V mar G ad h lcd colum from h rgh-had d Z Z Z d d d d d d, rpcvly. L b h b h mar H, h FG H, or F HG a fdback ga mar ha rul h drd of clod-loop gvalu,,,. d d d d h F mar ju compud o uqu, c h colum of boh marc G ad H ar lcd arbrarly, wh h oly rqurm ha h of colum b larly dpd. hu, may oluo. 97

Eampl: L h dyamc of a couou-m LI ym b dcrbd by d d 3 u. h op-loop ym ha gvalu ad 3 ym op-loop uabl. L h of drd clod-loop gvalu b, 3, 5. Now, d d d d di B d 3. If d 3, d 3 d 3 6 3 I B dcrbd by h mar ad h ull pac of 3.53..54.635 U 3 9.4894.399 9.84 9.86 3 3. 98

If d 5, d 5 d 3 8 5 I B dcrbd by ad h ull pac of.95 4.84 3.9.389 U 5 9.86 7.754.487 9.9 4 3 3. L u coruc G ad H by lcg h fr colum of U 3 ad U 5,.. G 3.53.95.54 3.9 3 4 ad H 9.4894 9.86 9.84.487 3 3. Boh G ad H hav rak, whch ma ha h vr of G. hu, 6 67.3 F HG 3 4.7388 5.5 ad BF 3, 5. 99

L u coruc G ad H by lcg h cod colum of U 3 ad U 5,.. G. 4.84.635.389 ad H.399 7.754 9.86 9.9 3. Boh G ad H hav rak, whch ma ha h vr of G. hu, F 3.9 9.483 HG 8.768.39 ad BF 3, 5. hr ar may mor fdback ga marc F ha could b compud from lcg dffr colum of U 3 ad U 5 or lar combao of hm o coruc h marc G ad H. a coquc, hr ar vral mhodolog o lc marc G ad H o afy dffr dg crra. For ampl, Malab u a mhod whch lc a fdback ga mar F for a gv drd of gvalu dcrbd by,,, uch ha h clod-loop ym robu rm of rducg h d d d d vy problm aocad wh larg ga.

Robu Pol Placm for Mulpl-Ipu Sym m Gv ral marc, B,, B ad a ymmrc of drd clod-loop gvalu,,,, d d d d d, fd a ral mar gvalu of BF ar a v o prurbao a pobl. F m uch ha h L ad y,,,,, b h rgh ad lf gvcor of h clod-loop ym mar M BF aocad wh h gvalu d, amly, M, y M y. d d If M o-dfcv ha a full of larly dpd gvcor, h M dagoalzabl. Morovr, h vy of h gvalu d o prurbao h compo of, B, ad F dpd o h magud of h codo umbr c, whch dfd a c y, y

whr h vy of gvalu d, whch dfd a h co of h agl bw h rgh ad lf gvcor corrpodg o d. boud o h v of h gvalu gv by whr c k X X X ma, k X h codo umbr of h mar X of gvcor. Furhrmor, h codo umbr achv h mmum valu of for all,,,,, f ad oly f M a ormal mar,.. M M MM. I h ca h gvcor of M may b cald o gv a orhoormal ba for mar X prfcly codod wh k X., ad h h L u ow r-a h robu pol placm problm a follow: Gv ral marc m, B,, B ad a ymmrc of drd clod-loop gvalu d,,,, d d d d afy h quao, fd a ral mar F m ad a o-gular mar X ha BF X XD,

whr D dag,,, d d d robu of h gproblm opmzd. horm: Gv D dag d, d,, d whch a oluo o BF X XD f ad oly f whr B U U U m ad gv by U, uch ha om maur of h codog or ad X o-gular, h hr F Z m U X XD, wh U U U, ad Z a orhogoal mar wh mm o-gular mar. h F plcly F Z U XDX. 3

Proof: If B of full rak, h ach colum of B a lar combao of h colum of U ad Z o-gular. Now, BF X XD ca b rwr a BFX XD X. Po mulplyg boh d of h la quao by L u ow pr-mulply h la quao by h lf had d qual o BFX XD X X BF XDX. U,.. U BF U XDX. Z Z ZF U BF U U F F. X, yld h rgh had d qual o U XDX XDX U U XDX. U U XDX 4

Hc, ad or F Z U XDX ZF U XDX U XDX. Now, BF XDX mpl ha F f ad oly f XDX B U Im Im Im. Hc, ImXDX NullB ImU. Corollary: h gvcor of h clod-loop ym mar BF aocad wh drd gvalu d dmo m mu blog o h pac S Null U I k, whr k dm Null d B d di. of d 5

h robu pol placm problm rduc o h problm of lcg larly dpd vcor S,,,, BF X XD a wll-codod a pobl. uch ha h gproblm Wh h par B, complly corollabl,, ad h mulplcy of h drd gvalu d cao cd m, c h mamum umbr of dpd gvcor whch ca b cho o corrpod o d k d d qual o dm S m. horm: h fdback ga mar F ad h zro-pu u r or u r k a rpo or k of h clod-loop couou- or dcr-m ym d BF or k BF k wh al valu, afy h d qual F ma d k X, whr m B B B m m ad k X ma d k or k k X d ma. 6

Eampl: Codr aga h cod-ordr ym of h la ampl,.. d d 3 u, wh drd gvalu, 3, 5. d d d Malab mplm h mhodology o compu h fdback ga mar F ju dcrbd ad u h commad K=plac,B,p, whr p a vcor ha coa h drd gvalu,,, ad K F. d d d Ug h abov Malab commad wh p = [-3, -5], w g h fdback ga mar K 3 8 or F 3 8 ad BF 3, 5. 7

PPENDIX Sgular valu dcompoo SVD L H R m ad df M H H R. h M = M. L r b h oal umbr of pov gvalu of M, h w may arrag hm uch ha r r L p = m{m, }, h h { r > = r+ = = p } calld h gular valu of H, whr ad r = rakh. Eampl: L a rcagular mar H b gv by H 4 8

9 h Now, di M = - 3 + 5 gvalu M = {5, 5} ad h gular valu of H ar h quar roo of h gvalu of M,.., {5, 5}. Eampl: L H ow b dcrbd by h ad 8 8 9 H H M 4 H 4 6 H H M 5 6 4 6 d d M I

whch mpl ha h of gvalu of M {6, 5, } gular valu of H ar {4,5}, c m{m, } = m{, 3} =. lo, rakh =. horm: L H R m, h H = RSQ wh R R = RR = I m, Q Q = QQ = I, ad S R m wh h gular valu of H o ma dagoal ad uch ha Q H HQ = D = S S wh D a dagoal mar wh h quard gular valu of H o ma dagoal. Eampl: L H b gv by 4 H h h gvalu of M = H H {6, 5, } gv r o h ormalzd gvcor q~ ~ q 5 5 ~ q 3 5 5

hu, Q q ~ q~ q ~ 3 5 5 5 5 S 4 4 HQ 5 5 5 5 5 S S 4 6 4 5 5 5 3