Net Radiation Incident at the Surface

Similar documents
GEOG 402 SURFACE ENERGY FLUXES

Chapter 3 Higher Order Linear ODEs

Why would precipitation patterns vary from place to place? Why might some land areas have dramatic changes. in seasonal water storage?

Problem Session (3) for Chapter 4 Signal Modeling

The Reign of Grace and Life. Romans 5:12-21 (5:12-14, 17 focus)

Solutions to Supplementary Problems

CBSE , ˆj. cos CBSE_2015_SET-1. SECTION A 1. Given that a 2iˆ ˆj. We need to find. 3. Consider the vector equation of the plane.

Helping every little saver

Chapter 6 Perturbation theory

New Advanced Higher Mathematics: Formulae

2011 HSC Mathematics Extension 1 Solutions

Relation of Finite Mellin Integral Transform. with Laplace and Fourier Transforms

Bayesian Credibility for Excess of Loss Reinsurance Rating. By Mark Cockroft 1 Lane Clark & Peacock LLP

TABLES AND INFORMATION RETRIEVAL

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s

Handout 7. Properties of Bloch States and Electron Statistics in Energy Bands

Who is this Great Team? Nickname. Strangest Gift/Friend. Hometown. Best Teacher. Hobby. Travel Destination. 8 G People, Places & Possibilities

Part II, Measures Other Than Conversion I. Apr/ Spring 1

P a g e 5 1 of R e p o r t P B 4 / 0 9

C-Curves. An alternative to the use of hyperbolic decline curves S E R A F I M. Prepared by: Serafim Ltd. P. +44 (0)

NO REGISTRATION FOR U.S. REDS TONIGHT IN FEE

sin sin 1 d r d Ae r 2

ENGG 1203 Tutorial. Difference Equations. Find the Pole(s) Finding Equations and Poles

IFYFM002 Further Maths Appendix C Formula Booklet

Crowds of eager worshippers trooping into the venue

SOLUTIONS FOR HOMEWORK SECTION 6.4 AND 6.5

Classical Theory of Fourier Series : Demystified and Generalised VIVEK V. RANE. The Institute of Science, 15, Madam Cama Road, Mumbai

PESIT Bangalore South Campus Hosur road, 1km before Electronic City, Bengaluru -100 Department of Basic Science and Humanities

Winnie flies again. Winnie s Song. hat. A big tall hat Ten long toes A black magic wand A long red nose. nose. She s Winnie Winnie the Witch.

Exam 2 Solutions. Jonathan Turner 4/2/2012. CS 542 Advanced Data Structures and Algorithms

". :'=: "t',.4 :; :::-':7'- --,r. "c:"" --; : I :. \ 1 :;,'I ~,:-._._'.:.:1... ~~ \..,i ... ~.. ~--~ ( L ;...3L-. ' f.':... I. -.1;':'.

Quantum Mechanics & Spectroscopy Prof. Jason Goodpaster. Problem Set #2 ANSWER KEY (5 questions, 10 points)

page 11 equation (1.2-10c), break the bar over the right side in the middle

PwC Middle East Spa Benchmarking Survey January - August 2012

T h e C S E T I P r o j e c t

A L A BA M A L A W R E V IE W

Daily Skill Practice

Report Card. America's Watershed. Moving the report card forward. Information for multiple uses. A vision for. High. Low. High.

PhysicsAndMathsTutor.com

Analysis of Effects of Rebounds and Aerodynamics for Trajectory of Table Tennis Ball

and the ANAVETS Unit Portage Ave, Winnipeg, Manitoba, Canada May 23 to May E L IBSF

c A c c vlr) (o (9 cci rj c4 c c t(f, e, rf) c.i c..i sc! ct J i J iut d(o (o cf) (f) cf) lr, o) e, t- I c c) (o (f) J) r) OJ -i sf N o) o) :!

fur \ \,,^N/ D7,,)d.s) 7. The champion and Runner up of the previous year shall be allowed to play directly in final Zone.

