Sample Test 3. STUDENT NAME: STUDENT id #:

Similar documents
GENERAL PHYSICS PH 221-1D (Dr. S. Mirov) Test 4 (Sample) ALL QUESTIONS ARE WORTH 20 POINTS. WORK OUT FIVE PROBLEMS.

Sample Test 3. STUDENT NAME: STUDENT id #:

WYSE Academic Challenge Regional Physics 2008 SOLUTION SET

Announcements. 30 o. The pumpkin is on the left and the watermelon is on the right. The picture on page 138 is better.

Phys101 Final Code: 1 Term: 132 Wednesday, May 21, 2014 Page: 1

Phys101 Second Major-061 Zero Version Coordinator: AbdelMonem Saturday, December 09, 2006 Page: 1

Work, Energy, and Power

Q x = cos 1 30 = 53.1 South

CHAPTER 6 WORK AND ENERGY

Kinetics of Particles. Chapter 3

Physics 102. Final Examination. Spring Semester ( ) P M. Fundamental constants. n = 10P

PH2200 Practice Exam I Summer 2003

Solutions to Problems. Then, using the formula for the speed in a parabolic orbit (equation ), we have

As we have already discussed, all the objects have the same absolute value of

f = µ mg = kg 9.8m/s = 15.7N. Since this is more than the applied

Example 1. A robot has a mass of 60 kg. How much does that robot weigh sitting on the earth at sea level? Given: m. Find: Relationships: W

Chapter 5: Force and Motion I-a

Honors Physics Final Review Summary

Chapter 3 Kinematics in Two Dimensions; Vectors

Study Guide Physics Pre-Comp 2013

g r mg sin HKPhO 香港物理奧林匹克 2014 Multiple Choices:

Solution to HW14 Fall-2002

Phys101 First Major-131 Zero Version Coordinator: Dr. A. A. Naqvi Wednesday, September 25, 2013 Page: 1

CHAPTER 8b Static Equilibrium Units

i-clicker i-clicker Newton s Laws of Motion First Exam Coming Up! Components of Equation of Motion

Physic 231 Lecture 12

Q1. A string of length L is fixed at both ends. Which one of the following is NOT a possible wavelength for standing waves on this string?

Yeu-Sheng Paul Shiue, Ph.D 薛宇盛 Professor and Chair Mechanical Engineering Department Christian Brothers University 650 East Parkway South Memphis, TN

ME 236 Engineering Mechanics I Test #4 Solution

12/01/10. STUDENT NAME: STUDENT id #: NOTE: Clearly write out solutions and answers (circle the answers) by section for each part (a., b., c., etc.

JURONG JUNIOR COLLEGE

ALGEBRA 2/TRIGONMETRY TOPIC REVIEW QUARTER 3 LOGS

FULL MECHANICS SOLUTION

Phy 213: General Physics III 6/14/2007 Chapter 28 Worksheet 1

PHYS 219 Spring semester Lecture 02: Coulomb s Law how point charges interact. Ron Reifenberger Birck Nanotechnology Center Purdue University

ME 141. Lecture 10: Kinetics of particles: Newton s 2 nd Law

AP Physics Kinematic Wrap Up

Q1. In figure 1, Q = 60 µc, q = 20 µc, a = 3.0 m, and b = 4.0 m. Calculate the total electric force on q due to the other 2 charges.

Study Guide: PS. 10 Motion, Forces, Work & Simple Machines DESCRIBING MOTION SPEED

Forces from Strings Under Tension A string under tension medites force: the mgnitude of the force from section of string is the tension T nd the direc

Physics Honors. Final Exam Review Free Response Problems

Correct answer: 0 m/s 2. Explanation: 8 N

Conceptual Dynamics SDC. An Interactive Text and Workbook. Kirstie Plantenberg Richard Hill. Better Textbooks. Lower Prices.

Chapter 4 Motion in Two and Three Dimensions

Phys102 Second Major-102 Zero Version Coordinator: Al-Shukri Thursday, May 05, 2011 Page: 1

= m. Suppose the speed of a wave on a string is given by v = Κ τμ

Q1. A) 48 m/s B) 17 m/s C) 22 m/s D) 66 m/s E) 53 m/s. Ans: = 84.0 Q2.

