Thermodynamics II. Department of Chemical Engineering. Prof. Kim, Jong Hak

Similar documents
University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2014

Thermodynamics II. Department of Chemical Engineering. Prof. Kim, Jong Hak

(1) The saturation vapor pressure as a function of temperature, often given by the Antoine equation:

LECTURE 21 Mohr s Method for Calculation of General Displacements. 1 The Reciprocal Theorem

A finite difference method for heat equation in the unbounded domain

y i x P vap 10 A T SOLUTION TO HOMEWORK #7 #Problem

Energy, Entropy, and Availability Balances Phase Equilibria. Nonideal Thermodynamic Property Models. Selecting an Appropriate Model

applied to a single-phase fluid in a closed system wherein no chemical reactions occur.

G : Statistical Mechanics

Introduction to Vapor/Liquid Equilibrium, part 2. Raoult s Law:

3. Be able to derive the chemical equilibrium constants from statistical mechanics.

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2013

Discriminating Fuzzy Preference Relations Based on Heuristic Possibilistic Clustering

Lecture. Polymer Thermodynamics 0331 L Chemical Potential

The ChemSep Book. Harry A. Kooijman Consultant. Ross Taylor Clarkson University, Potsdam, New York University of Twente, Enschede, The Netherlands

Note 2. Ling fong Li. 1 Klein Gordon Equation Probablity interpretation Solutions to Klein-Gordon Equation... 2

Chapter 5 rd Law of Thermodynamics

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2014

Lecture 11. Transport in Membranes (1)

Solution Thermodynamics

A DIMENSION-REDUCTION METHOD FOR STOCHASTIC ANALYSIS SECOND-MOMENT ANALYSIS

Lecture 8. Chapter 7. - Thermodynamic Web - Departure Functions - Review Equations of state (chapter 4, briefly)

MARKOV CHAIN AND HIDDEN MARKOV MODEL

Non-Ideality Through Fugacity and Activity

Name: SID: Discussion Session:

An open-source thermodynamic software library

4.2 Chemical Driving Force

Supplementary Notes for Chapter 9 Mixture Thermodynamics

ECEN 5005 Crystals, Nanocrystals and Device Applications Class 19 Group Theory For Crystals

Open Systems: Chemical Potential and Partial Molar Quantities Chemical Potential

A Self-Consistent Gibbs Excess Mixing Rule for Cubic Equations of State: derivation and fugacity coefficients

EXPERIMENT AND THEORISATION: AN APPLICATION OF THE HYDROSTATIC EQUATION AND ARCHIMEDES THEOREM

General Thermodynamics for Process Simulation. Dr. Jungho Cho, Professor Department of Chemical Engineering Dong Yang University

Thermodynamic ProperDes for Fluids

Obtaining U and G based on A above arrow line: )

Boundary Value Problems. Lecture Objectives. Ch. 27

Solution Thermodynamics

Strain Energy in Linear Elastic Solids

Quantum Runge-Lenz Vector and the Hydrogen Atom, the hidden SO(4) symmetry

Prediction of Solubility of Racemic (R/S) (±)-Ibuprofen in n-heptane, Toluene, Benzene and Ethanol

If two volatile and miscible liquids are combined to form a solution, Raoult s law is not obeyed. Use the experimental data in Table 9.

Chapter 3 Differentiation and Integration

I wish to publish my paper on The International Journal of Thermophysics. A Practical Method to Calculate Partial Properties from Equation of State

Exercises of Fundamentals of Chemical Processes

TEST 5 (phy 240) 2. Show that the volume coefficient of thermal expansion for an ideal gas at constant pressure is temperature dependent and given by

NAME and Section No. it is found that 0.6 mol of O

Nested case-control and case-cohort studies

PHYS 1443 Section 004 Lecture #12 Thursday, Oct. 2, 2014

Multi-joint kinematics and dynamics

Example: Suppose we want to build a classifier that recognizes WebPages of graduate students.

Remark: Positive work is done on an object when the point of application of the force moves in the direction of the force.