Chapter 2 Reciprocal Lattice. An important concept for analyzing periodic structures

(7) CALAMINTHA NEPETA 'WHITE CLOUD' (15) RUDBECKIA FULGIDA VAR.SULLIVANTII 'GOLDSTURM' (2) SPIRAEA JAPONICA 'ANTHONY WATERER'

Chapter 5: Quantization of Radiation in Cavities and Free Space

Hygienic Cable Glands

VICTORIA AVE. Chip pawa- Gra ss Isl and Pool. Ice Dam Niagara Falls WTP and Intake. Chippawa. Cree

Silv. Criteria Met? Condition

PhysicsAndMathsTutor.com

P a g e 3 6 of R e p o r t P B 4 / 0 9

exhibitor prospectus InternatIonal art MaterIals association MARCH 4-6 DALLAS co-locating with: Denver Art Museum Colorado Convention Center

Software Process Models there are many process model s in th e li t e ra t u re, s om e a r e prescriptions and some are descriptions you need to mode

Convergence tests for the cluster DFT calculations

OSXX1608C1A. Features. Outline Dimension. Applications. Absolute Maximum Rating (Ta=25 ) Directivity. Electrical -Optical Characteristics (Ta=25 )

Let s celebrate! UNIT. 1 Write the town places. 3 Read and match. school. c 1 When s your birthday? Listen, check and practise the dialogues.

68X LOUIE B NUNN PKWYLOUIE B NUNN PKWY NC

ATTACHMENT 1. MOUNTAIN PARK LAND Page 2 of 5

I M P O R T A N T S A F E T Y I N S T R U C T I O N S W h e n u s i n g t h i s e l e c t r o n i c d e v i c e, b a s i c p r e c a u t i o n s s h o

Three Phase Asymmetrical Load Flow for Four-Wire Distribution Networks

The tight-binding method

February 12 th December 2018

Last time: introduced our first computational model the DFA.

N e w S t u d e n t. C o u n c i l M e n

MM1. Introduction to State-Space Method

TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS

Chapter #3 EEE Subsea Control and Communication Systems

Ch 1.2: Solutions of Some Differential Equations

TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS

CBSE SAMPLE PAPER SOLUTIONS CLASS-XII MATHS SET-2 CBSE , ˆj. cos. SECTION A 1. Given that a 2iˆ ˆj. We need to find

2016 FALL PARKS DIVISION AND WATER UTILITY LANDSCAPING

Order Statistics from Exponentiated Gamma. Distribution and Associated Inference

Constable. House. Nash. House. Nash. House. 1to56. Stanliff. Fairlead. 1to18. Keelson. r e. Bowsprit 159 Point m 127. Surgery. 9 to.

menu Steaks Brilliant succulent

NEWBERRY FOREST MGT UNIT Stand Level Information Compartment: 10 Entry Year: 2001

Boyce/DiPrima 9 th ed, Ch 7.6: Complex Eigenvalues

Chapter 15: Mathematics More Fun With

VICTORIA AVE. Chippawa. Cree

UP and ENTRIES. Farmers and WivUs to Hold Old-Fashioned Meeting Here

I N A C O M P L E X W O R L D

Beechwood Music Department Staff

It is distinctly Kansas City Kansas City began as a trading post for early 18th century settlers traveling along the Missouri River.

Handout 30. Optical Processes in Solids and the Dielectric Constant

Lecture 7 Diffusion. Our fluid equations that we developed before are: v t v mn t

ELEC 351 Notes Set #18

Form and content. Iowa Research Online. University of Iowa. Ann A Rahim Khan University of Iowa. Theses and Dissertations

THIS PAGE DECLASSIFIED IAW E

CREATED USING THE RSC COMMUNICATION TEMPLATE (VER. 2.1) - SEE FOR DETAILS

National Quali cations

h : sh +i F J a n W i m +i F D eh, 1 ; 5 i A cl m i n i sh» si N «q a : 1? ek ser P t r \. e a & im a n alaa p ( M Scanned by CamScanner

Stanford University Medical Center

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9

Bus times from 18 January 2016

ENGO 431 Analytical Photogrammetry

National Quali cations

Heroes. of the New Testament. Creative. Communications. Sample

An Abstract Interpretation Framework for Refactoring with Application to Extract Methods with Contracts

National Survey of Student Engagement, Spring 2011 The University at Albany, SUNY

JULY /31 CB Summer 7 & 8. 7/16 Beach Party. 8/1 BOG meeting. 7/17 CB Summer 5 & 6. 8/6 CSSA Championship Jr Regatta

Galaxy Photometry. Recalling the relationship between flux and luminosity, Flux = brightness becomes

Transcription:

EO 02 SURFAE ENERY FLUXES Nt Rditio Icidt t th Sufc R = K 1α εl εσ K L Vg Ly Soil αk εl εσ 1

