Brillouin frequency shifts in silica optical fiber with the double cladding structure

Similar documents
Analysis of Brillouin Frequency Shift and Longitudinal Acoustic Wave in a Silica Optical Fiber With a Triple-Layered Structure

Dmitriy Churin. Designing high power single frequency fiber lasers

System optimization of a long-range Brillouin-loss-based distributed fiber sensor

Differential Brillouin gain for improving the temperature accuracy and spatial resolution in a long-distance distributed fiber sensor

Yolande Sikali 1,Yves Jaouën 2, Renaud Gabet 2, Xavier Pheron 3 Gautier Moreau 1, Frédéric Taillade 4

High birefringence in elliptical hollow optical fiber

Fiber designs with significantly reduced nonlinearity for very long distance transmission

Thermal Effects Study on Stimulated Brillouin Light Scattering in Photonic Crystal Fiber

Observation of Backward Guided-Acoustic-Wave Brillouin Scattering in Optical Fibers Using Pump Probe Technique

Wavelength switchable flat-top all-fiber comb filter based on a double-loop Mach-Zehnder interferometer

Temperature sensing in multiple zones based on Brillouin fiber ring laser

Guided Acoustic Wave Brillouin Scattering (GAWBS) in Photonic Crystal Fibers (PCFs)

Demonstration of ultra-flattened dispersion in photonic crystal fibers

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

City, University of London Institutional Repository

Nonlinear Optical Effects in Fibers

Ultra-High Spatial Resolution in Distributed Fibre Sensing

SUPPLEMENTARY INFORMATION

Dispersion Properties of Photonic Crystal Fiber with Four cusped Hypocycloidal Air Holes in Cladding

Numerical Analysis of Low-order Modes in Thermally Diffused Expanded Core (TEC) Fibers

Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides.

Simplified configuration of Brillouin optical correlation-domain reflectometry

Application of high-precision temperature-controlled FBG f ilter and light source self-calibration technique in the BOTDR sensor system

On-chip stimulated Brillouin scattering

Photonic Communications Engineering I

Analysis of asymmetric radial deformation in pipe with local wall thinning under internal pressure using strain energy method

. The FBG Thermal Sensitivity The Bragg grating resonance, which is the central wavelength of back-reflected light from a uniform Bragg grating is giv

Optical sensor based on hybrid LPG/FBG in D-fiber for simultaneous refractive index and temperature measurement

Nuremberg, Paul-Gordan-Str. 6, Erlangen, Germany

B 2 P 2, which implies that g B should be

Research of a novel fiber Bragg grating underwater acoustic sensor

Nonlinear Effects in Optical Fiber. Dr. Mohammad Faisal Assistant Professor Dept. of EEE, BUET

Analysis of Single Mode Step Index Fibres using Finite Element Method. * 1 Courage Mudzingwa, 2 Action Nechibvute,

Operation of slope-assisted Brillouin optical correlation-domain reflectometry: comparison of system output with actual frequency shift distribution

Propagation losses in optical fibers

THE STUDY OF ACOUSTIC PROPERTIES OF P 2 O 5 -DOPED SILICA FIBER PI-CHENG LAW THESIS

SPECTRUM RESPONSE OF EMBEDDED FIBER BRAGG GRATING SENSORS IN COMPLICATED STRAIN FIELD

Nonlinear Fiber Optics and its Applications in Optical Signal Processing

Title. Author(s)Nagasaki, Akira; Saitoh, Kunimasa; Koshiba, Masanori. CitationOptics Express, 19(4): Issue Date Doc URL.

Simultaneous Temperature and Strain Sensing for Cryogenic Applications Using Dual-Wavelength Fiber Bragg Gratings

6th NDT in Progress Lamb waves in an anisotropic plate of a single crystal silicon wafer

The Glass Ceiling: Limits of Silica. PCF: Holey Silica Cladding

Displacement and Settlement Monitoring in Large Geotechnical Structures with a Novel Approach to Distributed Brillouin Sensing

Graduate School of Engineering, Kyoto University, Kyoto daigaku-katsura, Nishikyo-ku, Kyoto, Japan.

