arxiv: v1 [cond-mat.str-el] 22 Nov 2017

Similar documents
Particle Physics. Michaelmas Term 2011 Prof Mark Thomson. Handout 3 : Interaction by Particle Exchange and QED. Recap

I 3 2 = I I 4 = 2A

CS 491G Combinatorial Optimization Lecture Notes

Eigenvectors and Eigenvalues

Lecture 6: Coding theory

18.06 Problem Set 4 Due Wednesday, Oct. 11, 2006 at 4:00 p.m. in 2-106

Factorising FACTORISING.

SECOND HARMONIC GENERATION OF Bi 4 Ti 3 O 12 FILMS

Lecture 8: Abstract Algebra

8 THREE PHASE A.C. CIRCUITS

A Primer on Continuous-time Economic Dynamics

Necessary and sucient conditions for some two. Abstract. Further we show that the necessary conditions for the existence of an OD(44 s 1 s 2 )

1 This diagram represents the energy change that occurs when a d electron in a transition metal ion is excited by visible light.

CARLETON UNIVERSITY. 1.0 Problems and Most Solutions, Sect B, 2005

22: Union Find. CS 473u - Algorithms - Spring April 14, We want to maintain a collection of sets, under the operations of:

for all x in [a,b], then the area of the region bounded by the graphs of f and g and the vertical lines x = a and x = b is b [ ( ) ( )] A= f x g x dx

TIME-VARYING AND NON-LINEAR DYNAMICAL SYSTEM IDENTIFICATION USING THE HILBERT TRANSFORM

MCH T 111 Handout Triangle Review Page 1 of 3

Now we must transform the original model so we can use the new parameters. = S max. Recruits

Lecture 2: Cayley Graphs

Counting Paths Between Vertices. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs

2.4 Theoretical Foundations

Numbers and indices. 1.1 Fractions. GCSE C Example 1. Handy hint. Key point

F / x everywhere in some domain containing R. Then, + ). (10.4.1)

Solutions for HW9. Bipartite: put the red vertices in V 1 and the black in V 2. Not bipartite!

Electronic Circuits I Revision after midterm

Total score: /100 points

6.3.2 Spectroscopy. N Goalby chemrevise.org 1 NO 2 H 3 CH3 C. NMR spectroscopy. Different types of NMR

NON-DETERMINISTIC FSA

Mid-Term Examination - Spring 2014 Mathematical Programming with Applications to Economics Total Score: 45; Time: 3 hours

VISIBLE AND INFRARED ABSORPTION SPECTRA OF COVERING MATERIALS FOR SOLAR COLLECTORS

arxiv: v1 [cond-mat.str-el] 22 Apr 2015

SIMPLE NONLINEAR GRAPHS

Lecture Notes No. 10

CHEM1611 Answers to Problem Sheet 9

SECTION A STUDENT MATERIAL. Part 1. What and Why.?

CIT 596 Theory of Computation 1. Graphs and Digraphs

6.3.2 Spectroscopy. N Goalby chemrevise.org 1 NO 2 CH 3. CH 3 C a. NMR spectroscopy. Different types of NMR

Electromagnetism Notes, NYU Spring 2018

Solids of Revolution

CS 2204 DIGITAL LOGIC & STATE MACHINE DESIGN SPRING 2014

The DOACROSS statement

THE INFLUENCE OF MODEL RESOLUTION ON AN EXPRESSION OF THE ATMOSPHERIC BOUNDARY LAYER IN A SINGLE-COLUMN MODEL

CSE 332. Sorting. Data Abstractions. CSE 332: Data Abstractions. QuickSort Cutoff 1. Where We Are 2. Bounding The MAXIMUM Problem 4

Technology Mapping Method for Low Power Consumption and High Performance in General-Synchronous Framework

Generalization of 2-Corner Frequency Source Models Used in SMSIM

Spacetime and the Quantum World Questions Fall 2010

Threshold and Above-Threshold Performance of Various Distributed Feedback Laser Diodes

Matrices SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics (c) 1. Definition of a Matrix

The University of Nottingham SCHOOL OF COMPUTER SCIENCE A LEVEL 2 MODULE, SPRING SEMESTER MACHINES AND THEIR LANGUAGES ANSWERS

1.3 SCALARS AND VECTORS

Lesson 2.1 Inductive Reasoning

Section 2.3. Matrix Inverses

Common intervals of genomes. Mathieu Raffinot CNRS LIAFA

Automata and Regular Languages

arxiv: v1 [cond-mat.mes-hall] 3 Jun 2009

Supporting Information. Observation of Excitonic Fine Structure in a 2D Transition Metal. Dichalcogenide Semiconductor

H 4 H 8 N 2. Example 1 A compound is found to have an accurate relative formula mass of It is thought to be either CH 3.

Physics Lecture 14: MON 29 SEP

Lesson 2.1 Inductive Reasoning

Introduction to Olympiad Inequalities

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

NEW CIRCUITS OF HIGH-VOLTAGE PULSE GENERATORS WITH INDUCTIVE-CAPACITIVE ENERGY STORAGE

THE ANALYSIS AND CALCULATION OF ELECTROMAGNETIC FIELD AROUND OVERHEAD POWER LINE HongWang Yang

SOME INTEGRAL INEQUALITIES FOR HARMONICALLY CONVEX STOCHASTIC PROCESSES ON THE CO-ORDINATES

The Stirling Engine: The Heat Engine

Algebra 2 Semester 1 Practice Final

I1 = I2 I1 = I2 + I3 I1 + I2 = I3 + I4 I 3

A Lower Bound for the Length of a Partial Transversal in a Latin Square, Revised Version

Chem Homework 11 due Monday, Apr. 28, 2014, 2 PM

where the box contains a finite number of gates from the given collection. Examples of gates that are commonly used are the following: a b

Surds and Indices. Surds and Indices. Curriculum Ready ACMNA: 233,

CS 360 Exam 2 Fall 2014 Name

On the Spectra of Bipartite Directed Subgraphs of K 4

Particle Lifetime. Subatomic Physics: Particle Physics Lecture 3. Measuring Decays, Scatterings and Collisions. N(t) = N 0 exp( t/τ) = N 0 exp( Γt/)

Sturm-Liouville Theory

Solutions to Problem Set #1

6.5 Improper integrals

Separable discrete functions: recognition and sufficient conditions

Bravais lattices and crystal systems

Slope Lengths for 2-Bridge Parent Manifolds. Martin D. Bobb

GM1 Consolidation Worksheet

ERT 316: REACTION ENGINEERING CHAPTER 3 RATE LAWS & STOICHIOMETRY

Learning Partially Observable Markov Models from First Passage Times

Year 10 Maths. Semester One Revision Booklet.

Project 6: Minigoals Towards Simplifying and Rewriting Expressions

CS 573 Automata Theory and Formal Languages

TOPIC: LINEAR ALGEBRA MATRICES

Alpha Algorithm: A Process Discovery Algorithm

SUPPLEMENTARY NOTES ON THE CONNECTION FORMULAE FOR THE SEMICLASSICAL APPROXIMATION

Probability The Language of Chance P(A) Mathletics Instant Workbooks. Copyright

CS311 Computational Structures Regular Languages and Regular Grammars. Lecture 6

6. Suppose lim = constant> 0. Which of the following does not hold?

Comparing the Pre-image and Image of a Dilation

Cahn-In Gold-Prelog R/S System Revisited: Simplifying Assignment of Configuration in Chiral Compounds

Monochromatic Plane Matchings in Bicolored Point Set

Activities. 4.1 Pythagoras' Theorem 4.2 Spirals 4.3 Clinometers 4.4 Radar 4.5 Posting Parcels 4.6 Interlocking Pipes 4.7 Sine Rule Notes and Solutions

Arrow s Impossibility Theorem

Field Dependence of Magnetic Ordering in Kagomé-Staircase Compound Ni 3 V 2 O 8

Nondeterministic Automata vs Deterministic Automata

Transcription:

Mgnetoeletri memory funtion with optil reout rxiv:1711.814v1 [on-mt.str-el] Nov 17 V. Kosis, 1, K. Pen,, 3 T. Rõõm, 4 U. Ngel, 4 J. Vít,, 5, 6 J. Romhányi, 7 Y. Tokung, 1, 8 Y. Tguhi, 1 Y. Tokur, 1, 9, 1 I. Kézsmárki,, 11, 1 n S. Borás 1 RIKEN Center for Emergent Mtter Siene CEMS, Wko, Sitm 351-198, Jpn Deprtment of Physis, Bupest University of Tehnology n Eonomis n MTA-BME Lenület Mgneto-optil Spetrosopy Reserh Group, 1111 Bupest, Hungry 3 Institute for Soli Stte Physis n Optis, Wigner Reserh Centre for Physis, Hungrin Aemy of Sienes, H-155 Bupest, P.O.B. 49, Hungry 4 Ntionl Institute of Chemil Physis n Biophysis, 1618 Tllinn, Estoni 5 Institute of Physis ASCR, N Slovne, 18 1 Prgue 8, Czeh Repuli 6 Fulty of Nuler Siene n Physil Engineering, Czeh Tehnil University, Břehová 7, 115 19 Prgue 1, Czeh Repuli 7 Okinw Institute of Siene n Tehnology Grute University, Onn-son, Okinw 94-395, Jpn 8 Deprtment of Avne Mterils Siene, University of Tokyo, Kshiw 77-8561, Jpn 9 Quntum-Phse Eletronis Center, Deprtment of Applie Physis, University of Tokyo, Tokyo 113-8656, Jpn 1 Deprtment of Applie Physis, University of Tokyo, Hongo, Tokyo 113-8656, Jpn 11 Experimentl Physis 5, Center for Eletroni Correltions n Mgnetism, Institute of Physis, University of Augsurg, 86159 Augsurg, Germny 1 Hungrin Aemy of Sienes, Premium Postotor Progrm, 151 Bupest, Hungry The ultimte gol of multiferroi reserh is the evelopment of new-genertion non-voltile memory evies 1, the so-lle mgnetoeletri ME memories, where mgneti its re ontrolle vi eletri fiels without the pplition of eletril urrents sujet to issiption. This low-power opertion exploits the entnglement of the mgnetiztion n the eletri polriztion oexisting in multiferroi mterils,3. Here we emonstrte the optil reout of ME memory sttes in the ntiferromgneti AFM n ntiferroeletri AFE LiCoPO 4, se on the strong sorption ifferene of THz rition etween its two types of ME omins. This unusul ontrst is ttriute to the ynmi ME effet of the spin-wve exittions, s onfirme y our mirosopi moel, whih lso ptures the hrteristis of the oserve stti ME effet. Our proof-of-priniple stuy, emonstrting the ontrol n the optil reout of ME omins in LiCoPO 4, lys own the fountion for future ME memory evies se on ntiferroeletrintiferromgneti insultors. During the lst ees the gret potentil of multiferroi mterils in relizing ME memory evies hs le to the revivl of the ME effet,4 7 n the isovery of plethor of multiferroi ompouns inluing BiFeO 3, well hrterize room-temperture multiferroi mteril 8 1. In multiferrois-se memory evies, the writing n reing of mgneti its y eletri fiel my e relize vi the ME oupling etween the ferromgneti n ferroeletri orers. Despite the reent progress, the synthesis of multiferrois with mgnetiztion n ME effet suffiiently lrge for pplitions is still hllenging. As n lterntive pproh, investigte here, informtion oul e store in ME omins even in the sene of ferromgnetism or ferroeletriity. While similr onept hs een propose for metlli ompouns, terme s AFM spintronis 15, the potentil of AFE-AFM insultors in ME memories hs not een exploite yet. LiCoPO 4, eing suh multi-ntiferroi insultor, rew ttention owing to its strong liner ME effet 11,1 n its toroii orer 13,14. Here we emonstrte tht in the AFM-AFE phse of LiCoPO 4 the two ifferent ME memory sttes hve istint optil properties istinguishle y trnsmission mesurements without the nee of high-intensity light ems 13,14. At room temperture LiCoPO 4 hs the orthorhomi olivine struture spe group: P nm, whih is shown in Fig. 1. While eh Co site rries lol eletri polriztion ue to its low site symmetry, the totl polriztion of the unit ell vnishes see Fig. 1. Below T N =1.7 K, this struturl ntiferroeletriity is supplemente y two-sulttie olliner AFM orer, where S=3/ spins of Co + ions re ligne prllel to the y xis 16. Sine the AFM stte simultneously reks the sptil inversion n the time reversl symmetries, the mteril exhiits liner ME effet P µ = χ em µν H ν, µ, ν = x, y, z with finite χ em xy n χ em yx ME suseptiilities 1. Although tiny uniform nting of the spins from the y xis my further reue the mgneti symmetry n generte finite χ em xz n χ em zx, these seonry effets re not relevnt to the present stuy 13,14. In the AFM stte two possile omins n exist, lele s α n β in Fig. 1. These two ME omins n e trnsforme into eh other y either the sptil inversion or the time reversl opertions, thus, they re hrterize y stti ME oeffiients χ em yx of opposite signs, s experimentlly emonstrte in Figs. n, in greement with former stuies 11,1. Owing to the ME oupling, simultneous pplition of wek rosse fiels E y.1 1 kv/m n µ H x.1 T uring the ooling proess through T N estlishes the single-omin stte. When the sign of either the eletri or the mgneti fiel

y J J J CoO6 x α P P S S S S P P β P M M P FIG. 1: Mgnetoeletri omins in LiCoPO4., Unit ell of the LiCoPO4 viewe from the z xis. The four Co sites - re surroune y oxygen other, while Li n P sites re omitte for lrity. The inversion enter of the unit ell is lele y i. The three non-equivlent exhnge intertions, J, J n J, re inite with rrows., The four omintions ++, +, + n of poling fiels Hx, Ey re represente y four olours., The mgneti sultties green n olive rrows in the AFM omins α n β re interhnge while the polriztion pttern rown rrows is the sme for the two omins., Domins α n β re selete y the poling fiels ++ re n + lue vi the ME effet oring to Eq. 4 ssuming xy >. is reverse the other ME omin is selete see Figs. 1 n. The stti ME effet is usully ssoite with olletive moes, the so-lle ME resonnes17,18. These trnsitions n e exite y oth the eletri n mgneti fiels of light s the mgneti omponent of the rition genertes not only mgnetiztion ut lso polriztion wves in the mteril. Depening on the sign of the optil ME effet, the mgnetilly inue polriztion wves n interfere either onstrutively or estrutively with the polriztion wves inue y the eletri fiel of light through the ieletri permittivity, giving rise to n enhnement or reution of the omplex refrtive inex N = n + iκ. For linerly polrize light with Eyω, Hxω propgting long the +z iretion p N+z ω = εyy ωµxx ω ± χem yx ω,where εyy n µxx re elements of the ieletri permittivity n mgneti permeility tensors n ± signs orrespon to the two 19 omins with opposite signs of χem yx ω. If the opti- l ME effet is strong, the ME omin hrterize y χem yx ω < n eome trnsprent, while for the other omin the sorption oeffiient, α = ω/ κ, is enhne. Suh uniiretionl light trnsmission, lso lle iretionl optil nisotropy, hs een reporte in severl multiferrois17,19. However, this phenomenon hs usully een oserve in strong mgneti fiels n never s remnent optil memory effet in zero fiel. It is importnt to note tht the ontrst etween the two ME omins hs to hnge sign if light propgtion iretion p is reverse from +z to z oring to N z ω = εyy ωµxx ω χem yx ω. Thus, the reversl of the light propgtion is expete to e equivlent with the interhnge of the two omins. Figures -f show the rel n imginry prts of the refrtive inex spetr of LiCoPO4 in the terhertz frequeny rnge for linerly polrize light with Eyω, Hxω. Spetr plotte in Figs. - with four ifferent olours were otine fter poling the smple from T > TN to T =5 K using four omintions of the poling fiels ±Hx, ±Ey, s esrie for the stti ME mesurements. To oserve the remnent effets, the fiels were swithe off uring the spetrosopi mesurements. Below TN two strong resonnes of mgneti origin pper t 1.13 THz n 1.36 THz. The strength of the resonne t 1.36 THz strongly epens on the poling onitions, nmely it is wek for the sme signs n strong for the opposite signs of poling fiels. Moreover, the two spetr otine for the sme sign of poling fiels re ientil within the preision of the experiment s well s the two spetr mesure with poling fiels of opposite signs. This inites the strong ME hrter of the moe t 1.36 THz n lso emonstrtes the reliztion of either of the two ME omin sttes fter the poling proess. In ontrst, the moe t 1.13 THz shows only wek optil ME effet, with opposite sign with respet to the strong effet oserve for the moe t 1.36 THz. Next, we verifie tht the optil ontrst etween the two ME omins hnges upon the reversl of light propgtion iretion s expete on symmetry grouns. Inee, s iserne in Figs. e-f, spetr mesure for light propgtion long the +z iretion with the sme sign of poling fiels oinie with spetr mesure for light propgtion long the z iretion with opposite signs of the poling fiels n vie vers. Due to the optil ME effet for given iretion of light propgtion one of the ME omins is nerly trnsprent t roun 1.36 THz, while the other omin strongly sors photons in this frequeny rnge, s reflete y the lrge ifferene in κ. In orer to systemtilly etermine the seletion rules for the two spin-wve moes oserve in Fig. n to hek the existene of other spin-wve exittions, optil sorption spetr were mesure for light propgtion long the x, y n z xes, with two orthogonl liner polriztions in eh se. In the sene of poling, verging over the ifferent ME omins elimintes the iretionl optil nisotropy term from the refrp tive inex, hene, N ω = εµµ ωµνν ω. As shown in