Preview, Review Summary - University Physics I Dr. Hulan E. Jack Jr U 7. Newton's Laws of Motion

Sample Test 2. GENERAL PHYSICS PH 221-3A (Dr. S. Mirov) Test 2 (10/10/07) ALL QUESTIONS ARE WORTH 20 POINTS. WORK OUT FIVE PROBLEMS.

Physics 105 Exam 2 10/31/2008 Name A

5.1 Properties of Inverse Trigonometric Functions.

Numerical Problems With Solutions(STD:-XI)

E S dition event Vector Mechanics for Engineers: Dynamics h Due, next Wednesday, 07/19/2006! 1-30

WYSE Academic Challenge Sectional Physics 2007 Solution Set

First, we will find the components of the force of gravity: Perpendicular Forces (using away from the ramp as positive) ma F

Phys101 Lecture 4,5 Dynamics: Newton s Laws of Motion

Equilibrium of Stress

Version 001 HW#6 - Circular & Rotational Motion arts (00223) 1

Lecture 5: Equilibrium and Oscillations

Narayana IIT Academy

Phys102 Final-061 Zero Version Coordinator: Nasser Wednesday, January 24, 2007 Page: 1

Fall 2013 Physics 172 Recitation 3 Momentum and Springs

Institute for Competitive Examinations

- 5 - TEST 2. This test is on the final sections of this session's syllabus and. should be attempted by all students.

Flipping Physics Lecture Notes: Simple Harmonic Motion Introduction via a Horizontal Mass-Spring System

NGSS High School Physics Domain Model

= 40 N. Q = 60 O m s,k

Fundamental Concepts in Structural Plasticity

EXAM #1 PHYSICAL SCIENCE 103 FALLF, 2017

1 Course Notes in Introductory Physics Jeffrey Seguritan

205MPa and a modulus of elasticity E 207 GPa. The critical load 75kN. Gravity is vertically downward and the weight of link 3 is W3

SAFE HANDS & IIT-ian's PACE EDT-04 (JEE) Solutions

Exam 1: Tomorrow 8:20-10:10pm

200 points 5 Problems on 4 Pages and 20 Multiple Choice/Short Answer Questions on 5 pages 1 hour, 48 minutes

GAUSS' LAW E. A. surface

SOLUTIONS TO CONCEPTS CHAPTER 6

PhysicsAndMathsTutor.com

A wire. 100 kg. Fig. 1.1

2/2/ :36 AM. Chapter 11. Kinematics of Particles. Mohammad Suliman Abuhaiba,Ph.D., P.E.

Surface and Contact Stress

F is on a moving charged particle. F = 0, if B v. (sin " = 0)

( ) WYSE ACADEMIC CHALLENGE Regional Physics Exam 2009 Solution Set. 1. Correct answer: D. m t s. 2. Correct answer: A. 3.

Flipping Physics Lecture Notes: Simple Harmonic Motion Introduction via a Horizontal Mass-Spring System

Lecture 8. Newton s Laws. Applications of the Newton s Laws Problem-Solving Tactics. Physics 105; Fall Inertial Frames: T = mg

1/31/ :33 PM. Chapter 11. Kinematics of Particles. Mohammad Suliman Abuhaiba,Ph.D., P.E.

2/20/ :21 AM. Chapter 11. Kinematics of Particles. Mohammad Suliman Abuhaiba,Ph.D., P.E.

PHYS 314 HOMEWORK #3

Chapter 10. Simple Harmonic Motion and Elasticity. Example 1 A Tire Pressure Gauge

Mathematics Extension Two

Dynamics: Newton s Laws of Motion

CHAPTER 6 -- ENERGY. Approach #2: Using the component of mg along the line of d:

Year 12 Mathematics Extension 2 HSC Trial Examination 2014

Homework: 5, 9, 19, 25, 31, 34, 39 (p )