Non-Commercial Use Only

a for save as PDF Chemistry 163B Introduction to Multicomponent Systems and Partial Molar Quantities

Lowest-Order e + e l + l Processes in Quantum Electrodynamics. Sanha Cheong

we have E Y x t ( ( xl)) 1 ( xl), e a in I( Λ ) are as follows:

Force = F Piston area = A

k p theory for bulk semiconductors

Chapter 6. Rotations and Tensors

Andre Schneider P622

arxiv: v1 [physics.comp-ph] 17 Dec 2018

Assignment 4. Adsorption Isotherms

4 Time varying electromagnetic field

Appendix II Summary of Important Equations

Supplementary Material: Learning Structured Weight Uncertainty in Bayesian Neural Networks

Department of Electrical and Computer Engineering FEEDBACK AMPLIFIERS

3. Stress-strain relationships of a composite layer

Spring Force and Power

COXREG. Estimation (1)

MODELING OF MULTICOMPONET FUEL EFFECTS IN INTERNAL COMBUSTION ENGINES

Research on Complex Networks Control Based on Fuzzy Integral Sliding Theory

Estimation of the composition of the liquid and vapor streams exiting a flash unit with a supercritical component

PETE 310 Lectures # 24 & 25 Chapter 12 Gas Liquid Equilibrium

Calculation method of electrical conductivity, thermal conductivity and viscosity of a partially ionized gas. Ilona Lázniková

Complex Variables. Chapter 18 Integration in the Complex Plane. March 12, 2013 Lecturer: Shih-Yuan Chen

( ) r! t. Equation (1.1) is the result of the following two definitions. First, the bracket is by definition a scalar product.

Cyclic Codes BCH Codes

Heterogeneous multicomponent nucleation theorems for the analysis of nanoclusters

Optimum Selection Combining for M-QAM on Fading Channels

Multispectral Remote Sensing Image Classification Algorithm Based on Rough Set Theory

Chapter 3 and Chapter 4

PHYS 1441 Section 002 Lecture #15

Image Classification Using EM And JE algorithms

CS229 Lecture notes. Andrew Ng

( ) 1/ 2. ( P SO2 )( P O2 ) 1/ 2.

Prof. Paolo Colantonio a.a

Equation of State Modeling of Phase Equilibrium in the Low-Density Polyethylene Process

The line method combined with spectral chebyshev for space-time fractional diffusion equation

Activity Coefficient Calculation for Binary Systems Using UNIQUAC

Integrated Process Design and Control of Reactive Distillation Processes

Neural network-based athletics performance prediction optimization model applied research

Q e E i /k B. i i i i

Associative Memories

However, since P is a symmetric idempotent matrix, of P are either 0 or 1 [Eigen-values

Kernel Methods and SVMs Extension

Thermodynamics Lecture Series

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

RPA-CPA theory for magnetism in disordered Heisenberg binary systems with long-range exchange integrals

Chapter # A SYSTEM FOR SIMULATION OF 2D PLANT TISSUE GROWTH AND DEVELOPMENT

Chapter 8 Solutions Engineering and Chemical Thermodynamics 2e

ME 300 Exam 2 November 18, :30 p.m. to 7:30 p.m.

Transcription:

Thermodynamcs II Department o Chemca ngneerng ro. Km, Jong Hak

.5 Fugacty & Fugacty Coecent : ure Speces µ > provdes undamenta crteron or phase equbrum not easy to appy to sove probem Lmtaton o gn (.9 ( H - TS -> or y -> > µ - (whch s not true or dea gas gn (.7 > vad ony or pure speces n the dea gas For rea gas, ugacty s ntroduced nstead o Γ (T + n g Γ (T + n g - n nφ ( : ugacty coecent nφ (.33 φ

For an dea gas, g, & φ In chapter 6, set J as zero, ( J, m( mnφ mnφ J + (z J d - m n( whch means that mφ m From egn (6.49 φ > : obtaned rom VT data or rom compressbty actor nφ d (z -,nφ (z B B d d d - B z - B nφ B

vauaton o ugacty coe. rom Cubc OS nφ (.33 Z -- n(z-β - qi (6.66 nφ Z -- n(z-β - q I (.37 where β b a (T q Ztδβ b I n( δ -ε Z tεβ (3.5 (3.5 (6.65b Z ρ (.37 I, δ ε I ρb + εβ b Z β + ε β

Vapor-Lqud equbrum or pure speces Consder vapor qud equbrum For speces as a urated vapor, usng eqn(.3 Γ (T + n v v (.38a For speces as a urated qud Γ (T + n (.38b d v v - n v at equbrum ( : ether urated qud or vapor Aternatve ormuaton φ p φ φ > Crteron o VL or pure speces, μ,, Φ v φ