Vticl mtu Pofil Vticl mtu Pofil 2

Soil t Flux Uwd d dowwd coductio of ibl ht Div by vticl tmtu gdit i oil Modultd by oil thml oti Dictio of gdit chg ufc tmtu chg K L αk εl εσ Egy, bo, d Wt Sufc Egy Blc R = K 1α εl εσ = λe K L λe αs εl εσ Not light diffc i ymbol ud fo hotwv ditio d lbdo i th txt: R = S 1 εl εσ = λe Eq. 13.2 i Bo, 2008 3

Egy, bo, d Wt Sufc Egy Blc R = λe K L λe αk εl εσ Egy, bo, d Wt Sufc Egy Blc Ov 2-h iod = ~0 R = λe λe R Egy Ptitioig

lobl Egy Blc lobl Egy Blc 5

Rgiol Egy Blc Diul ycl 6

Diul ycl Diul ycl 7

Egy Blc Ltt t of Voiztio λ = 2.5 x 106 J kg-1 t 20º cll tht w = 186 J kg-1 K-1; i.., it tk bout 586 tim much gy to vot kg of wt it do to i it tmtu by 1º Exml fom th book: yicl umm v. t: 5 mm dy Wt dity: 1000 kg m-3 5 mm = 5 kg qu mt 5 kg 1 dy J W 25000 = 12 m 2 dy 8600 kg m2 8

Ltt t of Voiztio λ = 2.5 x 10 6 J kg -1 t 20º Aoth wy of ttig th ltt ht of voiztio: h mout of ltt ht flux mm/dy of v: λ = 28.36 W m -2 mm dy -1 Exml: E = 5 mm dy: λe = 5 mm dy -1 x 28.36 W m -2 mm dy -1 = 11.8 W m -2 b λe = 110 W m -2 : E = 110 W m -2 / 28.36 W m -2 mm dy -1 = 3.88 mm dy -1 Sufc Egy Blc Rcll tht i it imlt fom, th ufc gy blc c b xd : R = λe At th M S ttio i oth hild, R vgd 150 W m -2 duig uy iod i Mch. Aumig i oitiv, λe mut b l th 150 W m -2, i.. E mut b l th 5.3 mm dy -1 9

Sufc Egy Blc 700 600 500 hild: 25-y Sc. Vg. R = 11 W m -2 = 0 W m -2 λe = 168 W m -2 = -27 W m -2 Bzil: B Soil Kd 900 hild: 25-y Scody Vgttio 800 700 Kd 600 500 00 R E 300 200 100 0-100 0:00 :00 8:00 12:00 16:00 20:00 0:00 00 300 R 200 100 E 0-100 0:00 :00 8:00 12:00 16:00 20:00 0:00 Bzil: B Soil R = 102 W m -2 = -3 W m -2 λe = 55 W m -2 = 50 W m -2 M gy flux. Sufc Egy Blc Sit Kd R λe dy ll dy ll dy ll dy ll dy ll Bzil --------------------------------------------------- W m -2 --------------------------------------------------- Slhd vgttio 63 251 280 12 7 0 25 11 20 126 b Bud lh 09 221 216 107 21 5 26 10 169 91 c B oil 361 195 209 102 9-3 106 55 93 50 dmtu cv 53 25 279 136 12-5 29 212 111 Uud tu 526 288 31 157 5-1 12 73 166 85 f 1/2 y. Scody vgttio 53 25 --- --- 5 2 182 95 113 59 g1-y Scody Vgttio 52 25 269 129 26 3 10 71 102 5 h1-y Scody vgttio 89 26 309 15 8 2 180 88 120 6 i 2-y Scody vgttio 397 218 25 119 2-167 88 7 30 j 2-y Scody vgttio 09 225 26 122 2-5 189 103 7 21 k10-y Scody vgttio 22 228 273 13 2 0 15 75 126 59 hild l vtd bly 57 28 265 116 18 6 68 21 193 96 m Fllow ic ddy 50 25 306 150 27 1 171 93 56 30 Iigtd b oil 8 23 322 152 31 5 266 171 33-18 o 2-y Scody vgttio 252 137 162 72 2 0 155 90 19-8 3-y Scody vgttio 392 213 235 100 10 1 80 79 1 q 8-y Scody vgttio 5 26 318 136 0-3 313 158 7-18 25-y Scody vgttio 13 225 297 11 2 0 27 168 9-27 Dy f to 12-hou iod 6:00-18:00 10

