arxiv: v1 [math.co] 15 Dec 2015

Similar documents
Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes.

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008

Planar Upward Drawings

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem)

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1.

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph

Garnir Polynomial and their Properties

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example

0.1. Exercise 1: the distances between four points in a graph

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

Constructive Geometric Constraint Solving

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem)

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013

Trees as operads. Lecture A formalism of trees

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality:

CSC Design and Analysis of Algorithms. Example: Change-Making Problem

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s?

Numbering Boundary Nodes

CS 461, Lecture 17. Today s Outline. Example Run

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017

Present state Next state Q + M N

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp

COMP108 Algorithmic Foundations

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12

Similarity Search. The Binary Branch Distance. Nikolaus Augsten.

1 Introduction to Modulo 7 Arithmetic

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review

Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk

QUESTIONS BEGIN HERE!

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

Section 10.4 Connectivity (up to paths and isomorphism, not including)

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths

Discovering Pairwise Compatibility Graphs

A 43k Kernel for Planar Dominating Set using Computer-Aided Reduction Rule Discovery

Chapter 9. Graphs. 9.1 Graphs

1. Determine whether or not the following binary relations are equivalence relations. Be sure to justify your answers.

arxiv: v1 [cs.ds] 20 Feb 2008

QUESTIONS BEGIN HERE!

NP-Completeness. CS3230 (Algorithm) Traveling Salesperson Problem. What s the Big Deal? Given a Problem. What s the Big Deal? What s the Big Deal?

12. Traffic engineering

CS 241 Analysis of Algorithms

On Local Transformations in Plane Geometric Graphs Embedded on Small Grids

SOLVED EXAMPLES. be the foci of an ellipse with eccentricity e. For any point P on the ellipse, prove that. tan

Complete Solutions for MATH 3012 Quiz 2, October 25, 2011, WTT

Computational Biology, Phylogenetic Trees. Consensus methods

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata

EE1000 Project 4 Digital Volt Meter

arxiv: v1 [math.mg] 5 Oct 2015

Section 3: Antiderivatives of Formulas

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths.

Announcements. These are Graphs. This is not a Graph. Graph Definitions. Applications of Graphs. Graphs & Graph Algorithms

TOPIC 5: INTEGRATION

Register Allocation. Register Allocation. Principle Phases. Principle Phases. Example: Build. Spills 11/14/2012

This chapter covers special properties of planar graphs.

Designing A Concrete Arch Bridge

O n t h e e x t e n s i o n o f a p a r t i a l m e t r i c t o a t r e e m e t r i c

Steinberg s Conjecture is false

Solutions to Homework 5

5/7/13. Part 10. Graphs. Theorem Theorem Graphs Describing Precedence. Outline. Theorem 10-1: The Handshaking Theorem

Can transitive orientation make sandwich problems easier?

The University of Sydney MATH 2009

DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Leslie Rogalski

Research Article On the Genus of the Zero-Divisor Graph of Z n

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA.

Multipoint Alternate Marking method for passive and hybrid performance monitoring

A 4-state solution to the Firing Squad Synchronization Problem based on hybrid rule 60 and 102 cellular automata

Analysis for Balloon Modeling Structure based on Graph Theory

MULTIPLE-LEVEL LOGIC OPTIMIZATION II

Witness-Bar Visibility Graphs

FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, *

Uniform 2D-Monotone Minimum Spanning Graphs

A Simple Code Generator. Code generation Algorithm. Register and Address Descriptors. Example 3/31/2008. Code Generation

Graph Contraction and Connectivity

A comparison of routing sets for robust network design

Chapter 18. Minimum Spanning Trees Minimum Spanning Trees. a d. a d. a d. f c

Walk Like a Mathematician Learning Task:

Problem solving by search

Seven-Segment Display Driver

Generalized swap operation for tetrahedrizations

(a) v 1. v a. v i. v s. (b)

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x)

Fundamental Algorithms for System Modeling, Analysis, and Optimization

a b c cat CAT A B C Aa Bb Cc cat cat Lesson 1 (Part 1) Verbal lesson: Capital Letters Make The Same Sound Lesson 1 (Part 1) continued...