Temperature Dependence of a Macrobending Edge Filter Based on a High-bend Loss Fiber

Raman-assisted distributed Brillouin sensor in optical fiber for strain and temperature monitoring in civil engineering applications

Modal Analysis and Cutoff Condition of a Doubly Clad Cardioidic Waveguide

Design of Uniform Fiber Bragg grating using Transfer matrix method

Evaluation of transverse elastic properties of fibers used in composite materials by laser resonant ultrasound spectroscopy

FIBER Bragg gratings are important elements in optical

Nonlinear effects in optical fibers - v1. Miguel A. Muriel UPM-ETSIT-MUIT-CFOP

Optical solitons and its applications

Unique characteristic features of stimulated Brillouin scattering in small-core photonic crystal fibers

OPTIMAL DESIGN OF COMPOSITE INSERTS FOR A HYBRID ULTRACENTRIFUGE ROTOR

Performance Limits of Delay Lines Based on "Slow" Light. Robert W. Boyd

Dissipative soliton resonance in an all-normaldispersion erbium-doped fiber laser

Highly Birefringent Elliptical-Hole Microstructure Fibers With Low Confinement Loss

Gain dependence of measured spectra in coherent Brillouin optical time-domain analysis sensors

Fundamentals of fiber waveguide modes

Non-axisymmetric guided waves in a composite cylinder with transversely isotropic core

Measurements of Radial In-plane Vibration Characteristics of Piezoelectric Disk Transducers

Extending the Sensing Range of Brillouin Optical Time-Domain Analysis Combining Frequency-Division Multiplexing and In-Line EDFAs

2062 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 28, NO. 14, JULY 15, /$ IEEE

1 N star coupler as a distributed fiber-optic strain sensor in a white-light interferometer

arxiv:quant-ph/ v1 5 Aug 2004

Highly Nonlinear Fibers and Their Applications

Gain-Flattening Filters with Autonomous Temperature Stabilization of EDFA Gain

Near-field diffraction of irregular phase gratings with multiple phase-shifts

II~I~ IiII IT II 'AD-A hreewave Envelope Solitons: *AELECTS E w Y.N. TARANENKO AND L.G. KAZOVSKY MAR

CW-pumped polarization-maintaining Brillouin fiber ring laser: II. Active mode-locking by phase modulation

Supplementary Figure 1: SAW transducer equivalent circuit

EVALUATING THERMALLY DAMAGED POLYIMIDE INSULATED WIRING (MIL-W-81381) WITH ULTRASOUND

Photonic crystal fiber with a hybrid honeycomb cladding

Progress In Electromagnetics Research Letters, Vol. 33, 27 35, 2012

Polarization Properties of Photonic Crystal Fibers Considering Thermal and External Stress Effects

Fabrication of fibre-bragg-gratings in various high birefringent optical fibres for advanced FBG sensing applications

Exploiting pattern transformation to tune phononic band gaps in a two-dimensional granular crystal

Numerical and Experimental analysis of long range guided waves for NonDestructiveTesting of pipes.

Alexander Gaeta Department of Applied Physics and Applied Mathematics Michal Lipson Department of Electrical Engineering

Finite Element Method

Development of PC-Based Leak Detection System Using Acoustic Emission Technique

A COMPACT POLARIZATION BEAM SPLITTER BASED ON A MULTIMODE PHOTONIC CRYSTAL WAVEGUIDE WITH AN INTERNAL PHOTONIC CRYSTAL SECTION

Experimental Study on Brillouin Optical Fiber Temperature Distributed Sensing System

Observation of spectral enhancement in a soliton fiber laser with fiber Bragg grating

Vector dark domain wall solitons in a fiber ring laser

STUDY OF DISPERSION CURVES IN M-TYPE TRIPLE CLAD SINGLE MODE OPTICAL FIBER

Chapter-4 Stimulated emission devices LASERS

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

DYNAMIC CHARACTERISTICS OF A PARTIALLY FLUID- FILLED CYLINDRICAL SHELL

Magnetically Tunable Fiber Bragg Grating Supported by Guiding Mechanism System

Sensing Rotation with Light: From Fiber Optic Gyroscope to Exceptional Points

Study and design of a composite acoustic sensor to characterize an heterogeneous media presenting a complex matrix

Chalcogenide glass Photonic Crystal Fiber with flattened dispersion and high nonlinearity at telecommunication wavelength

Impact of Dispersion Fluctuations on 40-Gb/s Dispersion-Managed Lightwave Systems