14. Which shows the direction of the centripetal force acting on a mass spun in a vertical circle?

Physics 110. Spring Exam #1. April 16, Name

Time : 3 hours 03 - Mathematics - March 2007 Marks : 100 Pg - 1 S E CT I O N - A

Physics 2135 Exam 3 April 21, 2015

14. Which shows the direction of the centripetal force acting on a mass spun in a vertical circle?

Hooke s Law (Springs) DAVISSON. F A Deformed. F S is the spring force, in newtons (N) k is the spring constant, in N/m

Chapter 5 Exercise 5A

Transcription:

GENERAL PHYSICS PH -3A (Dr. S. Mirv) Test 3 (/7/07) ke Smple Test 3 STUDENT NAME: STUDENT id #: ------------------------------------------------------------------------------------------------------------------------------------------- ALL QUESTIONS ARE WORTH 0 POINTS. WORK OUT FIVE PROBLEMS. NOTE: Clerl write ut slutins nd nswers (circle the nswers) b sectin r ech prt (., b., c., etc.) Imprtnt Frmuls:. Mtin lng stright line with cnstnt ccelertin v ver. speed = [dist. tken]/[time trv.]=s/t; v ver.vel. = /t; v ins =d/t; ver. = v ver. vel. /t; = dv/t; v = v + t; = /(v +v)t; = v t + / t ; v = v + (i =0 t t =0). Free ll mtin (with psitive directin ) g = 9.80 m/s ; = v ver. t v ver. = (v+v )/; v = v - gt; = v t - / g t ; v = v g (i =0 t t =0) 3. Mtin in plne v = v cs; v = v sin; = v t+ / t ; = v t + / t ; v = v + t; v = v + t; 4. Prjectile mtin (with psitive directin ) v = v = v cs; = v t; m = ( v sin cs)/g = (v sin)/g r in = in ; v = v - gt = v sin - gt; = v t - / gt ; 5. Unirm circulr Mtin =v /r, T=r/v 6. Reltive mtin v P A v P B v B A PA PB 7. Cmpnent methd vectr dditin

A = A + A ; A = A + A nd A = A + A ; A A A ; = tn - A /A ; The sclr prduct A b = b c s b ( ˆ ˆ ˆ) ( ˆ ˆ ˆ i j zk b i b j b zk ) b = b b zb z The vectr prduct b ( ˆ ˆ ˆ) ( ˆ ˆ ˆ i j zk b i b j b zk ) iˆ ˆj kˆ z ˆ ˆ z ˆ b b z i j k b b z b b b z b b b b z ( b b ) iˆ ( b b ) ˆj ( b b ) kˆ z z z z. Secnd Newtn s Lw m=f net ;. Kinetic rictin k = k N; 3. Sttic rictin s = s N; 4. Universl Lw Grvittin: F=GMm/r ; G=6.670 - Nm /kg ; 5. Drg ceicient D C A v 6. Terminl speed v t mg C A 7. Centripetl rce: F c =mv /r 8. Speed the stellite in circulr rbit: v =GM E /r 9. The wrk dne b cnstnt rce cting n n bject: W F d cs F d 0. Kinetic energ: K mv. Ttl mechnicl energ: E=K+U. The wrk-energ therem: W=K -K ; W nc =K+U=E -E 3. The principle cnservtin mechnicl energ: when W nc =0, E =E 4. Wrk dne b the grvittinl rce: W m g d cs g

. Wrk dne in Liting nd Lwering the bject: K K K W W ; i K K ; W W i g i g. Spring Frce: F k (H k's lw ) 3. Wrk dne b spring rce: W k k ; i 0 nd ; W k s i i s 4. Wrk dne b vrible rce: W F ( ) d W d W 5. Pwer: P vg ; P ; P F v cs F v t d t 6. Ptentil energ: U W ; U F ( ) d 7. Grvittinl Ptentil Energ: U m g ( ) m g ; i 0 n d U 0 ; U ( ) m g i i i i i 8. Elstic ptentil Energ: U ( ) k 9. Ptentil energ curves: du ( ) F ( ) ; K ( ) E m e c U ( ) d 0. Wrk dne n sstem b n eternl rce: F ric ti n is n t in v lv e d W h e n k in e tic ric ti n rc e c ts w ith in th e s ste m E d th k W E K U m e c W E E m e c th. Cnservtin energ: W E E E E m e c th r islted sstem (W =0) E E E 0 in t m e c th in t E. Pwer: P vg ; t P de d t ; 3. Center mss: r m r n i i M i 4. Newtns Secnd Lw r sstem prticles: F net M