Greedy Algorithms, Activity Selection, Minimum Spanning Trees Scribes: Logan Short (2015), Virginia Date: May 18, 2016

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals

Transcription:

On th Plnr Split Thiknss of Grphs Dvi Eppstin, Philipp Kinrmnn, Stphn Koourov, Giuspp Liott, Ann Luiw, Au Mignn, Djyoti Monl, Hmih Vosoughpour, Su Whitsis 8, n Stphn Wismth 9 rxiv:.89v [mth.co] D Univrsity of Cliforni, Irvin, USA. ppstin@ui.u FrnUnivrsität Hgn, Grmny. philipp.kinrmnn@frnuni-hgn. Univrsity of Arizon, USA. koourov@s.rizon.u Univrsità gli Stui i Prugi, Itly. giuspp.liott@unipg.it Univrsity of Wtrloo, Cn. {luiw,hvosough}@uwtrloo. Univrsit. Grnol Alps, Frn. u.mignn@img.fr Univrsity of Mnito, Cn. jyoti@s.umnito. 8 Univrsity of Vitori, Cn. su@uvi. 9 Univrsity of Lthrig, Cn. wismth@ulth. Astrt. Motivt y pplitions in grph rwing n informtion visuliztion, w xmin th plnr split thiknss of grph, tht is, th smllst k suh tht th grph is k-splittl into plnr grph. A k-split oprtion sustituts vrtx v y t most k nw vrtis suh tht h nighor of v is onnt to t lst on of th nw vrtis. W first xmin th plnr split thiknss of omplt n omplt iprtit grphs. W thn prov tht it is NP-hr to rogniz grphs tht r -splittl into plnr grph, n show tht on n pproximt th plnr split thiknss of grph within onstnt ftor. If th trwith is oun, thn w n vn vrify k-splittlity in linr tim, for onstnt k. Introution Trnsforming on grph into nothr y rptly pplying n oprtion suh s vrtx/g ltion, g flip or vrtx split is lssi prolm in grph thory []. In this ppr, w xmin grph trnsformtions unr th vrtx split oprtion. Spifilly, k-split oprtion t som vrtx v insrts t most k nw vrtis v, v,..., v k in th grph, thn, for h nighor w of v, s t lst on g (v i, w) whr i [, k], n finlly lts v long with its inint gs. W fin k-split of grph G s grph tht is otin y pplying k-split to h vrtx of G t most on. W sy tht G is k-splittl into G k. If G is lss of grphs, w sy tht G is k-splittl into grph of G (or k-splittl into G ) if thr is k-split of G tht lis in G. W introu th G split thiknss of grph G s th minimum intgr k suh tht G is k-splittl into grph of G. Grph trnsformtion vi vrtx splits is importnt in grph rwing n informtion visuliztion. For xmpl, ssum tht w wnt to visuliz th sust rltion mong olltion S of n sts. Construt n n-vrtx grph G with vrtx for h st n n g whn on st is sust of nothr. A plnr rwing of this grph givs

D. Eppstin t l. {A,B,D} {A,B,C,D} {C,D,E} {C} {B,C,D} {A,C,D} {D} {C} {A} {A,B,D} {A,C,D,E} {D} {C,D,E} {A,B,C} () () Fig.. () A -split visuliztion of sust rltions mong sts. () Visuliztion of soil ntwork. Not th yllow lustrs t th lowr lft of th mp. ni visuliztion of th sust rltion. Sin th grph is not nssrily plnr, nturl pproh is to split G into plnr grph n thn visuliz th rsulting grph, s illustrt in Figur (). Lt s now onsir nothr intrsting snrio whr w wnt to visuliz grph G of soil ntwork, s Figur (). First, group th vrtis of th grph into lustrs y running lustring lgorithm. Now, onsir th lustr grph: vry lustr is no n thr is n g twn two lustr-nos if thr xists pir of vrtis in th orrsponing lustrs tht r onnt y n g. In gnrl, th lustr grph is non-plnr, ut w woul lik to rw th lustrs in th pln. Thus, w my n to split lustr into two or mor su-lustrs. Th rsulting lustr mp will onfusing if lustrs r rokn into too mny isjoint pis, whih ls to th qustion of minimizing th plnr split thiknss. Rlt Work. Th prolm of trmining th plnr split thiknss of grph G sms to rlt to th grph thiknss [], mpir-mp [] n k-splitting [] prolm. Th thiknss of grph G is th minimum intgr t suh tht G mits n g-prtition into t plnr sugrphs. On n ssum tht ths plnr sugrphs r otin y pplying t-split oprtion t h vrtx. Hn, thiknss is n uppr oun on th plnr split thiknss,.g., th thiknss n thus th plnr split thiknss of grphs with trwith ρ n mximum-gr- is t most ρ/ [] n [], rsptivly. Anlogously, th plnr split thiknss of grph is oun y its roriity, tht is, th minimum numr of forsts into whih its gs n prtition. W will ltr show tht oth prmtrs lso provi n symptoti lowr oun on th plnr split thiknss. A k-pir mp is k-split plnr grph, i.., h mpir onsists of t most k vrtis. In 89, Hwoo [] prov tht vry mutully jnt mpirs n rwn s -pir mp whr h mpir is ssign xtly two rgions. Ltr, Ringl n Jkson [9] show tht for vry intgr k st of k mutully jnt mpirs n rwn s k-pir mp. This implis n uppr oun of n/ on th plnr split thiknss of omplt grph on n vrtis. A rih oy of litrtur onsirs th plnriztion of non-plnr grphs vi vrtx splits [,,,], ut inst of minimizing th plnr split thiknss, ths rsults