ROTATING RING. Volume of small element = Rdθbt if weight density of ring = ρ weight of small element = ρrbtdθ. Figure 1 Rotating ring

Photonic crystal fiber mapping using Brillouin echoes distributed sensing

Negative curvature fibers

Core Alignment of Butt Coupling Between Single-Mode and Multimode Optical Fibers by Monitoring Brillouin Scattering Signal

EVALUATION OF BIREFRINGENCE AND MODE COUPLING LENGTH EFFECTS ON POLARIZATION MODE DISPERSION IN OPTICAL FIBERS

Transcription:

Brillouin frequency shifts in silica optical fiber with the double cladding structure J. W. Yu, Y. Park and K. Oh Department of Information and Communications, Kwangju Institute of Science and Technology, Oryong-dong, Buk-gu, Kwangju, 5-7, Korea koh@kjist.ac.kr I. B. Kwon Nondestructive measurement group, Korea Research Institute of Standard and Science, Doryong-dong, Yusung-gu, Daejon, 5-6, Korea Abstract: We report theoretical and experimental analysis on Brillouin frequency shift in silica optical fibers with the double cladding structures that are comprised of GeO -doped core, P O 5 - and F-codoped inner cladding and silica outer cladding. The intrinsic Brillouin frequency shift was calculated for various fiber parameters utilizing boundary conditions for longitudinal acoustic waves. Optical fibers with different fiber parameters were fabricated and the Brillouin frequency shifts were measured in the wavelength region of.55µm. We confirmed that the inner cladding in an optical fiber could provide a new degree of freedom in controlling the Brillouin frequency shift. Optical Society of America OCIS codes: (9.47) Nonlinear optics, Fibers; (9.59) Scattering, Stimulated Brillouin References and links. S. J. Strutz, and K. J. Williams, Low-noise hybrid erbium/brillouin amplifier, Electron. Lett. 6, 59-6 ().. G. J. Cowle, D. Y. Stepanov, and Y. T. Chieng, Brillouin/Erbium Fiber Lasers, J. Lightwave Technol. 5, 98-4 (997). B. Min, P. Kim, and N. Park, Flat amplitude equal spacing 798-channel Rayleigh-assited Brillouin/Raman multiwavelength comb generation in dispersion compensation fiber, IEEE Photon. Technol. Lett., 5-54 (). 4. H. H. Kee, G. P. Lees, and T. P. Newson, All-fiber system for simultaneous interrogation of distributed strain and temperature sensing by spontaneous Brillouin scattering, Opt. Lett. 5, - (). 5. M. Nikles, L. Thevenaz, and P. A. Robert, Brillouin gain spectrum characterization in single-mode optical fibers, J. Lightwave Technol. 5, 84-85 (997). 6. K. Shiraki, M. Ohashi, and M. Tateda, Suppression of stimulated Brillouin scattering in a fiber by changing the core radius, Electron. Lett., 668-669 (995). 7. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 95), Chap. 9. 8. P. J. Thomas, N. L. Rowell, H. M. van Driel, and G. I. Stegeman, Normal acoustic modes and Brillouin scattering in single-mode optical fibers, Phys. Rev. B. 9, 4986-4998 (979). 9. B. A. Auld, Acoustic Fields and Waves in Solids (John Wiley-Sons, 97).. A. Safaai-Jazi, and R. O. Claus, Acoustic modes in optical fiberlike waveguides, IEEE Trans. Ultrason., Ferroelec., Freq. Contr. 5, 69-67 (988).. Y. Park, K. Oh, U. C. Paek, D. Y. Kim, and C. R. Kurkjian, Residual stresses in a doubly clad fiber with depressed inner cladding (DIC), J. Lightwave Technol. 7, 8-8 (999).. S. P. Timoshenko, and J. N. Goodier, Theory of Elasticity (McGraw Hill, 97).. D. Cotter, Stimulated Brillouin scattering in monomode optical fiber, J. Opt. Commun. 4, -9 (98). 4. G. W. McLellan, and E. B. Shand, Glass Engineering Handbook (McGraw Hill, 984). Stimulated Brillouin scattering (SBS) is being extensively investigated for applications in optical fiber communications and sensor systems, such as hybrid erbium/brillouin amplifiers [], lasers [], Brillouin/Raman multi-wavelength comb generation [], and the distributed #576 - $5. US Received August 8, ; Revised September, (C) OSA September / Vol., No. 9 / OPTICS EXPRESS 996