Fugacty o a pure qud - Fugacty o pure speces as a compressed Lq. > cacuated rom the product o easy evauated rato ( ato A > vapor phase ugacty coe., φ at VL nφ v v ( A (z v v ( ( B d - ( ( at const T ato B > snce at VL ato C > the eect o pressure on the ugacty o pure qud ; C d - Vd p p (6. at const T Vd

rom (-3 Γ (T + n n p p - V d n ato C, snce ( V ( ( exp( A B C V d φ p exp( V d Because s a very weak uncton o > assumed constant φ p V ( - exp( oyntng actor φ V : can be cacuated rom z v : vaue or urated qud : Antone eqn., Z - B φ B X(

.6 Fugacty & Fugacty Coecent : Speces n Souton For speces n a mxture o rea gas or n a souton o qud µ Γ (T + n ˆ (.46 ˆ : Fugacty o speces n souton (repacng parta pressure at equbrum, the ugacty o each component s the same n a phases ˆ ˆ α β ˆ π -> Mutcomponent VL, ˆ ˆ v

esdua property g M M - M Mutpy n and derentate wth respect to n at constant T,, n (nm (nm [ ],T,n [ ] n n M M,T,n - M (nm -[ n g g ],T, n Wrtten or, - g From egn(.9 µ g µ Γ (T + n ˆ ˆ µ -µ n, µ -µ g Γ (T + n(y g g y nφˆ (φˆ (.46 ˆ y (snce µ φ : ugacty coe. o speces n souton For dea gas : g g & φˆ ˆ y

The undamenta resdua-property reaton Aternatve orm d (n (nvd - (nsdt + n ( n n ( d(n - d n d( nv nh d - dt µ dn dt + dn ( H - TS d Vd -SdT (.54 Functon o a o canonca varabe (T,, n > Aow evauaton o a other thermodynamc propertes compare (6.37 d( V d - H o dt Speca case o mo o a constant-composton > Snce we cannot evauate absoute vaue o thermodynamc propertyes > use resdua property

For dea gas g g g n nv nh d ( d - + Subtractng ths eqn rom (.54 g dn n nv nh d ( d - dt + dn > The undamenta resdua-property reaton by ntroducng ugacty coe. ( nφˆ n nv nh d ( d - dt + nφˆ dn V ( / [ ] T,x, H ( / -T[ ] T,x > Use eqn (6.46, (6.48, (6.49 or the cacuaton (n / n φˆ [ ] nφˆ,t,n n : parta property o /

For n mo o constant composton mxture n (nz - n d Derentaton wth respect to n at constant T,, n nφˆ (nz - n [ ] n,t,n d snce, (nz n Z, n n nφˆ (Z d - (.6

Fugacty coecents rom the vra equaton o state z + B B y y B φˆ vouton o vaue o rom OS Smpest orm o vra eqn For bnary mxture (3.38 (.6 nφ d (z - B y y B + y y B + y y B + y y B (.6 where B(T composton second vra coe. where B : characterze bmoecuar nteracton b/w and (B B y B + y y B + y B (.6 (B, B : vra coe. o pure speces (B : cross coe (mxture property For n mo o bnary gas mxture eqn(3.38 becomes nz n + nb

Derentaton wth respect to n From eqn (.6 (nz z + nφˆ [ ],T,n [ ] T, n n Second vra coe. can be wrtten (nb n (nb (nb [ ] T,n d [ ] T, n n n B y ( - y B + y y B + y ( - y B y B - y y B + y y B + y B y y B y B + y B + y y δ, δ B B B nb n + n n n B + n B δ snce y n / n, mutpyng by n by derentaton (nb n [ ] T,n + n nφˆ (B + yδ nφˆ (B + yδ by smar method B ( - n δ B + (- yyδ B + yδ n n

For mutcomponent gas mxture, the genera eqns. nφˆ [B k kk + I J y y (δ k -δ ] δ δ k B B k - B - B - B - B kk δ δ kk δ k δ k

.7 enerazed Correatons or the Fugacty Coecent To cacuateφ, use enerazed methods or compressbty actor Z z z + nφ, d d c r ωz Correaton or (3.57 ω -. - og( r where Tr. 7 qn (.35 (z - c d d nφ + r nφ r d r r r r (z - ω z r r (const T transormed nto generaze orm (z d - usng (.65 Usng eqn (3.57 r r nφ nφ + ωnφ Three parameter generazed correaton or Φ φ (φ (φ ω use tabe 3 ~ 4

Usng tzer correatons or the second vra coe. where Z + Bˆ Z - T r T r r r (B + ωb Bˆ B + ωb r r nφ (B + ωb φ exp[ (B + ωb ] Tr Tr.4.7.83-, B.39-4. T T B.6 r (3.6 (3.63 > Insert nto eqn(.5 and ntegrate r enerazed correatons or ugacty coecent n gas mxture nφˆ k [B kk + More genera orm or coe. B C B (.69 C (δ k Bˆ + -δ ] T r T / T C B ωb > B, B -> uncton o T r >use rausntz s combnng rue or the cacuaton o ω,t C, C