On th Plnr Split Thiknss of Grphs fous on minimizing th totl numr of splits. Not tht uppr ouning th splitting numr, i.., th numr of totl vrtx splits, os not nssrily gurnt ny goo uppr oun on its plnr split thiknss. Knur n Ukrt [] stui th fol ovring numr tht is quivlnt to our prolm n stt svrl rsults for splitting grphs into str forsts, trpillr forsts, or intrvl grphs,.g., plnr grphs r -splittl into str forst, n plnr iprtit grphs s wll s outrplnr grphs r -splittl into str forst or trpillr forst. It follows from Shrinrmnn n Wst [] tht plnr grphs r - splittl into intrvl grphs n -splittl into trpillr forst, whil outrplnr grphs r -splittl into intrvl grphs. Our Contriution. In this ppr, w xmin th plnr split thiknss for non-plnr grphs. Initilly, w fous on splitting th omplt n omplt iprtit grphs into plnr grphs. W thn prov tht it is NP-hr to rogniz grphs tht r -splittl into plnr grph, whil w sri thniqu for pproximting th plnr split thiknss within onstnt ftor. Finlly, for oun trwith grphs, w prsnt thniqu to vrify k-splittlity in linr tim, for ny k O(). Plnr Split Thiknss of K n n K m,n In this stion, w fous on th plnr split thiknss of K n n K m,n, n on grphs with mximum gr. Unlss othrwis stt, y t-splittl grph w not grph with plnr split thiknss t.. Complt Grphs Lt f(g) th plnr split thiknss of th grph G. Rll tht Ringl n Jkson [9] show tht f(k n ) n/ for vry n. Sin (n/)-split grph ontins t most n / gs, n th lrgst omplt grph with t most n / gs is K n, this oun is tight. Bsis, for vry n <, it is strightforwr to onstrut -split grph of K n y lting ( n) vrtis from th -split grph of K. Hn, w otin th following thorm. Thorm (Ringl n Jkson [9]). If n, thn f(k n ) =, n if n, thn f(k n ) =. Othrwis, f(k n ) = n/. Lt K ny -split grph of K. Thn, K xhiits som usful strutur, s stt in th following lmm. Lmm. Any plnr ming Γ of K is tringultion, whr h vrtx of K is split xtly twi n no two vrtis tht orrspon to th sm vrtx in K n ppr in th sm f. Proof. K hs gs. Th -split oprtion ouls th numr of vrtis n prsrvs th numr of gs, so ny grph K hs vrtis n gs, th