measurement of strain and temperature [4]. In order to characterize SBS phenomena, the impacts of optical fiber materials on SBS have been reported and GeO -doped silica was found to be an optimal glass host for the core in terms of gain and optical loss [5]. Brillouin gain spectrum is, however, influenced by the geometric structures of optical fibers as well as material compositions. Among geometrical parameters, the core radius of an optical fiber would be one of the highest interests because the core will determine overall wave-guiding properties as well as Brillouin responses [6]. SBS is induced by parametric interaction among pump, Stokes, and acoustic waves in optical fibers [7]. Acoustic waves in cylindrical optical fibers could be guided in definitive modes such as longitudinal, torsional, and flexural modes [8,9]. Among them, the lowest longitudinal acoustic mode, L-mode, dominantly interacts with the input optical pump wave and gives rise to backscattered Stokes signal, which is down-shifted by the Brillouin frequency [6]. Safaai-Jazi et al. analyzed the acoustic modes in optical fibers with a GeO -doped core and pure silica cladding [], where the relations between the core and cladding properties were assumed as; V L _ CO < VL _ CL, V S _ CO VS _ CL, and ρco ρcl,wherev L _ CO, V L _ CL, V S _ CO, V S _ CL, ρco and ρcl are the longitudinal velocities, the shear velocities, and densities of the core and the cladding, respectively. In the simple core and infinite cladding structure, the Brillouin frequency shift was found to monotonically decrease as a function of the core radius [6], which has imposed significant restriction in optical fiber structures for SBS applications. The ability to control the Brillouin frequency shift ( ν B ) could generate novel features in current SBS applications, especially in dense wavelength division multiplexing (DWDM) devices where precise spectral control is emphasized. In this letter, we report, for the first time to the best knowledge of the authors, the influence of inner cladding layer of an optical fiber on the acoustic waves and the Brillouin frequency shift, ν B, providing analytic understanding of non-trivial behavior of ν B for various fiber parameters. The analytic relationship will endow a new degree of freedom to design novel fiber SBS devices. GeO-doped core PO5- & F-doped inner cladding Refractive index, n =.5% pure silica cladding a b c r Fig.. The schematics of refractive index profile of the optical fiber with the matched inner cladding. a, b,and c are the radii of core, inner cladding, and outer cladding, respectively. Structure of the fiber used in the analysis is schematically shown in Fig.. The fiber has three layers; the core is doped with GeO while the inner cladding is co-doped with P O 5 and F to lower processing temperature and to match the refractive index to that of pure silica glass in the outer cladding. When the fiber is drawn at a sufficiently low speed, the density of each #576 - $5. US Received August 8, ; Revised September, (C) OSA September / Vol., No. 9 / OPTICS EXPRESS 997

layer in optical fiber is dominantly affected by the thermal stress, which results from the differences in thermal expansion coefficients in the layers []. The calculated thermal stress profile is shown in Fig. and the corresponding density distribution is shown in Fig.. The thermal stress and density were calculated for the optical fiber of which the concentrations of each layer were.6-mol% GeO -doped core,.-mol% P O 5 - and -mol% F-codoped inner cladding, and pure silica outer cladding. The relation between the stress and density is describedinref.. 4 Thermal stress (MPa) - - σ r σ θ σ z - 4 6 8 4 Fiber radius (µm) Fig.. The calculated thermal stress profile of optical fiber. σ r, σ θ,andσz are the radial, circumferential, and axial thermal stress, respectively. Core radius a = µm, outer radius of inner cladding b =6. µm, and outer radius of outer cladding c =6.5µm []..5 Density (Kg/m )..5..5. 4 6 8 4 Fiber radius (µm) Fig.. Corresponding density distribution. The density in the absence of volumetric stress is,kg/m [4]. The acoustic velocity, then, can be estimated from Eq. () []. ( ν )/( + ν )( ν )ρ V A = E () where VA is the acoustic velocity, ρ is the density, ν and E are the Poisson s ratio and the Young s modulus, respectively. In the range of dopant concentration in this study, ν and E are found to be nearly the same as that of pure silica. Therefore, the density of each layer plays a dominant role to alter the acoustic response such as value of V. In double cladding A #576 - $5. US Received August 8, ; Revised September, (C) OSA September / Vol., No. 9 / OPTICS EXPRESS 998

