Fisica Matematica. Stefano Ansoldi. Dipartimento di Matematica e Informatica. Università degli Studi di Udine. Corso di Laurea in Matematica

Similar documents
Relativity Discussion

Modern Geometric Structures and Fields

Fundamentals of Differential Geometry

Richard A. Mould. Basic Relativity. With 144 Figures. Springer-Verlag New York Berlin Heidelberg London Paris Tokyo Hong Kong Barcelona Budapest

Tensor Calculus, Relativity, and Cosmology

Giinter Ludyk. Einstein in Matrix. Form. Exact Derivation of the Theory of Special. without Tensors. and General Relativity.

Elements of differential geometry

A brief introduction to Semi-Riemannian geometry and general relativity. Hans Ringström

Relativity SPECIAL, GENERAL, AND COSMOLOGICAL SECOND EDITION. Wolfgang Rindler. Professor of Physics The University of Texas at Dallas

Differential Geometry, Lie Groups, and Symmetric Spaces

As always, the story begins with Riemann surfaces or just (real) surfaces. (As we have already noted, these are nearly the same thing).

PRINCIPLES OF PHYSICS. \Hp. Ni Jun TSINGHUA. Physics. From Quantum Field Theory. to Classical Mechanics. World Scientific. Vol.2. Report and Review in

Classical Field Theory

Geometry for Physicists

The Riemann curvature tensor, its invariants, and their use in the classification of spacetimes

UNIVERSITY OF DUBLIN

Curved Spacetime I. Dr. Naylor

Research Article New Examples of Einstein Metrics in Dimension Four

Geometry in a Fréchet Context: A Projective Limit Approach

Summary in General Relativity

Relativistic simultaneity and causality

An Introduction to Riemann-Finsler Geometry

CALCULUS ON MANIFOLDS. 1. Riemannian manifolds Recall that for any smooth manifold M, dim M = n, the union T M =

Two simple ideas from calculus applied to Riemannian geometry

Geometric inequalities for black holes

BERGMAN KERNEL ON COMPACT KÄHLER MANIFOLDS

Lecture: Lorentz Invariant Dynamics

Manifolds in Fluid Dynamics

Lecture Notes on General Relativity

DIFFERENTIAL GEOMETRY CLASS NOTES INSTRUCTOR: F. MARQUES. September 25, 2015

Lectures on the Orbit Method

CHAPTER 1 PRELIMINARIES

Curvature homogeneity of type (1, 3) in pseudo-riemannian manifolds

An introduction to General Relativity and the positive mass theorem

Follow links Class Use and other Permissions. For more information, send to:

Equivalence, Invariants, and Symmetry

Stability and Instability of Black Holes

General Relativity and Cosmology Mock exam

Analytical Mechanics for Relativity and Quantum Mechanics

The Erlangen Program and General Relativity

THE INITIAL VALUE FORMULATION OF GENERAL RELATIVITY

LECTURE 10: THE PARALLEL TRANSPORT

GROUP THEORY IN PHYSICS

ESSENTIAL KILLING FIELDS OF PARABOLIC GEOMETRIES: PROJECTIVE AND CONFORMAL STRUCTURES. 1. Introduction

Patrick Iglesias-Zemmour

Isometries, Local Isometries, Riemannian Coverings and Submersions, Killing Vector Fields

Chapter 3. Riemannian Manifolds - I. The subject of this thesis is to extend the combinatorial curve reconstruction approach to curves

Spacelike surfaces with positive definite second fundamental form in 3-dimensional Lorentzian manifolds

The existence of light-like homogeneous geodesics in homogeneous Lorentzian manifolds. Sao Paulo, 2013