D. Eppstin t l. 8 f f 9 8 9 9 g g 8 8 f f 9 Fig.. Th -split grphs of K,, K, n K,8. For lrgr vrsions, s Figurs, n 8 in Appnix A lrgst possil for -vrtx plnr grph y Eulr s formul. Thrfor, if K is plnr, it must mximl plnr, with ll fs tringls. If two opis of th sm vrtx ppr on f, thn thos opis woul not jnt n tht f oul not tringl. Lt H th grph onsisting of opis of K tth t ommon vrtx v. Thn, H provis n xmpl of grph tht is not -splittl vn though its g ount os not prlu its possiility of ing -splittl. Lmm. Th grph H is not -splittl. Proof. Consir -split grph H of on opy of K. By Lmm., th vrtis v n v in H tht orrspon to th sm vrtx in K nnot ppr in th sm f. Sin v n split only on, th -split grph H of th othr opy of K must li insi som f tht is inint to ithr v or v. Without loss of gnrlity, ssum tht it is inint to som f inint to v. Not tht oth H n H n opy of v in som f whih is not inint to v. Sin oth H n H r tringultions, this woul introu rossing in ny -split grph of H.. Complt Biprtit Grphs Hrtsfil t l. [] show tht th splitting numr of K m,n, whr m, n, is xtly (m )(n )/. Howvr, thir onstrution os not gurnt tight ouns on th splitting thiknss of omplt iprtit grphs. For xmpl, if m is n vn numr, thn thir onstrution os not uplit ny vrtx of th st A with m vrtis, ut uss n+(m/ )(n ) vrtis to rprsnt th st B of n vrtis. Thrfor, t lst on vrtx in th st B is uplit t lst (n + (m/ )(n ))/n = m/ m/n + /n tims, for m n n. On th othr hn, w show tht K m,n is -splittl in som of ths ss, s stt in th following thorm. Thorm. Th grphs K,, K,, n K,8 r -splittl, n thir -split grphs r qurngultions, whih implis tht for omplt iprtit grphs K m,n, whr m =,,, thos r th lrgst grphs with plnr split thiknss.

On th Plnr Split Thiknss of Grphs Proof. Th suffiiny n osrv from th -split onstrution of K,, K,, n K,8, s shown in Figur. A plnr iprtit grph n hv t most n gs []. Sin th grphs K,, K, n K,8 ontin xtly (m + n) gs, thir -split grphs r qurngultions, whih in turn implis tht th rsult is tight. Th following thorm givs nssry onition for omplt iprtit grph to k-splittl s on th g ount rgumnt. Thorm. If k + k n n > 8k+, thn K n, n is not k- splittl. Proof. Not tht ny k-split grph H k of K n,m must plnr iprtit grph. Thrfor, if p n q r th numr of vrtis n gs in H k, rsptivly, thn th inqulity q p hols. Consir omplt iprtit grph K n, n tht is k-splittl. Th numr of gs in this grph is n ( n). Sin ny k-split grph of K n, n n hv t most k vrtis, w hv n( n) k n n + k () Th ftoriztion of th prvious polynomil () givs ( n n + k = n ) ( 8k + n + ) 8k +, whn k + k. Thrfor, Eqution () hols if n 8k+ or n + 8k+. Thorm hs th following onsquns. Corollry. If k < mn+ m+n, thn K n,m is not k-splittl. On n vrify this from Eqution () tht givs k n +n+ Corollry. If n k, thn K n,n is not k-splittl. = mn+ m+n. To vrify this, osrv tht K n,n hs = n vrtis n Eqution () givs n n(n)+k(n) = n +kn = (n k k )(n k+ k ). This onstrint os not hol whn n > k + k. Furthrmor, k > k + k, whih omplts th proof. Corollry. K k+,k +k is not k-splittl. To vrify this, osrv tht if n = k +, thn y Eqution () w otin (k + ) (k + ) + k k + k m k + k. Corollry. K k,m is k-splittl for vry intgr m.

D. Eppstin t l. Th proof for this lim is strightforwr from th osrvtion tht K,m is plnr. Th following tl summrizs th ov osrvtions y listing ll th omplt iprtit grphs whih oul k-splittl (i.., ths grphs stisfis th nssry onitions of Thorm ) for iffrnt vlus of k. k = k = k K n, n K n,m K n, n K n,m K n,k+ k n K,m K,m K,m 8 K 8,m K,m 8 K 9,m K,m K n k,m K,m K n>k,m kn n k. Grphs with Mximum Dgr Rll tht th plnr split thiknss of grph is oun y its roriity. By finition, ny mximum-gr- grph hs gnry t most n, thus, roriity t most. Hn, th plnr split thiknss of mximum-gr- grph is oun y. Morovr, sin vry -rgulr grph is plnr, th plnr split thiknss of ny grph with mximum gr is oun y /. Thrfor, th plnr split thiknss of mximum-gr- grph is t most. Th following thorm stts tht this oun is tight. Thorm. For ny nontrivil minor-los proprty P, thr xists grph G of mximum gr fiv whos P split thiknss is t lst. Proof. This follows from omintion of th following osrvtions:. Thr xist ritrrily lrg -rgulr grphs with girth Ω(log n) [].. Splitting grph nnot rs its girth.. For vry h, th K h -minor-fr n-vrtx grphs ll hv t most O(nh log h) gs [].. Evry grph with n vrtis, m gs, n girth g hs minor with O(n/g) vrtis n m n + O(n/g) gs []. Thus, lt h lrg nough tht K h os not hv proprty P. If G is suffiintly lrg n-vrtx -rgulr grph with logrithmi girth (Osrvtion ), thn ny -split of G will hv n vrtis n n/ gs. By Osrvtion, this -split will hv minor whos numr of gs is lrgr y logrithmi ftor thn its numr of vrtis, n for n suffiintly lrg this ftor will lrg nough to nsur tht K h minor xists within th -split of G (y Osrvtion ). Thus, G nnot -split into grph with proprty P. NP-hrnss n Approximtion Fri t l. [] show tht trmining th splitting numr of grph is NP-hr, vn whn th input is rstrit to ui grphs. Sin ui grphs r -splittl, thir 9 A grph G is k-gnrt if vry sugrph of G ontins vrtx of gr t most k.