3 ] 1 E y, H x T = K.7 5 T = 5 K +z e T = 5 K z +z P [µc /m -1 n.7 e m y x / [p s /m ] - -1. -.5..5 1. µ o H [T ] 3 E y, H x 1 H = 1 T -1 - κ.6 5.1 5.1. 5 T = 3 K T = 5 K T = 3 K +z T = 3 K f T = 5 K z +z T = 3 K -3 5 1 1 5 T e m p e r tu re [K ]. 1. 1. 1.4 1.6 F re q u e n y [T H z ] 1. 1. 1.4 1.6 F re q u e n y [T H z ] FIG. : Remnent stti n optil ME effets in LiCoPO 4., Mgneti fiel epenene of the stti ME effet t T = K mesure fter poling the smple in the four omintions ++, +, + n of poling fiels H x, E y. The poling fiels were swithe off uring the mesurement, hene the slope of the polriztion P versus mgneti fiel urve orrespons to the liner ME effet., Temperture epenene of the liner ME effet, χ em yx, mesure in wrming up fter poling in the four onfigurtions of H x, E y. The olour of eh urve in pnels n orrespons to the pplie poling proess following the onvention introue in Fig. 1. /, Spetr of the rel/imginry prt of the refrtive inex t T =5 K mesure fter poling. e/f, Spetr of the rel/imginry prt of the refrtive inex mesure t T =5 K fter poling in two selete onfigurtions, ++ n +. In this se the mesurements were performe for light propgtion long the +z iretion full symols n the z iretion open symols. Note tht the reversl of the propgtion iretion is equivlent to the interhnge of the two ME omins vi the poling proess. In pnels -f ll spetr were mesure using linerly polrize light with Ey ω, Hx ω n spetr mesure in the prmgneti stte re plotte in lk. Fig. 3, esies the two moes ouple to Hx ω #1 n #3 we oserve two itionl spin-wve resonnes ouple to Hz ω t 1.33 THz # n 1.43 THz #4, while no resonne ws etete for Hy ω. The iretionl optil nisotropy, foun to e strong for moe #3 n wek for moe #1 Figs. -f, requires tht these resonnes respon to oth Ey ω n Hx ω. Inee, the ontriution of moe #3 to the Ey ω,hz ω spetrum lue in Fig. 3 n only e expline y the eletri ipole exittion of this resonne vi Ey ω. To unover the mehnism responsile for the stti ME effet n the remnent optil iretionl nisotropy, we onsier the following Hmiltonin for the four spins S, S, S, S in the unit ell, impose y the spe group symmetry of LiCoPO 4 see the Supplementry Informtion 3 5 : H = 4J ij S i S j Λ S y i Λ x z ij Λ xz Q xz Q xz g xx µ B H x i i + Q xz Q xz i Q x z i S x i E y P y. 1 where i {,,, }. J ij stns for the nerest neighour exhnge oupling with the symmetry-itte form of J = J, J = J n J = J, s inite in Fig. 1. Λ, Λ x z n Λ xz re the single-ion nisotropy prmeters n the spin-qurupole terms re efine s Q x z i = Si xsx i Si zsz i n Q µν i = S µ i Sν i + Sν i Sµ i. The lst line of Eq. 7 esries the intertion with stti mgneti n eletri fiels, where

4 3 6 3 # # 4 Energy H x > Energy H x < 8 E y E y 4 ] -1 AFM-β AFM-α AFM-α AFM-β α [ m 1 6 1 # 1 # 3 #1 π #3 ππ 8 4 +S y S y z S y +S y 1.1 1. 1.3 1.4 F re q u e n y [T H z ] FIG. 3: Seletion rules of the spin-wve exittions in LiCoPO 4. Asorption oeffiient spetr, αω=ω/ κω, mesure in six ifferent polriztion onfigurtions. The tle of the inset inites the iretion of eletri E ω n mgneti H ω fiels of linerly polrize light. In two polriztion onfigurtions with H ω y not isplye here, no sorption pek ws oserve. In the remining four spetr, shifte vertilly for lrity, four istint resonnes re ientifie n lele s moes #1 to #4. The lk vertil rs, initing the positions of these resonnes, ross only those spetr where the orresponing resonnes re tive. The re spetrum, orresponing to the se where the optil ME effet ws oserve, see Figs. -f, is n verge of four ifferent poling omintions. the eletri ipole moment is lulte following Ref. 6: P y = xy Q xy Q xy Q xy + Q xy + yz Q yz + Q yz Q yz Q yz. A finite H x nts the orere spins, n the non-zero S y n S x omponents proue finite eletri polriztion P y whose sign epens on the omin, s shemtilly shown in Fig. 1. The groun stte energies of the two AFM omins re lulte using vritionl pproh esrie in the Supplementry Informtion: E GS α/β 18J + J J 9Λ 3 xye y ± g xx µ B H x, 3 6J + 6J + Λ where ± signs orrespon to omin α n β, respetively. As shown in Fig. 4, in rosse eletri n mgneti fiels, the egenery of the two AFM omins is lifte n α is selete when E y H x >, while β for E y H x <. The ME suseptiility erive for omin α x # π #4 FIG. 4: Seletion of the AFM omins n the spinexittions of LiCoPO 4., Energies of the AFM omins re qurti in the eletri n mgneti fiels oring to Eq. 3. When H x > the α omin hs lower energy thn the β for positive E y, while negtive E y stilizes the β omin. For H x < role of the two AFM omins re interhnge., ME Py ω, Mx ω resonnes n mgneti only Mz ω spin exittions viewe from the y xis, s illustrte on the α omin. Lol mgnetiztion of the n sites preess ounter-lokwise long lterntely rotte ellipses in the xz plne, while on the n sites spins preess lokwise. The re n lue shing roun the ellipses represents the y omponent of the lol polriztion, while the green ege the y omponent of the lol mgnetiztion. In the mile of eh ellipse the tul iretion of the preessing spin is shown y green rrows, while the re n lue mrks represent the tul vlue of the spin-inue polriztion. When the preessing spin points to the re lue region, the polriztion is pointing in the +y y xis, while mgnitue of the polriztion is illustrte y the size of the mrk. The resultnt osillting net mgneti Mx ω n Mz ω n net eletri Py ω ipole moments re shown in the mile of eh unit ell. For β omins re n lue shing of the ellipses re reverse, hene Py ω is in nti-phse ompre to the α omin. n β hs opposite sign: yx α/β = ± 6 xyg xx µ B, 4 6J + 6J + Λ χ em s illustrte in Fig. 1. This is in orne with the