8 Symmetries and the Hamiltonian

1-TYPE AND BIHARMONIC FRENET CURVES IN LORENTZIAN 3-SPACE *

Comparison for infinitesimal automorphisms. of parabolic geometries

LECTURE 8: THE SECTIONAL AND RICCI CURVATURES

Applications of Affine and Weyl Geometry

Initial-Value Problems in General Relativity

Tangent bundles, vector fields

Reminder on basic differential geometry

Curved Spacetime III Einstein's field equations

Solutions to the Hamilton-Jacobi equation as Lagrangian submanifolds

Representation theory and the X-ray transform

SYMMETRIES OF SECTIONAL CURVATURE ON 3 MANIFOLDS. May 27, 1992

Preface Exposition and Paradoxes Organization of this Book... 5

Spacetime Geometry. Beijing International Mathematics Research Center 2007 Summer School

LECTURE 1: LINEAR SYMPLECTIC GEOMETRY

LECTURE 3: SMOOTH FUNCTIONS

A GENERAL RELATIVITY WORKBOOK. Thomas A. Moore. Pomona College. University Science Books. California. Mill Valley,

Tesi di Laurea Magistrale in Matematica presentata da. Claudia Dennetta. Symplectic Geometry. Il Relatore. Prof. Massimiliano Pontecorvo

Bibliography. Introduction to General Relativity and Cosmology Downloaded from

Proper curvature collineations in Bianchi type-ii space-times( )

Causal Structure of General Relativistic Spacetimes

Isometries, Local Isometries, Riemannian Coverings and Submersions, Killing Vector Fields

Collapse of Kaluza-Klein Bubbles. Abstract. Kaluza-Klein theory admits \bubble" congurations, in which the

Rigidity of Black Holes

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

Asymptotic Behavior of Marginally Trapped Tubes

Übungen zu RT2 SS (4) Show that (any) contraction of a (p, q) - tensor results in a (p 1, q 1) - tensor.

Geometry of almost-product (pseudo-)riemannian manifold. manifolds and the dynamics of the observer. Aneta Wojnar

BACKGROUND IN SYMPLECTIC GEOMETRY

Algebraic Curves and Riemann Surfaces

Quantising Gravitational Instantons

INSTANTON MODULI AND COMPACTIFICATION MATTHEW MAHOWALD

SOME ALMOST COMPLEX STRUCTURES WITH NORDEN METRIC ON THE TANGENT BUNDLE OF A SPACE FORM

Loos Symmetric Cones. Jimmie Lawson Louisiana State University. July, 2018

A Tour of Subriemannian Geometries,Their Geodesies and Applications

8.821 String Theory Fall 2008

CONTENTS. Preface Preliminaries 1

Relativity, Gravitation, and Cosmology

INDEX 363. Cartesian coordinates 19,20,42, 67, 83 Cartesian tensors 84, 87, 226

PAPER 52 GENERAL RELATIVITY

INTRODUCTION TO GENERAL RELATIVITY

Differential Geometry MTG 6257 Spring 2018 Problem Set 4 Due-date: Wednesday, 4/25/18

A local characterization for constant curvature metrics in 2-dimensional Lorentz manifolds

HI CAMBRIDGE n S P UNIVERSITY PRESS

A connection between Lorentzian distance and mechanical least action

An Introduction to General Relativity and Cosmology

Fiber Bundles, Yang-Mills Theory, and General Relativity

Electromagnetic spikes

Syllabus. May 3, Special relativity 1. 2 Differential geometry 3

In this lecture we define tensors on a manifold, and the associated bundles, and operations on tensors.

CURVATURE VIA THE DE SITTER S SPACE-TIME

Transcription:

Fisica Matematica Stefano Ansoldi Dipartimento di Matematica e Informatica Università degli Studi di Udine Corso di Laurea in Matematica Anno Accademico 2003/2004 c 2004 Copyright by Stefano Ansoldi and the University of Udine, 2004. All Italian and international copyrights reserved for all original material presented in this course and lecture notes through any medium, including lecture or print. Individuals are prohibited from being paid for taking, selling, or otherwise transferring for value, this material or part of it without the express written permission of Stefano Ansoldi. Individuals are prohibited from distributing by any means this material or part of it without the express written permission of Stefano Ansoldi. Individuals are granted the right of using this material for personal, educational purposes only without the express written permission of Stefano Ansoldi.