On th Plnr Split Thiknss of Grphs hrnss proof os not rily imply th hrnss of -splittl grph rognition. In this stion, w show tht it is NP-hr to rogniz grphs tht r -splittl into plnr grph. W thn show tht th roriity of k-splittl grphs is oun y k + n tht tsting k-splittility is fix-prmtr trtl in th trwith of th givn grph.. NP-hrnss of -Splittility Th rution is from plnr -SAT with yl through th lus vrtis []. Spifilly, -SAT instn I is plnr if its orrsponing SAT-grph G = (X C, E) is plnr, whr X n C r th st of vrils n luss of I, rsptivly, n E = {(x, ) : x Corx C}. Krtohvíl t l. [] show tht th plnr -st rmins NP-omplt vn whn th SAT-grph with yl through th lus vrtis is plnr. For our onstrution, w will n to rstrit th splitting options for som vrtis. For vrtx v, tthing K to v mns insrting nw opy of K into th grph n intifying v with vrtx of this K. A vrtx tht hs K tth will ll K-vrtx. Lmm. If C is yl of K-vrtis thn in ny plnr -split, th yl C pprs intt, i.. for h g of C thr is opy of th g in th -split suh tht th opis r join in yl. Proof. Lt v vrtx of yl C. W will rgu tht th two gs inint to v in C r inint to th sm opy of v in th plnr -split. This implis tht th yl pprs intt in th plnr -split. Suppos th vrtis of C r v =,,..., t in tht orr, with n g (v, t ). As not rlir in th ppr, plnr -split of K must split ll vrtis, n no two opis of vrtx shr f in th plnr -split. Furthrmor, ny plnr -split of K is onnt. Lt H i th inu plnr -split of th K inint to i. Lt v n v th two opis of v in H. Suppos tht th opy of g (v, ) in th plnr -split is inint to v. Our gol is to show tht th opy of g (v, t ) in th plnr -split is lso inint to v. H must li in f F of H tht is inint to v. Sin thr is n g (, ), H must lso li in f F of H. Continuing in this wy, w fin tht H t must lso li in th f F. Thrfor, th opy of th g ( t, v) must inint to v in th plnr -split. Not tht th Lmm xtns to ny -onnt sugrph of K-vrtis. Givn n instn of plnr -SAT with yl through th lus vrtis, w onstrut grph s follows. W will mk K-vrtx j for h lus j, n join thm in yl s givn in th input instn. By th Lmm ov, this lus yl will ppr intt in ny plnr -split of th grph. Lt T ny othr yl of K-vrtis, isjoint from th lus yl. T will lso ppr intt in ny plnr -split, so w n intify th outsi of th yl T s th si tht ontins th lus yl. Th othr si is th insi.