5 experimentl oservtions in Figs. n. The osillting mgnetiztion M ω n polriztion P ω of the spin exittions with S = 1 over the groun stte were hrterize y multioson spin-wve theory, whih is esrie in the Supplementry Informtion. In greement with the results of our THz spetrosopy experiments, two ME exittions were foun with Mx ω n Py ω, from whih π is ssigne to moe #1 n ππ to moe #3. Two further moes, π n, re exite with Hz ω. They re ssoite with no finite P ω n re ssigne to moes # n #4, respetively. Motion of the sulttie mgnetiztions n lol polriztions oring to Eq. re illustrte for the α omin in Figs. 4. The finite P ω of the ME exittions is ttriute to the unompenste polriztion of the unit ell, wheres the lol ynmi polriztion is nele for the π n moes within the yz lyers. While the spin omponents preess in the sme iretion in α n β omins, there is π phse shift etween osilltions of Py ω in the two omins, s Eq. is liner in the sulttie mgnetiztion long the y xis. This sign hnge of the ynmi polriztion is the mirosopi origin of the optil iretionl nisotropy in LiCoPO 4. In summry, we hve emonstrte tht the ME effet n e exploite for the optil reout of informtion store in AFM omins s the ±k iretionl optil nisotropy etween the two types of omins gives rise to sizele sorption ifferene even in the sene of externl fiels. Min vntges of suh type of memories re i the possiility to eletrilly write mgneti its with low power onsumption vi the stti ME effet, ii the roustness of suh evies ginst stry eletri n mgneti fiels ue to the ul ntiferroi nture of the pplie mterils, n iii the onttless reout funtion, if the optil sheme propose ove n e implemente with suffiiently high sptil resolution. tive ntenns y optil fiers. This rrngement provie n esy wy to reverse the propgtion iretion of the THz rition y interhnging the position of the emitter n reeiver, while leving the optil pth intt. Optil mesurements with reverse light propgtion were one when the smple ws oole to single ME omin stte. In orer to lign the ME omins of LiCoPO 4 eletri fiel in the rnge of.1 1 kv/m n the mgneti fiel.1 T of permnent mgnet were pplie long the y n x xes, respetively, t T =3 K, ove T N. In the next step, the smple ws oole own to T =5 K, where the poling fiels were swithe off n then the trnsmission mesurements were rrie out. THz sorption experiments using Mrtin-Puplett interferometer in NICPB, Tllinn were use to fin suitle E y n H x fiels for poling. Aknowlegements This work ws supporte y the Hungrin Reserh Funs OTKA K 18918, OTKA PD 111756, OTKA K1647, Ntionl Reserh, Development n Innovtion Offie NKFIH, ANN 1879 n Bolyi 565/14/11, y the Deutshe Forshungsgemeinshft DFG vi the Trnsregionl Reserh Collortion TRR 8: From Eletroni Correltions to Funtionlity Augsurg - Munih - Stuttgrt n y the Estonin Ministry of Eution n Reserh uner Grnt No. IUT3-3, n the Europen Regionl Development Fun projet TK134. Author Contriutions V.K., S.B., J.V., T.R., U.N. performe the mesurements; V.K., S.B., I.K., J.V. nlyse the t; V.K., Y.Tokung prepre the smple; K.P., J.R. evelope the theory; V.K., K.P., I.K. wrote the mnusript; eh uthor ontriute to the isussion of the results; V.K, Y. Tguhi, S.B., I.K. plnne n supervise the projet. Aitionl informtion The uthors elre no ompeting finnil interests. Methos Single rystls of LiCoPO 4 were grown y the optil floting zone metho esrie in Ref. 8. Plte-shpe smples with 4 4.6 mm 3 imensions were ut for the stti n optil mesurements. Mesurement of the stti ME effet ws rrie out in Physil Property Mesurement System Quntum Design using Keithley 6517A Eletrometer. Temperture epenene of the ME suseptiility ws lulte from the polriztion mesure in the wrming runs in the presene of 1 T mgneti fiel. Time-omin THz spetrosopy ws use to mesure the omplex refrtive inex spetr in the GHz - THz frequeny rnge. The THz rition ws guie y off-xis proli mirrors, n its preise liner polriztion ws mintine y free stning wire gri polrizers, ple into prllel THz em efore n fter the smple. THz light genertion ws se on Topti Terflsh spetrometer 7 whose fs light pulses were ouple to the emitter n reeiver photoonu-

6 Supplementry mteril E C z C y C x i σ xy σ xz σ yz z P S x x + 1 x x + 1 x x + 1 x x + 1 y y y + 1 y + 1 y y y + 1 y + 1 y P S S FIG. 5: Unit ell of LiCoPO 4 exemplifie on the α AFM omin. The sites together with, n together with form seprte lyers, whih re onnete y inversion symmetry. Spin orienttion re lele y green rrows, rk green rrows enoe S y >, while light green spins re S y <. Lol polriztions re shown y re rrows. For the α ME omin the ross prout points to the +z, while for the β to the z iretion. S P I. SYMMETRY ANALYSIS Below T N = 1.7 K the mgneti moments of LiCoPO 4 orer ntiferromgnetilly, with the moments prllel to the y-xis 16 s shown in Fig. 5. Symmetry of the rystl in the prmgneti phse is the P nm, while in the mgnetilly orere phse the P nm mgneti spe group, elements of whih re enumerte in Tle I n Tle II, respetively. The sptil inversion symmetry prevents the evelopment of finite polriztion in the unit ell. However, esies the AFM orer, the mgneti spe group of LiCoPO 4 llows ntiferroeletri AFE orer of the lol polriztion. The mgneti struture in the groun stte is given y S = S = S = S = µ, 5 while the symmetry llowe lol eletri ipole moments t the Co sites re ξ ξ P = P =, P = P =. 6 ζ ζ P x z z + 1 z z + 1 z z + 1 z z + 1 P x P x P x P x P x P x P x P x P y P y P y P y P y P y P y P y P z P z P z P z P z P z P z P z S x S x S x S x S x S x S x S x S y S y S y S y S y S y S y S y S z S z S z S z S z S z S z S z Q xy Q yz Q xz Q xy Q yz Q xz Q xy Q yz Q xz Q xy Q yz Q xz Q xy Q yz Q xz Q xy Q yz Q xz Q xy Q yz Q xz Q xy Q yz Q xz TABLE I: Effet of the P nm spe group on oorintes, mgneti moments, spin-multipoles n Co sites. The omponents of the eletri polriztion ehve s the orresponing x, y, n z oorintes ftorize y the frtionl isplement. As n exmple, from the trnsformtion properties of the spin-qurupolr Q µν = S µ S ν + S ν S µ opertor we n re off the symmetry llowe single-ion nisotropies in the Hmiltonin: Λ xz, = Λ xz, = Λ xz, = Λ xz, = Λ xz, while Λ xy,i = n Λ yz,i = for ll i =,,,. The lol polriztion hs two inepenent AFE omponents long the x n z iretions. In Fig. 5 we show only the omponent long the x xis for the ske of simpliity. The lol polriztion my hve ifferent origins; one is inherent to the istorte CoO 6 lusters, while the other is ue to the spins vi the p hyriiztion moel. In the moel presente elow we onentrte only on the ltter se, whih will give rise to the mgnetoeletri effet. Trnsformtion properties of the spin-multipolr moments n permuttion of the Co sites uner the P nm spe group impose restritions to the possile terms in the miniml spin Hmiltonin Tle I. As result, the miniml Hmiltonin for the four spins in the unit ell,