Contents Contents List of Figures List of Tables List of Definitions List of Propositions List of Notations i v vii ix xi xiii II Acknowledgments xv 1 Lecture 1 1 1.1 Introduction.............................. 1 1.2 A glimpse at Mathematical Physics............... 1 1.2.1 Operative definition of physical concepts.......... 1 1.2.2 Axiomatic definition of Mathematical Concepts...... 2 1.2.3 Some contact points..................... 2 1.3 Our program in Mathematical Physics............... 3 2 Lecture 2 5 2.1 From discrete to continuous systems................ 5 2.2 Some naming conventions...................... 9 2.3 The equations of motion....................... 9 2.3.1 Field equations........................ 10 2.4 Other dynamical quantities in field theory............. 11 2.5 Synopsis................................ 12 3 Lecture 3 13 3.1 Euler-Lagrange equations in field theory.............. 13 3.1.1 Preliminaries......................... 13 3.1.2 Functional Derivatives.................... 14 3.1.3 Estremals and field equations................ 14 3.2 Stationary action principle...................... 17 3.3 Synopsis................................ 18 i

ii Contents. 4 Lecture 4 19 4.1 Reflections on space and time.................... 19 4.1.1 Classical mechanics and its framework........... 20 4.1.2 A fundamental law of electrodynamics........... 21 4.1.3 The consistency problem................... 21 4.2 Einstein solution: a reflection about time............. 21 4.2.1 Simultaneity......................... 22 4.3 Lorentz transformations....................... 23 4.3.1 The algebraic derivation................... 23 4.4 Synopsis................................ 25 5 Lecture 5 27 5.1 The group of Lorentz transformations............... 27 5.1.1 2-dimensional case...................... 27 5.1.2 A comment about the 4-dimensional case......... 30 5.2 Synopsis................................ 31 6 Lecture 6 33 6.1 Tensors - 1 -.............................. 33 6.1.1 Tensor product........................ 33 6.1.2 Properties of tensor product................. 35 7 Lecture 7 39 7.1 Tensors - 2 -.............................. 39 7.1.1 Additional properties of tensor product.......... 39 7.1.2 Isomorphism with multilinear transformations....... 41 7.1.3 Tensors and components................... 42 7.2 Synopsis................................ 43 8 Lecture 8 45 8.1 Some reminders of topology..................... 45 8.2 Some reminders of differential geometry.............. 46 8.2.1 Vector bundles and sections................. 47 8.2.2 Partition of unity....................... 47 8.3 Tensors - 3 -.............................. 49 8.3.1 Tensors (Tensor Fields) on Manifolds............ 49 9 Lecture 9 55 9.1 Some algebraic preliminaries..................... 55 9.1.1 Scalar products on a vector space.............. 55 9.2 Riemannian (Lorentzian) geometry - 1 -.............. 57 9.2.1 Riemannian and Lorentzian manifolds........... 57 9.3 Connections on manifolds - 1 -................... 58 9.3.1 Connections and symmetric connections.......... 59 10 Lecture 10 61 10.1 Connections on manifolds - 2 -................... 61 10.1.1 Characterization of symmetric connections........ 61 10.1.2 Smooth curves and covariant derivative along a curve.. 63 c 2004 by Stefano Ansoldi Please, read statement on cover page