8 D. Eppstin t l. v i v i j v i v i v i v i v i v i lj, l j, j l j, l j, v i () v i v i () v i l j, l j, () Fig.. () A vril ggt shown in th plnr onfigurtion orrsponing to v i = tru n () in th plnr onfigurtion orrsponing to v i = fls. () A lus ggt K with suivision vrtis l j,, l j,, l j, orrsponing to th litrls in th lus. Th hlf-gs join th orrsponing vril vrtis. For h vril v i, w rt vrtx ggt s shown in Figurs () () with six K-vrtis: two spil vrtis v i n v i n four othr vrtis forming vril yl vi, v i, v i, v i togthr with two pths v i, v i, vi n v i, v i, vi. Osrv tht, in n ming of ny plnr -split, th vrtx ggt will ppr intt, n xtly on of v i n v i must li insi th vril yl n xtly on must li outsi th vril yl. Our intn orrsponn is tht th on tht lis outsi is th on tht is st to tru. For h lus j with litrls l j,k, k =,,, w rt K lus ggt, s shown in Figur (), with fiv K-vrtis: two vrtis j, j n thr vrtis l j,k. Furthrmor, w suivi h g ( j, l j,k ) y vrtx l j,k tht is not K-vrtx. If litrl l j,k is v i, thn w n g (v i, l j,k ) n if litrl l j,k is v i, thn w n g ( v i, l j,k ). Finlly, w hin joining,,..., m, n w signt to our outr vrtx. This omplts th onstrution, whih n lrly rri out in polynomil tim. Figur shows n xmpl of th onstrution. Not tht th only non-k-vrtis r th l j,k s, whih hv gr n n split in on of thr wys s shown in Figurs () (). In h possiility, on g inint to l j,k is split off from th othr two. If th g to th vril ggt is split off from th othr two, w ll this th F-split. Osrv tht if, in th lus ggt for j, ll thr of l j,, l j,, l j, us th F-split (or no split), thn w fftivly hv gs from j to h of l j,, l j,, l j,, so th lus ggt is K whih must rmin intt ftr th -split n is not plnr. This mns tht in ny plnr -split of th lus ggt, t lst on of l j,, l j,, l j, must split with non-f-split. Lmm. If th formul is stisfil, thn th grph hs plnr -split. Proof. For vry litrl l j,k tht is st to fls, w o n F-split on th vrtx l j,k. For vry litrl l j,k tht is st to tru, w split off th g to l j,k ; s Figur (). For ny K-vrtx v inint to gs E v outsi its K, w split ll vrtis of th K s rquir for plnr -split of K ut w kp th gs of E v inint to th sm opy of v, whih w intify s th rl v.

On th Plnr Split Thiknss of Grphs 9 ' ' ' v v v v v v v v () l l l ' l ' ' l l l l l l l l l l v v v v l v l l v v l v () Fig.. () A grph tht orrspons to th -SAT instn φ = ( v v v ) (v v v ) (v v v ). () A plnriztion of th grph in () tht stisfis φ: v = tru, v = v = v = fls If vril v i is st to tru, w pl (rl) vrtx v i outsi th vril yl n w pl vrtx v i n its ngling gs insi th vril yl. If vril v i is st to fls, w pl vrtx v i outsi th vril yl n w pl vrtx v i n its ngling gs insi th vril yl. Consir lus j. It hs tru litrl, sy l j,. W hv split off th g from l j, to l j, whih uts on g of th K n prmits plnr rwing of th lus ggt s shown in Figur (), with l j, n its ngling g insi th yl, l j,, l j,. Bus w strt with n instn of plnr -SAT with yl through th lus vrtis, w know tht th grph of luss vrsus vrils plus th lus yl is plnr. W mk plnr ming of th split grph s on this, ming th vril n lus ggts s sri ov. Th rsulting ming is plnr. Lmm. If th grph hs plnr -split, thn th formul is stisfil.