7 E C z C y C x i σ xy σ xz σ yz P x P x P x P x P x P x P x P x P y P y P y P y P y P y P y P y P z P z P z P z P z P z P z P z S x S x S x S x S x S x S x S x S y S y S y S y S y S y S y S y S z S z S z S z S z S z S z S z TABLE II: Effet of the P nm mgneti spe group on the mgneti moments of Co + ions. Symmetry elements omine with time reversl symmetry in the P nm spe group re inite y re olor. Spin-qurupoles hve the sme trnsformtion properties uner P nm s uner the prmgneti spe group in Tle I. This is the symmetry group of the time-reversl roken groun stte, esrie in Eq. 5. ssuming perioi ounry onitions is H = 4J S S + S S + 4J S S + S S + 4J S S + S S Λ [S + S + S y y + S ] Λ x z Q x z + Q x z + Q x z + Q x z Λ xz Q xz Q xz + Q xz Q xz, 7 The intertion etween the spins is esrie y the isotropi Heisenerg exhnges with the J, J n J oupling ontnts. The exhnge nisotropies s the Dzyloshinskii-Moriy intertion n symmetri exhnge nisotropies re isregre here s they re ssume to e wek, n the mgneti nisotropies in LiCoPO 4 re tken re of y the Λ single-ion nisotropies. As shown in Tle I, the Hmiltonin is invrint uner the P nm spe group if Λ xy = n Λ yz =. The remining single-ion nisotropies, with oeffiients Λ, Λ x z, n Λ xz esrie n nisotropy tensor with prinipl xis long the y iretion n two xes in the xz plne. Throughout this pper we will ssume tht the esy xis mgneti nisotropy of LiCoPO 4 is ominte y the Λ > prmeter, i.e. Λ Λ x z, Λ xz. As further simplifition we lso introue the nottion for spin-qurupoles: Q x z i = Si x Si x Si z Si z, 8 Q µν i = S µ i Sν i + Si ν S µ i, 8 where µ, ν = x, y, z n i =,,,. Stritly speking, there re five spin-qurupolr opertors Q 3y S, Q x z n Q µν, however, we eie to reple Q 3y S y S y s it iffers from the ommonly use efinition for the on-site esy-xis nisotropy. From symmetry we get the following expressions for the mgnetiztions M x = g xx S x + S x + S x + S x + g xz S z S z + S z S z, 9 M y = g yy S y + S y + Sy + S y, 9 M z = g zz S z + S z + S z + S z, + g xz h z S x S x + S x S x. 9 n for the eletri polriztions: [ P x = S y S y S y + S y ] + x z Q x z Q x z Q x z + Q x z + xz Q xz + Q xz Q xz Q xz, 1 P y = xy Q xy Q xy Q xy + Q xy + yz Q yz + Q yz Q yz Q yz, 1 [ P z = S y + S y S y S y ] + x z Q x z + Q x z Q x z Q x z + xz Q xz Q xz Q xz + Q xz. 1 Here we note, tht lthough the Hmiltonin n ontin omintion of Q x z, Q xz n S y, it nnot hve neither Q xy nor Q yz elements. Moreover, it is lso not possile to express the Hmiltonin in terms of P ν ν = x, y, z. Nevertheless, the lol P y t eh site trnsforms s the Q xy n Q yz opertors.f. Tle. I, therefore it n e represente y the liner omintion of these spin-qurupolr opertors. Both the stti n ynmi ME effets re expresse y the ouplings etween the opertors n the orresponing physil quntities; xy n yz for χ em xy. Intertions with the externl mgneti n eletri fiels re esrie y II. H Zeemn = H x M x H y M y H z M z, H EP = E x P x E y P y E z P z. VARIATIONAL TREATMENT MEAN FIELD 11 11 To esrie the stti properties of LiCoPO 4 t low tempertures, we will tret our moel using siteftorize wve funtion s vritionl Anstz for the groun stte: We shll minimize the Ψ GS vr = Ψ 1, Ψ 1, Ψ 1, Ψ 1, 1 E vr = ΨGS vr H Ψ GS vr Ψ GS vr Ψ GS vr 13 vritionl energy, y optimizing the wve funtions on the sites, Ψ 1,... Ψ 1,. The vritionl setup is similr

8 to the se of B CoGe O 7, therefore we implemente the proeure pplie there 3,9,3. First, we will onsier the prolem in the sene of the externl fiels H = n E =. After this, we will turn on the fiels to esrie the effet of poling. It is onvenient to work in sis where the quntiztion xis is long the y iretion, y = 1 + i 3 3 i 8 y = 1 8 3 + i + + i 3 y = 1 8 3 i + i 3 y = 1 i 3 3 + i 8 14 14 14 14 so tht the y, y, y, n y re the eigenfuntions of the S y = S opertor with eigenvlues 3/, 1/, 1/, n 3/, respetively. The off-igonl spin opertors in the rotte frme re S z = S + + S n The minimum is hieve with the S x = S + S. 15 i Ψ 1, = y 3γ y, 16 Ψ 1, = y 3γ y, 16 Ψ 1, = y 3 γ y, 16 Ψ 1, = y 3 γ y, 16 site-epenent wve funtions with energy E vr o = 18J + J J 9Λ 6 Λ x z + Λ xz. 17 6J + 6J 6J + Λ In Eqs. 16 the γ is omplex numer etermine y the prmeters of the exhnge fiel n the on site nisotropies, with γ = λ x z iλ xz, 18 λ x z = Λ x z, 19 6J + 6J 6J + Λ Λ xz λ xz =. 19 6J + 6J 6J + Λ The expettion vlues of the S x n S z re zero on ll four sites, only the S y mtrix elements re nonzero: Ψ 1, S y Ψ 1, Ψ 1, Ψ 1, 3 6γ γ + n the other sites follow the AFM pttern given y Eq. 5 for proper hoie of the J exhnge ouplings. Notly, ue to the single-ion nisotropies the wve funtion esries spins, length of whih is shorter thn 3/. On the other hn the spin quires qurupolr fetures, s exemplifie y the expettion vlues of the spin-qurupolr opertors, e.g. on site : Ψ 1, SS y Ψ y 1, 9 6γ γ 4 1 Ψ 1, Q x z Ψ 1, 3γ + γ 1 Ψ 1, Q xz Ψ 1, 3iγ γ 1 Ψ 1, Q xy Ψ 1, = 1 Ψ 1, Q yz Ψ 1, = 1e Here we note lso tht the the wve funtions on the sites n re time reversl pirs, n so re the ones on sites n. In ft, the wve funtions of the other AFM groun stte re otine y site permuttions n, s the nisotropies of the lol Hmiltonin re the sme for n sites, only the iretion of the lol Weiss fiel is opposite. Performing the sme permuttion of the expression for the polriztion opertors P x n P y, Eqs. 1 n 1, their sign hnges. This lrey hints t the intertion etween the Néel stte n the polriztions. A. Poling with h x n E y The inlusion of externl fiels into the prolem will enlrge the zero fiel vritionl wve funtion given in Eqs. 16 to llow for the nting of the spins, Ψ 1, = y + i 3η y 3γ y, Ψ 1, = y i 3η y 3γ y, Ψ 1, = y i 3 η y 3 γ y, Ψ 1, = y + i 3 η y 3 γ y, where the energy minimum is hieve y η = g xxh x + xy E y 46J + 6J + Λ i g xz H x + yz E y 46J 6J + Λ, 3 proviing the groun stte energy in finite externl fiels, E GS α = E 3 xye y + g xx H x 6J + 6J + Λ 3 yze y + g xz H x 6J 6J + Λ. 4 Cnting of the spins on site is proportionl to the vritionl prmeter η, Ψ 1, S Ψ 1, = 3 η + η 1. 5 iη η