Contents. iii 11 Lecture 11 67 11.1 Tensors - 4 -.............................. 67 11.1.1 A few more concepts about tensors............. 67 11.2 Connections on manifolds - 3 -................... 68 11.2.1 Parallel vector fields and parallel translation....... 68 11.2.2 Extension of covariant derivative to tensors........ 69 12 Lecture 12 71 12.1 Connections on manifolds - 4 -................... 71 12.1.1 Component expression of the covariant derivative..... 71 12.2 Curvature - 1 -............................ 74 12.2.1 Definition of the Riemann tensor and a basic property.. 74 13 Lecture 13 77 13.1 Curvature - 2 -............................ 77 13.1.1 Components of the Riemann tensor, symmetries and Ricci tensor............................. 77 14 Lecture 14 81 14.1 More about curves on manifolds - 1 -................ 81 14.1.1 Autoparallel curves and the exponential map....... 81 15 Lecture 15 85 15.1 Riemannian (Lorentzian) geometry - 2 -.............. 85 15.1.1 Interplay between connection and metric.......... 85 15.2 Curvature - 2 -............................ 89 15.2.1 Curvature on Riemannian (Lorentzian) Manifolds..... 89 16 Lecture 16 91 16.1 Notation, Greek indices,........................ 91 16.2 General Relativity.......................... 93 16.2.1 Problems of the special theory............... 93 16.2.2 Einstein s elevator thought experiment........... 96 16.3 Synopsis and a word of caution................... 97 17 Lecture 17 99 17.1 More about curves on manifolds - 2 -................ 99 17.1.1 Geodesics........................... 100 17.2 Mathematical formulation of General Relativity.......... 100 17.3 The classical limit of the geodesic equation............ 102 18 Lecture 18 105 18.1 Einstein Equations.......................... 105 18.1.1 Action for the gravitational field.............. 105 18.1.2 Variational principle..................... 105 18.1.3 The Lagrangian density................... 105 18.1.4 Derivations of Einstein equations in vacuo......... 106 c 2004 by Stefano Ansoldi Please, read statement on cover page

iv Contents. 19 Lecture 19 109 19.1 Properties of Einstein s field equation............... 109 19.2 Physical meaning of the metric fields................ 111 19.2.1 Time measurements..................... 111 19.2.2 Space measurements..................... 112 19.2.3 Clock synchronization.................... 113 19.3 More about the classical limit.................... 113 19.4 Synopsis................................ 114 20 Lecture 20 115 20.1 Conservation of energy in classical mechanics........... 115 20.2 Conservation laws in a special relativistic field theory....... 116 20.3 Conservation laws and general covariance............. 117 20.4 Einstein equations.......................... 121 21 Problems 123 A Parallelism and Autoparallelism 125 A.1 Autoparallel curves.......................... 125 c 2004 by Stefano Ansoldi Please, read statement on cover page

List of Figures 8.1 Typical example of a non-hausdorff topological space......... 47 8.2 Vector bundle.............................. 48 8.3 Section of a vector bundle........................ 48 9.1 Timelike, spacelike and null vectors................... 56 14.1 Exponential of a vector......................... 82 v

vi Contents. c 2004 by Stefano Ansoldi Please, read statement on cover page

List of Tables vii

viii Contents. c 2004 by Stefano Ansoldi Please, read statement on cover page

List of Definitions 3.1 Field.................................. 13 3.2 Functional of fields.......................... 13 3.3 Field fluctuation (or variation)................... 13 3.4 Finite variation of a functional................... 14 3.5..................................... 14 3.6 Extremal of a functional....................... 14 3.7 Euler-Lagrange equations...................... 14 6.1 Tensor product............................ 33 6.2 Universal factorization property................... 34 8.1 Topology and open sets....................... 45 8.2 Topological space........................... 45 8.3 Neighborhood............................. 45 8.4 Cover................................. 45 8.5 Subcover................................ 45 8.6 Refinement.............................. 46 8.7 Open cover.............................. 46 8.8 Locally finite open cover....................... 46 8.9 Compact topological space...................... 46 8.10 Paracompact topological space................... 46 8.11 Hausdorff topological space..................... 46 8.12 Vector bundle............................. 47 8.13 Section of a vector bundle...................... 47 8.14 Differentiable partition of unity................... 47 8.15 Tensor bundle of the (r, s) type................... 49 8.16 Smooth tensor field.......................... 50 8.17 Tangent and Cotangent bundle................... 50 8.18 Vector fields and 1-form fields.................... 50 8.19 Line element field........................... 50 8.20 Lie Brackets.............................. 52 9.1 Scalar product............................ 55 9.2 Signature and Lorentzian metric.................. 56 9.3 Timelike, spacelike and null vectors................. 56 9.4 Riemannian metric.......................... 57 9.5 Lorentzian metric........................... 57 9.6 Isometry between manifolds..................... 58 9.7 Connection at m M........................ 59 9.8 Connection on a manifold...................... 60 9.9 Symmetric connection........................ 60 9.10 Connection in coordinates...................... 60 ix

