DC metrology. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

Similar documents
Logarithms for analog circuits

Logarithms for analog circuits

Active loads in amplifier circuits

Simultaneous equations for circuit analysis

Voltage, Current, and Resistance

Basic algebra and graphing for electric circuits

Specific resistance of conductors

Basic electromagnetism and electromagnetic induction

Algebraic substitution for electric circuits

Algebraic substitution for electric circuits

Algebraic equation manipulation for electric circuits

Digital logic signals

Digital logic signals

Decibel measurements

Parallel DC circuits


Superposition theorem

Electricity and Light Pre Lab Questions

BRIDGE CIRCUITS EXPERIMENT 5: DC AND AC BRIDGE CIRCUITS 10/2/13

Exercise 2: The DC Ohmmeter

Magnetism. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

AC "POLARITY" Complex numbers are useful for AC circuit analysis because they provide a

An Introduction to Electricity and Circuits

Atomic structure. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

Lesson Plan: Electric Circuits (~130 minutes) Concepts

PHYSICS 171. Experiment 3. Kirchhoff's Laws. Three resistors (Nominally: 1 Kilohm, 2 Kilohm, 3 Kilohm).

Lecture - 2A Instruments-I

Capacitance. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT. Physics 211 E&M and Quantum Physics Spring Lab #4: Electronic Circuits I

Tactics Box 23.1 Using Kirchhoff's Loop Law

Electricity & Magnetism

EE301 RESISTANCE AND OHM S LAW

Solutions For the problem setup, please refer to the student worksheet that follows this section.

Ohm s Law. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

Ohm s Law. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

Materials Needed 1 D-Cell battery 6 6-inch pieces of wire 3 flashlight light bulbs 3 light bulb holders (optional)

Static electricity. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

Resistivity and Temperature Coefficients (at 20 C)

STATEWIDE CAREER/TECHNICAL EDUCATION COURSE ARTICULATION REVIEW MINUTES

Capacitance. A different kind of capacitor: Work must be done to charge a capacitor. Capacitors in circuits. Capacitor connected to a battery

Meas ure ment: Uncertainty and Error in Lab Measurements

Electrical Connections

SIMPLE D.C. CIRCUITS AND MEASUREMENTS Background

Physics 2020 Lab 5 Intro to Circuits

Errors in Electrical Measurements

PN junctions. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

Phasor mathematics. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

Circuit Analysis and Ohm s Law

EXPERIMENT 12 OHM S LAW

Kirchhoff s Laws. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

Lab 4. Current, Voltage, and the Circuit Construction Kit

Nonlinear opamp circuits

DOWNLOAD PDF AC CIRCUIT ANALYSIS PROBLEMS AND SOLUTIONS

Lab 3. Ohm s Law. Goals. Introduction

Calculating Uncertainty For the Analog Ohmmeter

Fat: Who Says? Measuring Obesity by Bioelectrical Impedance Analysis

Multi-loop Circuits and Kirchoff's Rules

Electric Fields. Goals. Introduction

DC Circuits Analysis

Current Electricity. ScienceLinks 9, Unit 4 SciencePower 9, Unit 3

Review of Ohm's Law: The potential drop across a resistor is given by Ohm's Law: V= IR where I is the current and R is the resistance.

Conventional versus electron flow

Electric Fields. Goals. Introduction

Physics 2080 Extra Credit Due March 15, 2011

CHAPTER 5. BRIDGES AND THEIR APPLICATION Resistance Measurements. Dr. Wael Salah

University of Maryland Department of Physics. Spring 2009 Final Exam 20. May (175 points) Post grades on web? (Initial, please) Yes No

2. In words, what is electrical current? 3. Try measuring the current at various points of the circuit using an ammeter.

Magnets attract some metals but not others

Review. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Experiment 2 Deflection of Electrons

US ARMY INTELLIGENCE CENTER CIRCUITS

Figure 1: Capacitor circuit

Joy of Science Discovering the matters and the laws of the universe

LABORATORY 4 ELECTRIC CIRCUITS I. Objectives

Electric Fields and Potentials

UNIT 3: Electric charge.

The design and operational theory of ph electrodes is a very complex subject, explored only briefly here. What is important to understand is that thes

Lab 08 Capacitors 2. Figure 2 Series RC circuit with SPDT switch to charge and discharge capacitor.

Electricity and Magnetism Module 4 Student Guide

Lab 3: Electric Field Mapping Lab

ACTIVITY 2 Exploring Light Patterns

Greek Letter Omega Ω = Ohm (Volts per Ampere)

Physics for Scientists and Engineers 4th Edition 2017

MECHANICAL ENGINEERING TECHNOLOGY ESSENTIALS FOR LABORATORY REPORTS

Experiment 4. RC Circuits. Observe and qualitatively describe the charging and discharging (decay) of the voltage on a capacitor.