M gy flux. Sufc Egy Blc Sit R E dy ll dy ll dy ll dy ll hild l vtd bly 265 116 18 6 68 21 193 96 m Fllow ic ddy 306 150 27 1 171 93 56 30 Iigtd b oil 322 152 31 5 266 171 33-18 o 2-y Scody vg 162 72 2 0 155 90 19-8 3-y Scody vg 235 100 10 1 80 79 1 q 8-y Scody vg 318 136 0-3 313 158 7-18 25-y Scody vg 297 11 2 0 27 168 9-27 Dy f to 12-hou iod 6:00-18:00 Sufc Egy Blc o iclud oil ht flux ffct o th diul d ul cycl, th ufc gy blc c b xd : o: R = λe R = λe 11

Bow Rtio O wy to dcib th titioig of gy btw d LE m λe i by tkig th tio clld th Bow Rtio: β = LE igh vlu of β idict tictio o th votitio oc, i.. limitd wt vilbility. Low vlu of β idict utictd votio, i.. budc wt vilbility. Bow Rtio β = LE W ll lt tht th Bow Rtio c b iddtly timtd fom mumt of th vticl gdit of i tmtu d humidity. With iddt timt of β, d mumt of R d, LE c b timtd : LE = R 1 β 12

Bow Rtio β = LE Aid gio chctizd by high Bow Rtio vlu, bcu limitd vilbl wt tict votio. Wt bodi d ld with budc ciittio d vgttio cov hv low Bow Rtio vlu. β > 3 β < 0.5 Bow Rtio ß of Dfotd Sit i Bzil d hild ß = /LE Bow Rtio. 10 9 8 7 6 5 3 2 1 0 Slhd vgttio b Bud lh c B oil d Mtu cv Uud tu f 1/2-y Scody vgttio g 1-y Scody vgttio h 1-y Scody vgttio i 2-y Scody vgttio j 2-y Scody vgttio k 10-y Scody vgttio l vtd bly m Fllow ic ddy Iigtd b oil o 2-y Scody vgttio 3-y Scody vgttio q 8-y Scody vgttio 25-y Scody vgttio Bzil hild 13

Egy Blc Modl R = J λe Nt Rditio Soil t Flux Biom d Ai Ly t Stog Flux Sibl t Flux Ltt t Flux Nt Rditio vtig ow to th ymbol ud i th txt R = S ε L σ 1 Extl Focig Vibl Dowwd hotwv ditio Dowwd logwv ditio h vibl tim-ddt d mut b obtid vi fild mumt o climt modl imultio. 1

Nt Rditio R = S ε L σ 1 Sufc Pmt d Stt Vibl Albdo mt Emiivity mt Sufc tmtu tt vibl Albdo d miivity dd mily o th ty of ufc. h ufc tmtu i cotolld by th gy blc. Nt Rditio R = S ε L σ 1 Albdo Sufc Albdo Ntul Fh ow 0.80-0.95 Old ow 0.5-0.70 Dt 0.20-0.5 lci 0.20-0.0 Soil 0.05-0.0 old 0.18-0.25 ld 0.16-0.26 Dciduou fot 0.15-0.20 oifou fot 0.05-0.15 Wt 0.03-0.10 Sufc Albdo Ub Rod 0.05-0.20 Roof 0.08-0.35 Wll 0.10-0.0 Pit Whit 0.50-0.90 Rd, bow, g 0.20-0.35 Blck 0.02-0.15 15

Nt Rditio R = S ε L σ 1 Emiivity 8-12 µm Sufc Ntul Oc 0.99 Emiivity Fh ow 0.986 Mltig ow 0.99 Dt 0.90 Dy t oil 0.970 Wt t oil 0.983 Dy fi d 0.99 Wt fi d 0.962 hick g g 0.986 hi g g o wt cly oil 0.975 Dciduou fot 0.950 oifou fot 0.970 Sufc Emiivity Ub Ahlt 0.93 oct 0.85 Roof 0.91 Pit 0.96 Nt Rditio R = S ε L σ 1 Sufc mtu h ufc tmtu could b divd fom fild mumt o timtd uig gy blc modl. 16

Fild Mumt Aoch: Δd S = t = oil ht flux t th ufcw m fc fc 8cm 8cm = oil ht flux mud t 8 cm dth W m Δ = chg i oil tmtuk = ht ccity of th moit oil = S d = dth of oil ly m t = tim itvl Soil t Flux -2-2 O: Modl Simultio Aoch: d S = K = K dz wh : -2-1 K = thml coductivity of th oil W m K d dz ufc = th vticl tmtugdit i th oil = ufc tmtuk = tmtu t dth z K z z = dth of ufc z oil ly m z Biom Egy Stog Flux Fild Mumt Aoch: hmocoul to mu tmtu chg i biom d i ly Mumt of humidity ofil Suvy of biom mout d ditibutio O: Modl Simultio Aoch: Simult tmtu gdit withi t tm d oth lt lmt Simult vticl tmtu d humidity ofil Etimt biom mout d ditibutio 17