. Liner Mmentum nd Newtn s Secnd lw r sstem prticles: P M v nd F net dp dt t. Cllisin nd impulse: J F ( t ) d t; J F t; t i vg when strem bdies with mss m nd n n m speed v, cllides with bd whse psitin is ied F vg p m v v t t t Impulse-Liner Mmentum Therem: p p i J 3. Lw Cnservtin Liner mmentum: P P r clsed, islted sstem 4. Inelstic cllisin in ne dimensin: p p p p i i i 5. Mtin the Center Mss: The center mss clsed, islted sstem tw clliding bdies is nt ected b cllisin. 6. Elstic Cllisin in One Dimensin: m m v v ; v m v i i m m m m 7. Cllisin in Tw Dimensins: p p p p ; p p p p i i i i 8. Vrible-mss sstem: Rv rel v v v M (irst rcket equtin) i r e l M i ln (secnd rcket equtin) M S 9. Angulr Psitin: (rdin m esure) r 0. Angulr Displcement: (p sitiv e r c u n terclc k w ise r ttin ) d. Angulr velcit nd speed: vg ; (p sitive r c u n tercl ck w ise rtti n ) t d t. Angulr ccelertin: vg ; t d d t

t ( ) t. ngulr ccelertin: t t ( ) t t. Liner nd ngulr vribles relted: I r d m v r s r ; v r ; t r ; r r ; T r v 3. Rttinl Kinetic Energ nd Rttinl Inerti: K I ; I m iri r bd s sstem discrete prticles; r b d w ith c n tin u u sl d istrib u te d m ss. 4. The prllel es therem: I I M h 5. Trque: rf r F rf sin t 6. Newtn s secnd lw in ngulr rm: net I 7. Wrk nd Rttinl Kinetic Energ: W d ; W ( ) r cnst; i i dw P K K K I I W dt ; i i w rk e n e rg th e re m r r t tin g b d ie s v R K I m v 8. Rlling bdies: R g sin I / M R r r llin g sm th l d w n th e r m p 9. Trque s vectr: r F ; rf sin rf r F

. Angulr Mmentum prticle:. Newtn s Secnd lw in Angulr Frm: net l r p m( r v); l rmvsin rp rmv r p r mv 3. Angulr mmentum sstem prticles: dl dt L net et n l i i 4. Angulr Mmentum Rigid Bd: L I 5. Cnservtin Angulr Mmentum: Li L (islted sstem) Fnet 0; net 0 6. Sttic equilibrium: i ll the rces lie in plne F 0; F 0; 0 7. Elstic Mduli: stress=mdulus strin dl dt net, net, net, z F L 8. Tensin nd Cmpressin: E, E is the Yung's mdulus A L F L 9. Shering: G, G is the sher mdulus A L V 0. Hdrulic Stress: p B, B is the bulk mdulus V

+. At the sme instnt tht 0.50-kg bll is drpped rm 5m bve Erth, secnd bll, with mss 0.5 kg, is thrwn stright upwrd rm Erth's surce with n initil speed 5m/s. The mve lng nerb lines nd pss ech ther withut clliding. Wht is the height bve Erth's surce the center mss the tw-bll sstem t the end.0 s? m v =0 =5m v =5 m/s m 5.4m 0.4m t=0 t=.0s ( ) Find inl crdinte the bll ter.0 s. gt 9.8 5 0 t 5 5.4m (b) Find inl crdinte the bll ter.0 s gt 9.8 vt 5 0.4m (c) Find crdinte the center mss tw blls m m (0.5)(5.4) (0.5)(0.4) 7.m m m (0.5 0.5)