Designing Information Devices and Systems I Fall 2015 Anant Sahai, Ali Niknejad Final Exam. Exam location: RSF Fieldhouse, Back Left, last SID 6, 8, 9

PHYSICS 571 Master's of Science Teaching. Electromagnetism and Light Lecture 1 Introductions / Magnetic Field Instructor Richard Sonnenfeld

BASIC ELECTRICITY STUDY COURSE

Experiment #2 Lab Electrostatics Pre-lab Questions

Insulators Non-metals are very good insulators; their electrons are very tightly bonded and cannot move.

Switch. R 5 V Capacitor. ower upply. Voltmete. Goals. Introduction

Switch. R 5 V Capacitor. ower upply. Voltmete. Goals. Introduction

PHY222 - Lab 7 RC Circuits: Charge Changing in Time Observing the way capacitors in RC circuits charge and discharge.

Experiment Aim: Students will describe the magnitude of resistance and define the EMF (electromotive force) of a cell.

Introduction. Pre-lab questions: Physics 1BL KIRCHOFF S RULES Winter 2010

SPH3U1 Lesson 01 Electricity

STEP-UP 2011 Lesson Plan: Capacitance Brian Heglund Etowah High School Advisor: Phil First

Ohm s Law is a formula used to calculate the relationship between voltage, current and resistance in an electrical circuit.

farads or 10 µf. The letter indicates the part tolerance (how close should the actual value be to the marking).

Lab 5 - Capacitors and RC Circuits

Transcription:

DC metrology This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/, or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA. The terms and conditions of this license allow for free copying, distribution, and/or modification of all licensed works by the general public. Resources and methods for learning about these subjects (list a few here, in preparation for your research): 1

Questions Question 1 Define the following metrological terms: Uncertainty Accuracy Error Precision Traceability file 00525 Question 2 In chemistry laboratories, balance scales are used to precisely measure the mass of various substances. How, exactly, is a laboratory balance scale used? What component of the scale primarily determines its accuracy? x unknown mass mass standards file 00523 Question 3 Explain how this electrical system functions in a similar manner to a laboratory balance scale: G E unknown E standard The circle with the letter G in it is a symbol for a galvanometer. What practical purpose might a system like this serve? file 00524 2

Question 4 If a voltmeter is to be used to directly measure the voltage of an unknown source, it must first be calibrated so as to ensure an accurate measurement: Direct measurement + E unknown V - What is the minimum number of points along the meter s range that it needs to be calibrated at, given the assumption of perfectly linear response? If a voltmeter is to be used to measure the voltage of an unknown source, as a differential indicator only, what is the minimum number of points along its range that it needs to be calibrated at? Differential (comparison) measurement + - V E unknown E standard file 00526 Question 5 Explain the simplest way to perform a single-point calibration on a highly sensitive, precision voltmeter. How do you ensure the voltmeter is receiving a fixed input of known quantity, especially without having expensive calibration equipment available? file 00527 3

Question 6 This voltage divider should output half the battery s voltage between points A and B: 1 MΩ A B 1 MΩ + V - However, if you perform this same experiment using a real voltmeter, the measurement obtained with the meter will be substantially different from what should be there, based on a prediction of 1 2 E battery. Explain why the voltmeter registers as it does. What is it about this circuit that causes the measurement to be so far off from the prediction, when we know full well that other voltage divider circuits we ve constructed do not exhibit any significant error? file 00528 Question 7 The following voltmeter circuit avoids problems of loading when measuring high-resistance voltage sources. Describe how to operate this circuit, and how loading error is eliminated by using such a potentiometric instrument: 1 MΩ Potentiometric voltmeter A B 1 MΩ Bal Meas - V + file 00529 Question 8 General metrology used to be based upon standard artifacts, but the modern scientific trend is toward intrinsic standards. Explain what these two terms mean, as well as their significance in scientific work. file 00688 Question 9 What technology is currently regarded as state-of-the-art for reproducing the standard volt? file 00687 Question 10 What technology is currently regarded as state-of-the-art for reproducing the standard ohm? file 01521 4

Question 11 Calibration laboratories often make reference to Test Uncertainty Ratios (TUR s), normally holding to a ratio of 4:1 or more when performing calibration work on instruments. What does this figure mean? file 00689 5

Answer 1 Answers I ll let you research the definitions to these terms! Answer 2 A balance scale works on the principle of masses in equilibrium: the unknown mass is countered with known quantities of mass until the scale registers a condition of balance. Answer 3 The galvanometer registers zero if and only if the two voltage sources are precisely equal. Answer 4 A perfectly linear voltmeter, used to measure voltage directly, needs to be calibrated at two points along its measurement range in order to ensure measurement accuracy. A voltmeter used for differential measurement need only be calibrated at a single point along its range, and that single point is zero. Answer 5 Short the voltmeter s test leads together. This creates an input condition of zero volts. Answer 6 This circuit is a demonstration of voltmeter loading on the circuit, by causing a falsely low measurement. Answer 7 Move the switch to the Bal position and adjust the potentiometer until the meter movement registers zero volts precisely. Then, move the switch to the Meas position and read the voltage directly from the meter movement. Answer 8 An artifact is a non-reproduceable object that is arbitrarily deemed the standard. An intrinsic standard, by comparison, is a reproduceable standard based on immutable physical constants. Answer 9 The voltage standard used to be based on a particular type of chemical battery, but not anymore! Answer 10 The voltage standard used to be based on a specified length of special wire, but not anymore! Answer 11 The Test Uncertainty Ratio refers to how much more precise the calibrating instrument is compared to the instrument being calibrated. 6