9 The symmetry in finite E y n H x is reue to the Pm m mgneti spe group with remining elements {E, C y, σ xy, σ yz } tken from Tle II. We note tht extly the sme elements re missing for either finite E y only, or finite H x only, or when oth E y n H x re finite. This is reflete in the vritionl solution s well, sine S x = S x = S x = S x, 6 S y = S y = Sy = S y, 7 S z = S z = S z = S z, 8 s ntiipte from the form of the M x, Eq. 9. Using Eq. II A the mgnetoeletri suseptiility is χ em E yx,α = H x E y 6 xy g xx 6 yz g xz = +. 9 6J + 6J + Λ 6J 6J + Λ We foun tht the leing term of the mgnetoeletri suseptiility is inepenent from the Λ x z n Λ xz on-site nisotropies, while the term ontining g xz is expete to e minute orretion. Solution for the other Néel AFM omin is given y the Ψ 1, = y i 3 η y 3 γ y, 3 Ψ 1, = y + i 3 η y 3 γ y, 3 Ψ 1, = y + i 3η y 3γ y, 3 Ψ 1, = y i 3η y 3γ y. 3 wve funtions, with η = g xxh x xy E y 46J + 6J + Λ i g xz H x yz E y 46J 6J + Λ. 31 In this se the spin expettion vlues on site re Ψ 1, S Ψ 1, = 3 η + η 1 iη η 3 n the energy in finite fiels is: E GS β = E 3 xye y g xx H x 6J + 6J + Λ 3 yze y g xz H x 6J 6J + Λ. 33 The polriztions n the suseptiilities hnge sign for the two AFM omins α n β, i.e.: χ em yx β = χ em yx α. 34 To merge the solutions hieve for the ME suseptiility of the two AFM omins we my write: χ em 6 xy g xx 6 yz g xz yx α/β = ± ±, 6J + 6J + Λ 6J 6J + Λ 35 where the ± sign hols for the α n β omins. As the sign of the enomintor is expete to e positive, sign of the mgnetoeletri suseptiility for the α n β is mutully etermine y the sign of the mteril speifi xy onstnt. The ME suseptiility of the the αβ omin n e positive negtive for xy > n negtive positive for xy <. This mens s expete tht the two omins re interhngele in the interprettions, lthough their ME response hs opposite sign. At this point there is no wy to etermine the sign of the xy prmeter, therefore we my fix it positive for the ske of simpliity. III. MULTIBOSON SPIN WAVE Below we will use the multioson spin-wve theory to nlyze the exittion spetrum. Sine the exite stte is rete y light, we only nee to look t the Γ point in the Brillouin zone, keeping in min tht our unit ell ontins 4 mgneti ions. Here we losely follow the lultion presente in Refs. [3] n [3]. The strting point for the multioson spin-wve theory is the prout form of the groun stte wve funtion, n the osons re ssoite with the wve funtion on site, whih inlue the groun stte n the lol exittions. For exmple, for site n in the lowest orer in the Λ on-site nisotropies, the wve funtions Ψ 1, = y 3γ y 36 Ψ, = y 3γ y 36 Ψ 3, = y + 3 γ y 36 Ψ 4, = y + 3 γ y 36 spn four imensionl Hilert spe, uilt up y wve funtions lolise to site. Here γ is efine in Eq. 18 while γ res γ Λ = x z iλ xz. 37 1J + 1J 1J Λ Similrly, together with Eq. 36, the first exite sttes on the four sites re Ψ, y 3γ y, 38 Ψ, y 3 γ y, 38 Ψ, y 3 γ y. 38 We keep only the osons esriing the four lowest energy exittions given y the wve funtions shown in

1 Eq. 38, n we use the following leling : 1 + ππ + π + π, 39 1 ππ π + π, 39 1 ππ + π π, 39 1 + ππ π π. 39 The spin wve Hmiltonin n e seprte into igonl n off-igonl prts: H = H ig + H offig. 4 For λ xz = only the H ig exists n tkes lokigonl form: with H ig = H ig + H ig π + Hig π + Hππ ig, 41 H ig q 1q = Ω q1q q 1q q1q where the Ω q1q re + 1 Ξ q 1q q 1q q 1q + q1q q1q, 4 Ω = 6J + 6J + Λ 1J + J λ x z, 43 Ω ππ = 6J + 6J + Λ + 1J + J λ x z, 43 Ω π = 6J + 6J 1J + Λ 1J J λ x z, 43 Ω π = 6J + 6J 1J + Λ + 1J J λ x z, 43 n the Ξ q1q re Ξ = 6J + 6J 1J λ x z, 44 Ξ ππ = 6J 6J 1J λ x z, 44 Ξ π = 6J 6J + 1J λ x z, 44 Ξ π = 6J + 6J + 1J λ x z. 44 The off-igonl prt H offig is proportionl to λ xz, n introues intertion etween the ifferent moes of the igonl Hmiltonin:, H offig = 1iJ λ xz π π 1iJ λ xz π ππ ππ π. 45 A. Exittion energies First, we onsier the se of λ xz =. A Bogoliuov- Vltin trnsformtion provies the eigenvlues of the Hq ig 1q opertors [Eq. 4], s it involves solving mtries: ω q1,q = Ω q 1,q Ξ q 1,q. 46 In the sene of the λ x z the spin wve energies re two-fol egenerte, with energies ω, = ω π,π = 6J + 6J + Λ Λ, 47 ω,π = ω π, = 6J 6J + Λ 6J 6J + Λ. 47 A finite λ x z vlue splits the egenery, n the energies re ω = Λ 6J + 6J + Λ 1J + J 3J + 3J 3J + Λ λ x z 48 ω ππ = Λ 6J + 6J + Λ + 1J + J 3J + 3J 3J + Λ λ x z 48 ω π = 6J 6J + Λ 6J 6J + Λ 1J J 3J + 3J 3J + Λ λ x z 48 ω π = 6J 6J + Λ 6J 6J + Λ + 1J J 3J + 3J 3J + Λ λ x z 48 For finite vlues of the λ xz, the prolem esrie y the H offig, given y Eq. 45, eomes equivlent to 4 4 generlize eigenvlue prolem. In orer to hieve n nlyti solution, we onsier the λ xz s smll prmeter, n tret H offig perturtively. It turns out tht the min onsequene of the finite λ xz is the mixing of the eigenvetors of the unperture solution, whih will effet the trnsition mtrix elements only. The eigenvlues re hnging only s λ xz, whih n e sfely neglete. Therefore, we will keep the sme lels,π,π,ππ of the unperture exittions for oth λ xz = n finite λ xz.

11 B. The ynmil response To ress the strength of the sorption of the moes for ifferent polriztions of the light, we nee to lulte the imginry prt of the mgneti n eletri suseptiilities. At zero temperture, the imginry prt of the mgneti suseptiility is given s Imχ mm νν = π f f M ν GS [δω E f + E GS δω + E f E GS ], 49 where the summtion is over the f finl sttes, with energy E f, n ν = x, y, z. A similr expression hols for Imχ ee νν, with the mgnetiztion M ν reple y the P ν polriztion. Strength of the iretionl optil nisotropy epens on the imginry prt of the mgnetoeletri suseptiility, whih t zero temperture res: Imχ em yx = π f GS P y f f M x GS [δω E f + E GS δω + E f E GS ]. 5 Therefore, to lulte the ynmil suseptiilities, we nee to express the mgnetiztions given y Eqs. 9 with the osoni opertors. We get M x = 3 [g xz g xz λ x z g xxλ xz ] π + π + i 3 [g xx + g xx λ x z + g xzλ xz ] ππ ππ, M z = 3 [g zz g zz λ x z g xzλ xz ] + + i 3 [g xz + g xz λ x z + g zzλ xz ] π π, 51 51 while the M y hs mtrix elements with higher energy mgneti exittions, whih re isregre here. Out of the three polriztion opertors in Eqs. 1, only the P y ouples to the lowest energy mgnons: P y = 3 yz π + π + i 3 xy ππ ππ. 5 From the equtions ove, we n onlue tht the n π moes re purely mgneti moes, exite with the mgneti fiel only, n the ππ n π moes re mgnetoeletri moes, exite y oth the mgneti n eletri omponent of the inient light. After teious lultion, the trnsition mtrix elements for the M z in the purely mgneti n π moes, with the energies given y Eqs. 48 n 48, respetively, re n + GS = Λ 1/4, 6J + 6J + Λ 53 π π GS = iλ J 6J + 3J 3J + Λ Λ 1/4 xz, 3J J J J J Λ 6J + 6J + Λ 53 π + GS = iλ J 3J 3J + Λ 6J 6J + Λ 1/4 xz, 3J J J J J Λ 6J 6J + Λ 54 π π π GS = 6J 6J + Λ 1/4, 6J 6J + Λ 54 in the leing orer in λ xz. The mtrix elements in Eq. 49 re then M z GS 3g zz Λ 6J + 6J + Λ 1/4 55 n π M z GS i [ ] J J 3J + 3J 3J + Λ 6J 6J + Λ 3 g xz + g xx λ xz 3J J J J J Λ 6J 6J + Λ 1/4 56 for the n the π moes.