. Tw skters with msses 00 kg nd 60 kg, respectivel, stnd 0.0 m prt; ech hlds ne end piece rpe. I the pull themselves lng the rpe until the meet, hw r des ech skter trvel? (Neglect rictin) 00kg 0m 60kg 0 + ( ) Since tw scters represent n islted sstem nd initill theu re t rest their center mss will be t rest nd the will meet t the center mss m m m m (00)(0) (60)(0) 006 0 3.75m 3.8m (b) The 00 kg skter mves 3.75 m (c) The 60 kg skter mves 0-3.75=6.5m=6.m

3. A kg blck wd rests n lng tbletp. A 5 g bullet mving hrizntll with speed 50 m/s is sht int the blck nd sticks in it. The blck then slides 70 cm lng the tble nd stps. () ind the speed the blck just ter impct. (b) ind the rictin rce between blck nd tble. v v 0 =0 m m.7 m () Cnsider inelstic bullet-blck cllisin. At the instnt cllisn bullet-blck sstem is islted, hence, we cn use lw cnservtin liner mmentum t describe the cllisin mv mv 0 0 mv 0mv 0 (0.005)(50) ()(0) ( mm) v; v 0.374 4 0 m/ s ( m m ) (0.005 ) (b) Clculte wrk dne b the net rce n blck-bullet sstem during its mtin lng the tble There re 3 rces cting n ur sstem: Weight, Nrml rectin, nd kineti rictin. Onl kinetic rictin rce will perrm nn zer wrk. W (c) Mtin blck-bullet sstem ter the cllisin cn be described b wrk-energ therem net S ( m m ) v ( m m ) v (0.005 )(0.374) S (.70) Wnet K Ki ks 0 k 50 N k

4. The impct the hed gl club n gl bll cn be pprimtel regrded s n elstic cllisin. The mss the hed the gl club is 0.5 kg. The speed the club bere the cllisin is 46 m/s. The bll cquires speed 70 m/s ter the cllisin. The gl club nd bll re in cntct r but 0.5 ms. ) Wht must be the mss the bll? b) Wht is the verge rce eerted b the club n the bll? () Fr elstic gl club-bll cllisin mc m m mv (0.5)(46) c ci mb v m 0.5 0.047 4.7 0 b c kg 70 v b c b v ci P P P (0.047)(70) 0 ( ) 6600 6.6 0 t t 0.0005 b bi bfvg N N

5.

6. Je is pinting the lr his bsement using pint rller. The rller hs mss.4 kg nd rdius 3.8 cm. In rlling the rller crss the lr Je pplies rce F=6N directed t n ngle 35% s shwn. Ignring the mss the rller hndle, wht is the mgnitude the ngulr ccelertin the rller? F 35 N () nd Newtn lw is: s Fsin m ( b) nd Newtn Lw r rttin but : R I (c) recll the reltinship between nd : R; I ( d) substitute eq.(b) nd (c) in (): Fsin mr; R F sin F sin F sin (6)sin 35 I mr mr mr 3mR 3(.4)(0.038) R rd 67 s s s mg F

7. A hp (I h =MR ), unirm disk (I d =/MR ), nd unirm sphere (I s =/5MR ), ll with the sme mss nd uter rdius, strt with the sme speed nd rll withut sliding up identicl inclines. Rnk the bjects ccrding t hw high the g, lest t gretest. ( )During rlling up the incline mtin the mechnicl energ the hp-erth, disk-erth, nd sphere-erth sstems is cnserved since )rictinl rce des nt trnser n energ t therml energ becuse the bjects d nt slide; ) nrml rce is perpendiculr t the pss; 3) grvittinl rce is cnservtive ne. I Mv 00Mgh ( b) secnd term is the sme r ll ur bjects, is ls the sme, the lrger I the lrger mimum height h reched b the bject. rm lest t gretest in terms height ttined: sphere, disk, hp.

9. A unirm seesw length 6 m hs tw ungsters weights w =700N nd w =400 N sitting n the ends. Find the prper lctin the pivt r the seesw t be just in blnce, i () the weight the seesw cn be ignred (b) the seesw weighs Mg=300N 6 m w Mg ( ) Use nd cnditin equilibrium: WW(6 ) 0; 6W 6(400) W W 700 400.8m w ( b)use nd cnditin equilibrium: WMg(3 ) W(6 ) 0; 6W 3Mg 6(400) 3(300) W W Mg 700 400 300.36m