Sibl t Flux = ρ ufc γ = ychomtic "cott" = P ε λ = cific ht of i t cott u = 1005 J kg -1 K -1 P = i u P ε = tio of molcul wight of wt to dy i = 0.662 λ = ltt ht of voiztio MJ kg 1 = itc to flux of ibl ht dd o wid d d ufc odymic chctitic Ltt t Flux ρ λe = γ [ W ufc ] = vo u of i!" # $ = tutio vo u t th coy ufc tmtu ufc W = itc to flux of wt vo W i imil to, but lo dd o moitu vilbility, i.. oil moitu, lf, tomtl itc 18

19 Egy Blc Modl: Likig It All ogth E R = λ z K z ufc = ufc = ρ W ufc E ] [ = γ ρ λ 1 L S R εσ ε = z K L S g W Δ = ] [ 1 γ ρ ρ εσ ε Equtio 13.13, Bo, 2008,. 202

S 1 εl = εσ ρ ρ γ [ ] g K Δz W h lft id of th qutio h th two xtl focig tm, bobd ol ditio d bobd logwv ditio. h ight id of th qutio h th ufc o tm. Sufc mtu i ky vibl tht i ll th tm o th ight id of thi qutio. i dtmid by th ufc gy blc d togly ifluc th ufc gy blc tm. od to xtl focig to miti gy blc. Fo giv chg i xtl focig, th cy chg i will dd o ufc chctitic. S 1 εl = εσ ρ ρ γ [ ] g K Δz W hi qutio c b ud ufc gy blc modl. But it cot b olvd lyticlly d om of th mt d vibl my b difficult to mu o timt. 20

21 R E = λ E R = λ ufc = ρ Equtio 13.1, Bo, 2008,. 202 R R E = = ρ λ Egy blc qutio: Rg th gy blc qutio: Subtitut th itc fomul fo : ] [ ] [ * * = W E ] [ * = γ ρ λ Equtio 13.16, Bo, 2008,. 202 Stutio vo u t th ufc tmtu c b oximtd : Wh i th lo of th tutio vo u v tmtu cuv. Subtitutig tht ito th itc fomul fo λe: W ufc E ] [ = γ ρ λ Rult i:

22 E R λ ρ = W E ] [ * = γ ρ λ R E = ρ λ Eq 13.16 Rgig Eq. 13.1, w gt: Subtitutig thi xio fo ito Eq. 13.16, w gt: Rcll: Eq 13.1 ] [ * W R E γ ρ λ = h Pm-Motith Equtio Motith 1965 Equtio 13.18, Bo, 2008,. 202 ] [ * W R E γ ρ λ = * W γ = γ Exio fo d c lo b divd: h Pm-Motith Equtio Motith 1965 Equtio 13.18, Bo, 2008,. 202 * * * * * * ] [ ] [ γ ρ γ γ ρ γ = = R R Equtio 13.19, Bo, 2008,. 202 Equtio 13.20, Bo, 2008,. 203

ht 13 Rviw Qutio 1. lcult oil wmig t: Rt 50 W/q m 350 W/q m LE 5 W/q m 55 W/q m ρd 1250000 J/q m dg d/dt 0.0000 dg / 0.158 dg /h Rt 600 W/q m 75 W/q m LE 85 W/q m 0 W/q m ρd 1250000 J/q m dg d/dt 0.000032 dg / 0.1152 dg /h ht 13 Rviw Qutio 2. Dit d wttt it? Bow tio:0.5, 1.0, 6.0 dit, 1.5, 0.2 wttt 3. Pci ul =800 mm Rt ul =70 Wm -2 Egy o wt limit o votio? wt. Ski. 5. Pci dily =8 mm Rt ul =120 Wm -2 Egy o wt limit o votio? gy 23

ht 13 Rviw Qutio 6. Fig. 13.7: Why i th LE/Rt lo gt fo toicl ifot th gld? E i limitd t gld it bcu of low ough, low lf, hllow oot, low wt vilbility. Do oblm 7, 8, d 9 t hom. 2