The π n ππ moes hve oth finite M x n P y trnsition mtrix elements, so these moes show optil iretionl nisotropy. The mtrix elements for the ππ moe, with energy ω ππ, Eq. 48, re ππ Λ 1/4 ππ ππ GS =, 6J + 6J + Λ 57 ππ π + π GS = λ J 6J + 3J 3J + Λ Λ 1/4 xzi, 3J J J J J Λ 6J + 6J + Λ 57 n for the π moe, with energy ω π, Eq. 48, re π J 3J 3J + Λ 6J 6J + Λ 1/4 ππ ππ GS = iλ xz, 3J J J J J Λ 6J 6J + Λ 58 π π + π GS = 6J 6J + Λ 1/4. 6J 6J + Λ 58 Keeping the leing, physilly relevnt terms, we get the following mgneti n eletri trnsition mtrix elements ππ M x GS i Λ 1/4 3g xx, 6J + 6J + Λ 59 ππ P y GS i Λ 1/4 3 xy, 6J + 6J + Λ 6 n for the other moe: π M x GS [ ] J J 3J + 3J 3J + Λ 6J 6J + Λ 1/4 3 g xz + g xx λ xz, 3J J J J J Λ 6J 6J + Λ 61 π P y GS 6J 6J + Λ 1/4 3 yz. 6J 6J + Λ 6 Using Eq. 5, strength of the trnsition mtrix elements of the mgnetoeletri suseptiility for the ππ moe is: while for the π exittion: GS P y ππ ππ M x GS 6g xx xy Λ 6J + 6J + Λ 1 1/, 63 [ ] GS P y π π M x J J 3J + 3J 3J + Λ 6J 6J + Λ GS 6 yz g xz + g xx λ xz 3J J J J J Λ 6J 6J + Λ To summrize, out of the four peks, two n π re only mgneti ipole tive with H ω z, while the other two π n ππ, ME resonnes re oth mgneti n eletri ipole llowe with H ω x n E ω y. Shemti motion of the lol spins mgnetiztions n lol polriztions re illustrte in Fig. 6 viewe from the xz n xy plnes. For smll vlues of the single-ion nisotropies λ x n λ xz, the λ x y enters into the energy of the moes, splitting the two fol-egenerte moes into four moes, while the λ xz ontrols the eigenfuntions n therefore the trnsition mtrix elements in the mgnetoeletri suseptiility, together with the xy n yz prmeters in the expression for the P y 1. The optil iretionl nisotropy of the two mgneti n eletri ipole llowe moes re essentilly inepenent from eh other. Their reltive strength, inluing the sign, is ontrolle primrily y the rtio of the xy n yz oeffiients in the polriztion opertor P y, Eq. 1. To etter unerstn the role of these prmeters we emphsize tht the P ω osillting polriztion of the ME resonnes is uilt up y the polriztion of the yz lyers. Phse of the P ω ompre to the M ω sulttie mgnetiztion is ffete y the reltive phse of the polriztions of these yz lyers vi the xy / yz rtio see Fig. 6. 1/. 64

13 #1 π #3 ππ #4 +Sy Sy # π Sy +Sy z x y α α α α x #1 π #1 π xy yz P= line Λxz z z x x Λx z, Λy, Λxz y α β x FIG. 6: ME n non-me resonnes of LiCoPO4 viewe from the xz n xy plnes., For the ske of simpliity eh resonnes re illustrte on the α omin for xy >. Spins green n olive rrows of the ME πi n ππi n non-me πi n i resonnes preesses roun nte ellipses in the xz plne. The osillting Mω mgnetiztion n Pω polriztion of the unit ell re long the x n y xes, respetively, for the ME resonnes, while the non-me resonnes hve Mω long z. While the osillting polriztion re n lue rrows n ots of the non-me resonnes re totlly nele out within the xy lyers, the ME resonnes hve finite Pω in the unit ell s result of the unompenste polriztion of the xy lyers., The remnent optil ME effet is exemplifie on the πi ME resonne. The +Eyo,+Hxo n Eyo,+Hxo poling onfigurtions selet the α n β omins, respetively. For the sme phse of the osillting mgnetiztion Pω y of the α n β omins osillte in nti-phse with respet to eh other, whih y mens the optil iretionl nisotropy., Inste of irles, the spins preess roun ellipses in the xz plne with rotte semi-mjor xes. Rottion of the semi-mjor xes epens on the Λxz prmeter while the elliptiity is ffete y eh on-site nisotropy terms. During the preession of the spin there is n xis ross the ellipsis, where Pω =. Diretion of this line is etermine y the rtio of the xy n yz oeffiients.

14 prmeter [THz] -.1 -. IV..5.4.3..1 FITTING THE PARAMETERS 1. 1.4 1.6 1.8. ωπ = 1.13 THz ωπ = 1.33 THz ωππ = 1.36 THz ω = 1.43 THz [mev].3.35.4.45.5.55 Λ y [THz] J J J 5 Λ x -z 1.5 1.5 -.5 FIG. 7: Fitting of the J exhnge n Λ single-ion nisotropy prmeters. The exhnge ouplings J, J, n J, n the nisotropy prmeter Λ x z re etermine for fixe vlues of the Λ, ssuming the #1 ω π, # ω π, #3 ω ππ, n #4 ω ssignment. As the S = moes re sent from the oserve spetrl winow elow THz, sets n upper limit for the Λ t roun.5 Thz. The lower limit of.4 THz for Λ orrespons to 3 THz limit for the energy of the S = moes. This region for the fitting prmeters is highlighte y white. The fitting results re in goo greement with the results otine y neutron sttering mesurements 5. In the experiment we hve ientifie four moes, whih we lele y numers form 1 to 4. The pek #1 n #3 show ihroism, therefore they n e ssigne to the moes π n the ππ in some orer. Similrly, the remining peks # n #4 re only mgnetilly tive, so they re ssigne to n π moes, gin, we o not know whih one is whih. So from the experimentl sie, we hve four input prmeters the energies of the peks, n the seletion rules restrit the possile numer of moe ssignments to four. On the theory sie, the four input prmeter re the ω energies of the moes see Eqs. 48, whih epen on five prmeters: the three exhnge ouplings J, J, n J, n the two single-ion nisotropies Λ n Λ x z. The prolem is uneretermine t this stge. We hve hosen the following strtegy to extrt the moel prmeters: we etermine the J, J, J, n Λ x z y fitting the four experimentl energies to ω s s funtion of the Λ. This hs een me for the four possile ssignments of the peks, n we ompre them with the existing estimtes oming from inelsti neutron sttering mesurements 5. We hve foun tht the ω π, ω π, ω ππ, ω orer for the peks #1, #, #3, #4, with energies 1.13 THz, 1.33 THz, 1.36 THz, 1.43THz, -1 [mev] is the losest one to the result otine from the neutrons. The prmeter fit s funtion of the Λ is shown in Fig. 7, n liste for some selete vlues in Tle. III. To get n estimte of the possile preision of the fitte prmeters, we hve ssume 1 GHz stnr evition on the experimentl frequenies orresponing to out 1% error. The prmeters were fitte for 1 rnom frequenies with norml istriution with the mesure men vlue n the ssume stnr evition, the result of this proeure is shown in Fig. 7 s error rs. Note tht the men vlues re ifferent from the vlues lulte extly t the mesure frequenies, s the men of nonliner trnsformtion is not the trnsforme men. To nrrow own the possile prmeter vlues shown in Fig. 7, we n use the experimentlly oserve positions of the S = trnsitions. These moes hve so fr een omitte from the theoretil isussion, however, we n esily inlue them. Up to now we only onsiere the first exite sttes, Ψ,i i =,,,, given y Eq. 36 n Eqs. 38. These exittions orresponing to S = 1 trnsitions. The next, S =, set of exittions re esrie y the sttes Ψ 3,i. Ψ 3, is given y Eq. 36 n we n esily generte the other three wvefuntions orresponing to sulttie, n : Ψ 3, = y + 3γ y 65 Ψ 3, = y + 3γ y 65 Ψ 3, = y + 3γ y 65 We introue osons tht rete these S = exittion with the following nottion; i = Ψ 3,i, where the vuum stte orrespons to the groun stte n Ψ 1,i, i.e. the vuum of exittions. The Hmiltonin for the osons i is lrey igonl n, s it turns out, the four moes re egenerte in zero fiels, so H S= = ω with the exittion energy i=,,, i i 66 ω = 1J + 1J 1J + Λ. 67 From the sorption spetr, elow THz we o not see itionl moes to the four S = 1 exittions, exite y, π, π n ππ. The new exittions re expete etween THz n 3 THz. Thus, ω nees to e in this regime, llowing us to onstrit the oupling prmeters. The invli prmeter region ω THz orrespons to Λ.5 THz, shown s the gry re ove.5 THz in Fig. 7. While the ω 3 THz region elongs to the gry setor elow Λ.4 THz in Fig. 7, setting the lower ounry for Λ. The white region in Fig. 7 illustrtes the expete vli prmeter rnge.