fiber structure, the acoustic mode analysis, initially proposed by Safaai-Jazi et al. [], has to include the inner cladding boundary as below; ( ) ( ) ( u r), An J n ur, ( ) Φ = Bn J n ur + CnY DnK n ( wr), n for for for r < a a < r < b r > b () where ( Φ ) is the zero-order solution of acoustic scalar wave equation, n is an integer, a and b denote the radii of core and inner cladding, respectively. Here indices,, and denote the core, the inner cladding, and the outer cladding, respectively. u, u and w are expressed as, / u i = π f, =, i () VLi V / w = π f (4) V V L where V Li s are the longitudinal velocities at individual layers. f is the acoustic frequency, that is, Brillouin frequency shift, ν B. V is the phase velocity of the longitudinal acoustic mode given by [], λ V = f (5) n where n is the refractive index of core, and λ is the optical wavelength. For acoustic L modes, ν B can be obtained by solving the characteristic equation for the L mode obtained from the continuity of ( Φ ) and ( Φ ) / r at the boundaries []. { uj( ua) uj ( ua) }{ wj ( ua) Y ( ub) K( wb) uj( ua) Y ( ub) K( wb) } { u Y ( u a) u Y ( u a) }{ w J ( u a) J ( u b) K ( w b) u J ( u a) J ( u b) K ( w b) } = Fig. 4 shows the dependence of ν B on the core radius a, for different inner cladding radii. Here we have assumed that the acoustic velocity at the inner cladding is lower than that of core such that V L = 5,69m/s, V L =5,677m/s, and V L =5,759m/s, respectively. The acoustic velocity of outer pure silica cladding was calculated from Eq. () using elastic properties, such as Poisson s ratio σ =.7, density ρ =. kg/m, and Young s modulus E =6.85GPa [4]. The acoustic velocities of core and inner cladding were obtained using each density of Fig.. Note that ν B increases as the core increases, which is completely opposite to the previous results where inner cladding has not been included in the analysis [6]. Furthermore, it is found that ν B does depend on the dimension of the inner cladding. When the acoustic velocity of inner cladding is, however, higher than that of the core, ν B shows monotonic decrease as a function of the core radius, consistent to the previous results. (6) #576 - $5. US Received August 8, ; Revised September, (C) OSA September / Vol., No. 9 / OPTICS EXPRESS 999

The behavior of ν B is analyzed for various acoustic velocities at the inner cladding, and the results are shown Fig. 5. Here the inner cladding radius was 6.µm, and the acoustic velocities of the core and the outer cladding were 5,69m/s and 5,759m/s, respectively. The slope in the ν B increases for a higher inner cladding acoustic velocity and the sensitivity of with respect to the core radius change gets significantly higher. ν B Brillouin frequency shift (GHz).7.75.7.75.7.75 b=6.µm b=6.µm b=6.µm b=6.4µm b=6.5µm..5 4. 4.5 5. 5.5 6. Fig. 4. The effect of inner cladding radius, b, on Brillouin frequency shift: An optical fiber is assumed to be composed of GeO -doped core, P O 5 - and F-doped inner cladding, and pure silica outer cladding where acoustic frequencies are given by V L =5,69, V L =5,677, and V L =5,759m/s. Note that the acoustic velocity at the inner cladding is lower than that at the core. In order to verify these numerical results, three types of optical fibers with the refractive index matched inner cladding were fabricated to experimentally measure the Brillouin frequency shift. All parameters of optical fibers were same except for the core radius. The corewasdopedwithgeo and the inner cladding was co-doped with P O 5 and F. The inner cladding radius was 6.5 µm and the relative refractive index difference,, was.5%. The core radii of fabricated fibers were 4 µm, 4.7 µm, and 5. µm. Brillouin freqeuncy shift (GHz).75.7.75.7.75.7 V L =5667m/s V L =567m/s V L =5677m/s V L =568m/s V L =5687m/s..5 4. 4.5 5. 5.5 6. Fig. 5. The effect of acoustic velocity in inner cladding, V L, on the Brillouin frequency shift: Here we have assumed the inner cladding radius, b =6.µm, the core acoustic velocity V L =5,69m/s, and outer cladding acoustic velocity V L =5,759m/s. #576 - $5. US Received August 8, ; Revised September, (C) OSA September / Vol., No. 9 / OPTICS EXPRESS