Notes 1 Notes The words accuracy and precision are often (incorrectly) interchanged with one another. They have distinct and separate meanings, though. Regarding the word traceability, you might want to elaborate on electrical metrology as a career in itself. Maintaining international measurement standards is a work-intensive endeavor, and qualified electronics people at all levels of expertise (technicians, engineers, researchers, scientists) are needed in many locations around the world to maintain the system. Though it may sound boring, metrology is essential to state-of-the art scientific research as well as modern industry. Notes 2 The important point I wish to communicate with this question is that the scale does nothing but indicate a condition of balance (zero excess mass on either side). As such, the primary source of accuracy in this measurement system does not lie within the scale mechanism itself! This is an important quality of a measurement system: to isolate sources of inaccuracy to very specific portions of the system, where they may be tightly controlled. Notes 3 The first question your students are likely to ask is, What is a galvanometer? Let them do the research on this question! The answer is easy to find. Next, your students will have to explain how this system may be used to do something practical. Just as a laboratory balance-beam serves the purpose of measuring mass, this system also measures something. Challenge your students to draw analogies between the components of this system and the components of a laboratory balance. What essential feature must the E standard voltage source have in order for this to be a useful measurement system? Notes 4 Ask your students if the two calibration points on the meter s range should be close together, or far apart, for the best (most comprehensive) calibration possible. Discuss the easier calibration requirements of the differential meter. Challenge your students with this question: Does the measurement linearity of a voltmeter matter as much if it is used to make a differential measurement, as compared to if it is used to make a direct measurement? Why or why not? Notes 5 Challenge your students with this question: If zero is an appropriate signal to use for a single-point calibration, then why not just leave the two test leads disconnected? Why should you short them together? If you happen to have a sensitive voltmeter available in the classroom, the answer may be demonstrated with ease. This is especially true if you place the voltmeter in the AC millivolt range so it picks up stray power-line voltages from nearby electrical devices and utilities. Notes 6 Meter loading is a serious problem in electrical metrology. It is a basic principle of measurement that a measuring instrument always impacts the quantity being measured, to some extent. In cases like this, the extent of impact is severe. For those instructors with some background in quantum physics, please refrain from perpetuating the myth that meter loading is an example of Heisenberg s Uncertainty Principle. The Uncertainty Principle has nothing to do with the impact of a measuring instrument on something we measure. Rather it describes an uncertainty inherent to the quantity itself. If you want to share a true electrical example of this uncertainty principle with your students, wait until they study harmonics and spectrum analyzers, where you can tell them it is impossible to measure both the instantaneous amplitude of a signal and the frequency of a signal with unlimited certainty. 7

Notes 7 Potentiometric DC voltage measurements used to be commonplace in industry prior to the advent of precision electronic voltmeters with high-resistance inputs. The technique, though, is certainly not obsolete, and in fact is still employed in metrological laboratories worldwide to obtain the most accurate (no-load) voltage measurements possible. It is impressive to have students build a potentiometric voltmeter circuit using a cheap analog VOM (Volt-Ohm-Milliammeter), and have it outperform a direct-reading, laboratory-quality digital voltmeter costing hundreds of dollars! The greater the resistance inherent to the voltage source being measured, the more severe the loading error of any voltmeter, and the more a potentiometric instrument proves its worth. Notes 8 A great example of an artifact standard is the metal bar which used to be the international standard for the meter (metric unit of length). Ask your students how convenient it would be for scientists working around the world to calibrate their equipment if the only primary standard for length measurement were a single bar of metal. What benefits may be derived from the use of intrinsic standards? An excellent example of an easily-accessed intrinsic standard is the standard for time, available via shortwave radio: 5 khz, 10kHz, 15 khz, and 20 khz (there are other frequencies, too). Have any of your students heard of timepieces that synchronize themselves to an atomic clock? With a shortwave radio, they can tune into that same atomic clock s broadcast and synchronize their own wristwatches! This is an excellent discussion activity, and a great way to garner student interest in what is potentially a dull subject. Ask your students whether or not the existence of intrinsic standards negates the purpose of artifacts. That is, does anyone use artifacts anymore? Why or why not? Notes 9 Questions like this will never become obsolete, even though the answer may. At the time of this writing (August 2003), the internationally recognized technology for the standard volt is based on a quantum phenomenon known as the Josephson Junction effect. Notes 10 Questions like this will never become obsolete, even though the answer may. At the time of this writing (August 2003), the internationally recognized technology for the standard volt is based on a quantum phenomenon known as the Quantum Hall Effect. Notes 11 While your students may never have to calculate TUR s, it is still important for them to know what the general principle is. If any of them experience difficulty understanding the concept, ask them if it makes any sense to use a ruler to check the calibration of a micrometer, or to use a wristwatch to check the long-term stability of a laboratory-grade chronograph. 8