x Contents. 10.1 Smooth curve on a manifold..................... 63 11.1 Tensor algebra............................ 67 11.2 Contractions of a tensor....................... 67 11.3 Parallel vector field along a curve.................. 68 11.4 Covariant derivative of vector fields................. 69 11.5 Extension of covariant derivative.................. 69 12.1 Riemann curvature tensor...................... 74 13.1 Ricci tensor.............................. 79 14.1 Autoparallel.............................. 81 14.2..................................... 82 15.1 Compatibility condition....................... 85 15.2 Ricci scalar.............................. 90 15.3 Einstein tensor............................ 90 17.1 Timelike, spacelike, null vectors on a manifold........... 99 17.2 Local character of a curve at a point................ 99 17.3 Global character of a curve..................... 99 17.4 Length of a curve........................... 100 17.5..................................... 100 20.1 Stress Energy Tensor......................... 117 c 2004 by Stefano Ansoldi Please, read statement on cover page

List of Propositions 3.1 Conditions for an extremal..................... 15 4.1 Galilean law of composition of velocities.............. 20 6.1 Tensor product: universal factorization............... 34 6.2 Isomorphism of V W into W V................ 35 6.3 Isomorphism of F U onto U.................... 36 6.4 Isomorphism of (U V ) W onto U (V W )......... 36 6.5 Tensor product of functions..................... 37 7.1 Distributive properties of with respect to........... 39 7.2 Basis of tensor product........................ 39 7.3 Tensor product and linear applications............... 39 7.4 Tensor product and duals...................... 40 7.5 Tensor product and linear mappings................ 41 8.1 Existence of partition of unity.................... 49 8.2 Characterization of smooth tensor fields.............. 50 8.3 Characterization of smooth vector fields.............. 51 8.4 Properties of the Lie Brackets.................... 52 9.1 Existence of Riemannian metric................... 57 9.2 Existence of Lorentzian metric................... 58 10.1 Characterization of symmetric connections............. 61 10.2 Covariant derivative along a curve................. 64 11.1 Characterization of parallel vector field............... 68 11.2 Existence of parallel vector fields.................. 68 11.3 Parallel translation is an isomorphism............... 68 12.1 Riemann tensor and covariant derivatives............. 75 13.1 Riemann tensor and coordinate basis................ 77 13.2 Properties of the Riemann tensor.................. 78 14.1 Autoparallelism equation...................... 81 14.2..................................... 82 15.1 I characterization of compatible connections............ 85 15.2 II characterization of compatible connections........... 87 15.3! symmetric compatible connection................ 87 15.4 More symmetries of the Riemann tensor.............. 89 15.5 Symmetries of the Ricci tensor................... 89 15.6 Differential identities of curvature tensors............. 90 17.1 Character of geodesics........................ 100 17.2..................................... 100 20.1 Local conservation laws....................... 117 xi

xii Contents. c 2004 by Stefano Ansoldi Please, read statement on cover page

List of Notations 7.1..................................... 41 8.1 Particular cases of bundles and spaces of fields.......... 50 12.1 Covariant derivative components.................. 72 15.1 Compatible Symmetric Covariant Derivative............ 89 xiii

xiv Contents. c 2004 by Stefano Ansoldi Please, read statement on cover page