15 Λ J J J Λ x z.5.143 -.65 -.4 -.36.45.191 -.85 -.45 -.9.4.48 -.11 -.74 -.4 TABLE III: The fitte exhnge n single-ion nisotropy prmeters. for ifferent vlues of the Λ prmeter, ssuming the #1 ω π, # ω π, #3 ω ππ, n #4 ω ssignment, the sme s in Fig. 7. All prmeters re shown in THz unit. The exhnge prmeters for the other ssignments, shown in Figs. 8, re less likely s the signs of the exhnge ouplings re in ontrition with the orresponing prmeters from the neutron stuy. The fourth ssignment, not shown, gives vlues with even lrger ifferene. 1 Fieig, M., Lottermoser, T., Meier, D. & Trssin, M. The evolution of multiferrois. Nt. Rev. Mts. 1, 1646 16. Kimur, T. et l. Mgneti ontrol of ferroeletri polriztion. Nture 46, 55-58 3. 3 Dong, S., Liu, J-M., Cheong, S-W. & Ren, Z. Multiferroi mterils n mgnetoeletri physis: symmetry, entnglement, exittion, n topology. Avnes in Physis 64, 519-66 15. 4 Fieig, M. Revivl of the mgnetoeletri effet. J. Phys. D.: Appl. Phys. 38, R13-R15 5. 5 Splin, N. A. & Fieig, M. The Renissne of Mgnetoeletri Multiferrois. Siene 39, 391-39 5. 6 Eerenstein, W., Mthur, N. D. & Sott, J. F. Multiferroi n mgnetoeletri mterils. Nture 44, 759-765 6. 7 Cheong, S.-W. & Mostovoy, M. Multiferrois: mgneti twist for ferroeletriity. Nt. Mter. 6, 13-7. 8 Sno, D. et l. Crfting the mgnoni n spintroni response of BiFeO 3 films y epitxil strin. Nt. Mter. 1, 641-646 13. 9 Henron, J. T. et l. Deterministi swithing of ferromgnetism t room temperture using n eletri fiel. Nture 516, 37-373 14. 1 Kézsmárki, I. et l. Optil ioe effet t spin-wve exittions of the room-temperture multiferroi BiFeO 3. Phys. Rev. Lett. 115, 173 15. 11 Merier, M., Greyte, J. & Bertut, E. F. Une nouvelle fmille e orps mgnetoeletrique LiMPO 4 M= Mn, Co, Ni. C. R. Senes A. Si., Ser. B 64, 979 1967. 1 River, J. P. The liner mgnetoeletri effet in LiCoPO 4 revisite. Ferroeletris 161, 147-164 1994. 13 Vn Aken, B.B., River, J-P., Shmi, H. & Fieig, M. Oservtion of ferrotoroii omins. Nture 449, 7-75 7. 14 Zimmermnn, A. S., Meier, D. & Fieig, M. Ferroi nture of mgneti toroil orer. Nt. Commun. 5, 4796 14. 15 Jungwirth, T. n Mrti, X. n Wley, P. n Wunerlih, J. Antiferromgneti spintronis Nt. Nno. 11, 31-41 16. 16 Sntoro, R. P., Segl, D. J. & Newnhm, R. E. Mgneti properties of LiCoPO 4 n LiNiPO 4. J. Phys. Chem. Solis 7, 119-1193 1966. 17 Kézsmárki, I. et l. Enhne iretionl ihroism of terhertz light in resonne with mgneti exittions of the multiferroi B CoGe O 7 oxie ompoun. Phys. Rev. Lett. 16, 5743 11. 18 Miyhr, S. & Furukw, N. Nonreiprol iretionl ihroism n toroilmgnons in helil mgnets. J. Phys. So. Jpn. 81, 371 1. 19 Kézsmárki, I. et l. One-wy trnspreny of four-oloure spin-wve exittions in multiferroi mterils. Nt. Commun. 5, 33 14. Borás, S. et l. Chirlity of mtter shows up vi spin exittions. Nt. Phys. 8, 734-738 1. 1 Sito, M., Ishikw, K., Tniguhi, K. & Arim, T. Mgneti ontrol of rystl hirlity n the existene of lrge mgneto-optil ihroism effet in CuB O 4. Phys. Rev. Lett. 11, 1174 8. Tkhshi, Y., Shimno, R., Kneko, Y., Murkw, H. & Tokur, Y. Mgnetoeletri resonne with eletromgnons in perovskite helimgnet. Nt. Phys. 8, 11-15 1. 3 Pen, K., Romhányi, J., Rõõm, T., Ngel, U., Antl, Á., Fehér, T., Jánossy, A., Engelkmp, H., Murkw, H., Tokur, Y., Szller, D., Borás, S. & Kézsmárki, I. Spin- Strething Moes in Anisotropi Mgnets: Spin-Wve Exittions in the Multiferroi B CoGe O 7 Phys. Rev. Lett. 18, 573 1. 4 Miyhr, S., & Furukw, N. Theory of Mgnetoeletri Resonne in Two-Dimensionl S = 3/ Antiferromgnet B CoGe O 7 vi Spin-Depenent Metl-Lign Hyriiztion Mehnism. J. Phys. So. Jpn. 8, 7378 11. 5 Tin, Wei, Li, Jiying, Lynn, J. W., Zrestky, J. L., & Vknin, D. Spin ynmis in the mgnetoeletri effet ompoun LiCoPO 4. Phys. Rev. B 78, 18449 8. 6 Arim T., Ferroeletriity Inue y Proper-Srew Type Mgneti Orer. J. Phys. So. Jpn. 76, 737 7. 7 Vieweg, N., Rettih, F., Deninger, A., Roehle, H., Dietz, R., & G oel, T. A time-omin terhertz spetrometer with 9 B ynmi rnge. J. Infrre Millim. Terhertz Wves 35, 83 14. 8 Sint-Mrtin, R. & Sylvin Frnger, S., Growth of LiCoPO 4 single rystls using n optil floting-zone tehnique J. Cryst. Growth 31, 861-864 8. 9 Romhányi, J., Ljkó, M., & Pen, K. Zero- n finitetemperture men fiel stuy of mgneti fiel inue eletri polriztion in B CoGe O 7: Effet of the ntiferroeletri oupling Phys. Rev. Lett. 84, 4419 11. 3 Romhányi, J., & Pen, K. Multioson spin-wve theory for B CoGe O 7: A spin-3/ esy-plne Néel ntiferromgnet with strong single-ion nisotropy Phys. Rev. B 86, 17448 1.

16 prmeter [THz].3..1 [mev].8 1 1. 1.4 1.6 1.8 J J J Λ x -z 1.5 [mev] prmeter [THz] -.1 ωππ = 1.13 THz ω = 1.33 THz ωπ = 1.36 THz -.5 ωπ = 1.43 THz -..15..5.3.35.4.45.5.3..1 Λ y [THz] [mev].8 1 1. 1.4 1.6 1.8 ωππ = 1.13 THz ωπ = 1.33 THz ωπ = 1.36 THz ω = 1.43 THz J J J Λ x -z 1.5 [mev] -.1 -.5 -..15..5.3.35.4.45.5 Λ y [THz] FIG. 8: Exhnge n single-ion nisotropy prmeters for ifferent ssignment of the peks., Reltionship etween the fitting prmeters for #1, #, #3, #4 ω ππ, ω, ω π, ω π ssignment, n, for #1, #, #3, #4 ω ππ, ω π, ω π, ω ssignment of the oserve mgneti resonnes. In these ses, the fitte prmeters show signifint ifferene from the results of the neutron iffrtion.