D. Eppstin t l. l j, j l j, l j, j l j, j l j, l j, j j l j, l j, l j, j l j, j l j, l j, j l j, l j, l j, l j, l j, l j, l j, l j, l j, l j, l j, l j, () () () () Fig.. () () Th thr wys of splitting l j,; () is th F-split. () A plnr rwing of th lus ggt whn litrl l j, is st to tru n th split of vrtx l j, rsults in ngling g to l j,. Proof. Consir plnr ming of -split of th grph. As not ov, in h lus ggt, sy j, t lst on of th vrtis l j,k, k =,,, must split with non-f-split. Suppos tht vrtx l j,k is split with non-f-split. If litrl l j,k is v i thn w will st vril v i to tru; n if litrl l j,k is v i thn w will st vril v i to fls. W must show tht this is vli truth-vlu stting. Suppos not. Thn, for som i, vrtx v i is join to vrtx l j,k tht is split with non-f-split, n vrtx v i is join to vrtx l r,s tht is split with non-f-split. But thn w ssntilly hv n g from v i to vrtx of th j lus ggt n n g from v i to vrtx of th r lus ggt. Bus h lus ggt is onnt grph of K-vrtis, n th lus ggts r join y th lus yl, this givs pth of K-vrtis from v i to v i. Thn th vrtis of th vril ggt for v i form suivi K, of K-vrtis. This must rmin intt unr -splits n is non-plnr. Contrition to hving plnr -split of th grph. Thorm. It is NP-hr to i whthr grph hs plnr split thiknss.. Approximting Split Thiknss In this stion, w n th onpt of roriity. Th roriity (G) of grph G is th minimum intgr suh tht G mits omposition into (G) forsts. By finition, th plnr split thiknss of grph is oun y its roriity. W now show tht th roriity of k-splittl grph pproximts its plnr split thiknss within onstnt ftor. Lt G k-splittl grph with n vrtis n lt G k k-split grph of G. Sin G k is plnr, it hs t most kn gs. Thrfor, th numr of gs in n n-vrtx grph is lso t most (k+)(n ): for n t most k, this follows simply from th ft tht ny n-vrtx grph n hv t most n(n )/ gs, n for lrgr n this moifi xprssion is iggr thn kn. But Nsh-Willims [8] show tht th roriity of grph is t most (G) if n only if vry n-vrtx sugrph hs t most (G)(n ) gs. Using this hrtriztion n th oun on th numr of gs, th roriity is t most k +. Thorm. Th roriity of k-splittl grph is oun y k +, n thrfor pproximts its plnr split thiknss within ftor + /k.

On th Plnr Split Thiknss of Grphs Not tht th thiknss of grph is oun y its roriity, n thus lso pproximts th plnr split thiknss within ftor + /k.. Fix-Prmtr Trtility Although k-splittility is NP-omplt, w show in this stion tht it is solvl in polynomil tim for grphs of oun trwith. Th rsult pplis not only to plnrity, ut to mny othr grph proprtis. Thorm. Lt P grph proprty, suh s plnrity, tht n tst in moni son-orr grph logi, n lt k n w fix onstnts. Thn it is possil to tst in linr tim whthr grph of trwith t most w is k-splittl into P in linr tim. Proof. W us Courll s thorm [], oring to whih ny moni son-orr proprty n tst for oun-trwith grphs in linr tim. W moify th formul for P into formul for th grphs k-splittl into P. To o so, w n to l to istinguish th two npoints of h g of our givn grph G, within th moifi formul. Thus, w wrp th formul in xistntil quntifirs for n g st T n vrtx r, n w form th onjuntion of th formul with th onitions tht vry prtition of th vrtis into two susts is ross y n g, tht vry nonmpty vrtx sust inlus t lst on vrtx with t most on nighor in th sust, n tht, for vry g tht is not prt of T, thr is pth in T strting from r whos vrtis inlu th npoints of. Ths onitions nsur tht T is pth-first srh tr of th givn grph, in whih th two npoints of h g of th grph r rlt to h othr s nstor n snnt; w n orint h g from its nstor to its snnt []. With this orinttion in hn, w wrp th formul in nothr st of xistntil quntifirs, sking for k g sts, n w onitions to th formul nsuring tht ths sts form prtition of th gs of th givn grph. If w numr th split opis of h vrtx in k-splitting of th givn grph from to k, thn ths k g sts trmin, for h input g, whih opy of its nstrl npoint n whih opy of its snnt npoint r onnt in th grph rsulting from th splitting. Givn ths prliminry moifitions, it is strightforwr ut tious to moify th formul for P itslf so tht it pplis to th grph whos splitting is sri y th ov vrils rthr thn to th input grph. To o so, w n only rpl vry vrtx st vril y k suh vrils (on for h opy of h vrtx), xpn th formul into isjuntion or onjuntion of k opis of th formul for h iniviul vrtx vril tht it ontins, n moify th prits for vrtx-g inin within th formul to tk ount of ths multipl opis. Conlusion In this ppr, w hv xplor th split thiknss of grphs whil trnsforming thm to plnr grphs. W hv prov som tight ouns on th plnr split thiknss of