ω c ω z c + ω V c c T c (T z c T c / + z (- k (.7 (.7 c c (.7 zc (.73 Where k emprca nteracton parameter and or chemcay smar speces k -> a eqns reduce to vaue or pure speces rocedure to obtan φˆ Fnd vaue o B rom (.69 nsert B nto eqn(.6 B 3 usng eqn(.4 φ obtan vaue o nφˆ [B k kk + nφˆ vaue o the pure-speces vra coe. B kk, B or eqn y y B y y (δ k -δ ] >nd B B C Bˆ + C B ωb

-8. The dea souton mode Denton : a moecues are o the same sze a orces b/w moecues (ke and unke are equa The chemca potenta rom dea-gas mxture mode g g µ (T, + n y (.4 g > Ony appcabe or dea gas g repace (T, (T, (bbs energy o pure n ts rea physca state o gas qud, sod chemca potenta o an dea souton From eqn(.8 d d µ (T, + n x > appcabe gas, qud, sod d d V ( T,x ( T d ( T,x V V d (.75 V V (.76

From eqn(.9 (,x d d S -(,x -( p - nx T T -S T S - nx (.77 H d, S V V d d d d d d H + TS For, usng (.75 (.77 d by summabty reaton, x x x x S V V d H + n x + TS + TS H M x M + x n x - x n x d, H - nx x H

The Lews / anda ue From eqn (.46 (.46-.3 > µ Γ (T + n ˆ (.3 µ d µ + ˆ n( d µ + n x + ˆ n( For the speca case o an dea souton I compared wth eqn(.75 d d Γ (T + n ˆ x d (.83 > Show the composton dependence o the ugacty n an dea souton (Lews/anda rue Lews/anda ue : ugacty o each speces moe racton proportona constant ugacty o pure speces Aternatve orm o Lews/anda ue : (dvde.83 wth x d φˆ φ (-8 Fugacty coe. o speces n an dea souton ugacty coe. o pure speces

eca the reaton b/w (z nφ.9. xcess ropertes d -,φ,φˆ (6.49 and VT data d d (z - (.35 nφˆ (z - (.6 -> obtan thermodynamc property usng esdua propertes In the case o qud, measure the departure rom deaty not rom dea gas, but rom dea souton > excess property Mathematca ormuaton M M - M d (Derence b/w actua property and dea souton For exampe, consderng M - - M d, H d H - H, S d S-S, g M M - M ure speces M -(M d - M (dea gas mxture > dea souton o dea gas g H g g x + - TS x n x

M g Compare and d M H g g d H yh g g d S y S - y n y S x S - g g d y - y n y x - x g x M -x M x d g M - M d g M - M > M - M M M M - xcess roperty : apped to ony mxture esdua property : apped to both pure speces & mxture x H x n x x n x M For parta excess property : M M - M d Fundamenta excess-property reaton d( n nv nh d - dt + dn > Smar to undamenta resdua-property reaton

The xcess bbs nergy and the Actvty Coecent From eqn (.46 From Lews/anda rue, or an dea souton Derence µ Γ (T + n ˆ d d Γ (T + n ˆ Γ (T + n x d ˆ - n x ˆ (γ x actvty coecent (.9 Γ (T + n ˆ nγ nφˆ, or dea souton, γ To devce chemca potenta o mxture (.9 d d - nγ, + n x (.75 + nγ x (.9 Comparson o three equatons denng chemca potenta µ µ µ g d g + n y (.4 + n x + nγ x (.75 (.9 st qn : dea gas mxture mode nd qn : dea souton mode

xcess-property eaton In undamenta excess property reaton d( n nv nh d - dt + dn V ( / H ( / [ ] T,x (.9, -T[ ], x nv nh d - dt + nγ dn ( nγ T (.9 > ect o T, on the n γ (n / [ ],T,n n (.96 > nγ : parta propertes o n > Smar to eqn or esdua property Derence : n the case o reaton to -> we can use expermenta VT data ~ OS to cacuate esdua property V, H, γ γ V, H > Can be obtaned by experment : rom VL data : rom mxng experment

γ V nγ H nγ ( (.97, T,x - (, x n : parta property o, nγ T (.98 > ect o T, D on the γ From the summabty eqn x nγ M (.99 x M From bbs/duhem eqn (at const T, x d nγ x dm