It is known that a slight strain as small as. results in the Brillouin frequency shift change as much as 5.94MHz. Furthermore, temperature change of degree induces a Brillouin frequency shift change of about.6mhz in a 5- µm acrylate microjacketed fiber [5]. In order to minimize the Brillouin frequency shift change due to applied strain and temperature, all fibers were drawn at the same conditions, such as m/min low drawing speed for mechanical strain-free optical fibers. The Brillouin frequency shifts of all fibers were measured at the same room temperature of 5 o C. Therefore, Brillouin frequency shift change due to strain and temperature could be neglected because uniform strain and temperature were applied to all fibers. To measure the Brillouin frequency shift of the fabricated optical fibers, a pump and probe technique was used [5]. The Brillouin gain spectra (BGS) of test fibers were obtained at the wavelength of.55µm. The resolution of the measurement was khz. As shown in Fig. 6, the measured Brillouin frequency shifts clearly showed increase from.749,.768, and to.794ghz for the increasing core radii of 4.5, 4.7, and 5.8 µm, respectively. The measurement confirms the effect of inner cladding as discussed in Fig. 4 and Fig. 5 contrast to previous results [6]. Theoretical fitting gave estimation of the acoustic velocities of 5,694, 5,676, and 5,759m/s at the core, the inner cladding, and the outer cladding, respectively showing a good agreement with the experimental results. The deviation from the theoretical fitting could be attributed to contribution from torsional modes or flexural modes of acoustic wave. Small-applied strain and temperature changes during measurement also could cause the deviation. Brillouin frequency shift (GHz).7.7.79.78.77.76.75.74.7 b =6.5µm V L =5694m/s V L =5676m/s V L =5759m/s experimental theoretical..5 4. 4.5 5. 5.5 6. Fig. 6. Measured Brillouin frequency shifts for three different core radii. Theoretical curve assumes the estimation of the inner cladding of b =6.5µm, the core acoustic velocity of V L =5,694m/s, the inner cladding acoustic velocity V L =5,676m/s and the outer cladding velocity V L =5,759m/s. Brillouin spectra of the test fibers are shown in Fig. 7. Measured BGS data were fitted with Gaussian function. Due to time-variant Rayleigh scattering from unmodulated probe signal, absolute magnitude of the Brillouin gain was not measurable and the intensity of the Stokes wave was normalized to the maximum. The Brillouin bandwidths ( ν B ) were found to increase from.6, to.5, and.44mhz for the increasing core radii of 4.5, 4.7, and 5.8µm. #576 - $5. US Received August 8, ; Revised September, (C) OSA September / Vol., No. 9 / OPTICS EXPRESS

. Intensity (a.u.).8.6.4.. 5.8µm 4.7µm 4.5µm.66.68.7.7.74.76.78 Frequency (GHz) Fig. 7. The Brillouin gain spectra of test fibers. The Brillouin frequency shift ( B )and Brillouin bandwidth ( ν B ) are.749ghz and.664mhz for 4.5µm coreradius, respectively. ν B =.768GHz, ν B =.5MHz for 4.7mm core radius and ν B =.794GHz, ν B =.44MHz for 5.8mm core radius. In conclusion, we analytically investigated the effect of the inner cladding on Brillouin frequency shift. Thermal stress across the double cladding structure optical fiber induced local distribution of longitudinal acoustic waves and densities, which in turn affected the behavior of Brillouin frequency shift. It was both theoretically and experimentally shown that the Brillouin frequency shift could be fine-tuned by the inner cladding adding a new degree of freedom to design SBS optical fiber devices. Brillouin gain bandwidths were also found to be affected by the fiber structures and further analysis is being undertaken by the authors. Acknowledgments This work was supported in part by the KOSEF through the Ultra-Fast Fiber-Optic Networks Research Center, the Korean Ministry of Education through the BK Program, and ITRC-CHOAN program. ν #576 - $5. US Received August 8, ; Revised September, (C) OSA September / Vol., No. 9 / OPTICS EXPRESS