D. Eppstin t l. omplt n omplt iprtit grphs. In gnrl, w hv prov tht rognizing - splittl grphs is NP-hr, ut it is possil to pproximt th plnr split thiknss of grph within onstnt ftor. Furthrmor, if th trwith of th input grph is oun, thn for ny fix k, on n i k-splittility into plnr grphs in linr tim. Splitting numr hs n xmin lso on th projtiv pln [9] n torus [8]. Hn, it is nturl to stuy split thiknss on iffrnt surfs. W osrv tht ny grph tht n m on th torus or projtiv pln is -splittl. For th projtiv pln, us th hmisphr mol of th projtiv pln, in whih points on th qutor of th sphr r intifi with th opposit point on th qutor; thn xpn th hmisphr to sphr with two opis of h point, n hoos ritrrily whih of th two opis to us for h g. For th torus, rw th torus s squr with prioi ounry onitions, mk two opis of th squr, n whn n g rosss th squr ounry onnt it roun twn th two squrs. Rfrns. Bink, L.W., Hrry, F.: Th thiknss of th omplt grph. Cn. J. Mth. (), 8 89 (9). Borril, G., Eppstin, D., Zhu, P.: Plnr inu sugrphs of sprs grphs. In: Pro. n Int. Symp. Grph Drwing (GD ). Ltur Nots Comput. Si., vol. 88, pp.. Springr-Vrlg (). Courll, B.: Th moni son-orr logi of grphs. I. Rognizl sts of finit grphs. Inform. Comput. 8(), (99). Courll, B.: On th xprssion of grph proprtis in som frgmnts of moni sonorr logi. In: Immrmn, N., Kolitis, P.G. (s.) Pro. Dsr. Complx. Finit Mols, DIMACS, vol., pp.. Amr. Mth. So. (99). Dujmovi, V., Woo, D.R.: Grph trwith n gomtri thiknss prmtrs. Disrt Comput. Gom. (), (). Dunn, C.A., Eppstin, D., Koourov, S.G.: Th gomtri thiknss of low gr grphs. In: Snoyink, J., Boissonnt, J. (s.) Pro. th ACM Symp. Comput. Gom. (SOCG ). pp.. ACM (). Fri, L., Figuiro, C.M.H., Mnonç Nto, C.F.X.: Splitting numr is NPomplt. Disrt Appl. Mth. 8(-), 8 () 8. Hrtsfil, N.: Th toroil splitting numr of th omplt grph K n. Disrt Mth. (98) 9. Hrtsfil, N.: Th splitting numr of th omplt grph in th projtiv pln. Grphs Com. (), 9 (98). Hrtsfil, N., Jkson, B., Ringl, G.: Th splitting numr of th omplt grph. Grphs Com. (), 9 (98). Hwoo, P.J.: Mp olour thorm. Qurt. J. Mth., 8 (89). Huthinson, J.P.: Coloring orinry mps, mps of mpirs, n mps of th moon. Mth. Mg. (), (99). Knur, K., Ukrt, T.: Thr wys to ovr grph. Arxiv rport (), vill t http://rxiv.org/s/.. Krtohvíl, J., Luiw, A., Nstril, J.: Nonrossing sugrphs in topologil lyouts. SIAM J. Disrt Mth. (), (99)

On th Plnr Split Thiknss of Grphs. Lirs, A.: Plnrizing grphs - A survy n nnott iliogrphy. J. Grph Algorithms Appl. (), (). Mnonç Nto, C.F.X., Shffr, K., Xvir, E.F., Stolfi, J., Fri, L., Figuiro, C.M.H.: Th splitting numr n skwnss of C n C m. Ars Com. (). Morgnstrn, M.: Existn n xpliit onstrutions of q + rgulr Rmnujn grphs for vry prim powr q. J. Com. Thory, Sris B (), (99) 8. Nsh-Willims, C.S.J.A.: Domposition of finit grphs into forsts. J. Lonon Mth. So. 9() (9) 9. Ringl, G., Jkson, B.: Solution of Hwoo s mpir prolm in th pln. J. Rin Angw. Mth., (98). Shinrmn, E.R., Wst, D.B.: Th intrvl numr of plnr grph: Thr intrvls suffi. J. Com. Thory, Sris B (), 9 (98). Thomson, A.: Th xtrml funtion for omplt minors. J. Com. Thory, Sris B 8(), 8 8 ()

D. Eppstin t l. A Th -split Grphs of K,, K, n K,8 8 9 9 8 Fig.. Th -split grph of K,.

On th Plnr Split Thiknss of Grphs f 9 8 8 f 9 Fig.. Th -split grph of K,.

D. Eppstin t l. f g g f Fig. 8. Th -split grph of K,8.