Construction of an absolute gravimeter using atom interferometry with cold 87. Rb atoms

Similar documents
Absolute gravity measurements with a cold atom gravimeter

Atom Interferometry II. F. Pereira Dos Santos

Travaux en gravimétrie au SYRTE

SYRTE - IACI. AtoM Interferometry dual Gravi- GradiOmeter AMIGGO. from capability demonstrations in laboratory to space missions

Characterization and limits of a cold atom Sagnac interferometer

Towards compact transportable atom-interferometric inertial sensors

State of the art cold atom gyroscope without dead times

Atom interferometry in microgravity: the ICE project

Forca-G: A trapped atom interferometer for the measurement of short range forces

Cold atom interferometers for inertial measurements. Arnaud Landragin

Large Momentum Beamsplitter using Bloch Oscillations

Advanced accelerometer/gradiometer concepts based on atom interferometry

Gravitational tests using simultaneous atom interferometers

Shau-Yu Lan 藍劭宇. University of California, Berkeley Department of Physics

Sensitivity limits of atom interferometry gravity gradiometers and strainmeters. Fiodor Sorrentino INFN Genova

Bloch oscillations of ultracold-atoms and Determination of the fine structure constant

Atom Quantum Sensors on ground and in space

arxiv: v1 [physics.ins-det] 25 May 2017

Precision atom interferometry in a 10 meter tower

arxiv: v3 [physics.atom-ph] 16 Oct 2015

Atom interferometry applications in gravimetry

Hybrid Atom-Optical Interferometry for Gravitational Wave Detection and Geophysics

Atom Interferometry I. F. Pereira Dos Santos

Cold atom gyroscope with 1 nrad.s -1 rotation stability

Characterization of an Atom Interferometer Gravimeter with Classical Sensors for the Use in Geodesy and Geophysics

Multipath Interferometer on an AtomChip. Francesco Saverio Cataliotti

Frequency Tunable Atomic Magnetometer based on an Atom Interferometer

Quantum Mechanica. Peter van der Straten Universiteit Utrecht. Peter van der Straten (Atom Optics) Quantum Mechanica January 15, / 22

Point source atom interferometry with a cloud of finite size

arxiv: v1 [physics.atom-ph] 31 Aug 2008

EYLSA laser for atom cooling

Frequency stabilization of an extended cavity semiconductor diode laser for chirp cooling

Ground state cooling via Sideband cooling. Fabian Flassig TUM June 26th, 2013

Gravimètre Quantique Absolu : une utilisation opérationnelle des atomes froids pour la mesure de gravité. Dr. Jean Lautier-Gaud Journée CNFGG

UNIVERSITY OF SOUTHAMPTON

Comparison of 3 absolute gravimeters based on different methods for the e-mass project

Precision Interferometry with a Bose-Einstein Condensate. Cass Sackett. Research Talk 17 October 2008

Quantum enhanced magnetometer and squeezed state of light tunable filter

Atomic Physics (Phys 551) Final Exam Solutions

RYDBERG BLOCKADE IN AN ARRAY OF OPTICAL TWEEZERS

Atomic Quantum Sensors and Fundamental Tests

Atom interferometry test of short range gravity : recent progress in the ForCa-G experiment

arxiv: v2 [gr-qc] 6 Jan 2009

MEASUREMENT OF SHORT RANGE FORCES USING COLD ATOMS

arxiv:physics/ v2 [physics.atom-ph] 12 Dec 2005

Progress on Atom Interferometer (AI) in BUAA

Atom interferometry. Quantum metrology and fundamental constants. Laboratoire de physique des lasers, CNRS-Université Paris Nord

David McIntyre. A slow beam of laser cooled rubidium atoms will be used as the matter-wave source. The atom

Probing P & T-violation Beyond the Standard Model. Aaron E. Leanhardt

Manipulating Single Atoms

National Physical Laboratory, UK

Optical Lattice Clock with Spin-1/2 Ytterbium Atoms. Nathan D. Lemke

Compensation of gravity gradients and rotations in precision atom interferometry

Fold optics path: an improvement for an atomic fountain

arxiv: v1 [physics.atom-ph] 19 Jun 2014

arxiv:physics/ v1 [physics.atom-ph] 14 Jun 2006

Fundamental Physics with Atomic Interferometry

Fundamental Constants and Units

Quantum Memory with Atomic Ensembles. Yong-Fan Chen Physics Department, Cheng Kung University

Trapped atom interferometry for the study of Casimir forces and Gravitation at short range

arxiv: v1 [physics.atom-ph] 22 Jun 2016

New Searches for Subgravitational Forces

Development of a compact Yb optical lattice clock

Atom Interferometry and Precision Tests in Gravitational Physics

(Noise) correlations in optical lattices

TOWARDS DEMONSTRATION OF A MOT-BASED CONTINUOUS COLD CS-BEAM ATOMIC CLOCK

Quantum computation and quantum information

Roger Ding. Dr. Daniel S. Elliott John Lorenz July 29, 2010

Survey on Laser Spectroscopic Techniques for Condensed Matter

Atomic-Photonic Integration (A-PhI) A-Φ Proposers Day

Raman spectroscopy of single atoms

Reviewers' comments: Reviewer #1 (Remarks to the Author):

Quantum Logic Spectroscopy and Precision Measurements

Quantum Information Storage with Slow and Stopped Light

Limits of the separated-path Ramsey atom interferometer

Primary Frequency Standards at NIST. S.R. Jefferts NIST Time and Frequency Division

Atom lasers. FOMO summer school 2016 Florian Schreck, University of Amsterdam MIT 1997 NIST Munich Yale 1998

arxiv:physics/ v1 [physics.atom-ph] 22 Feb 2002

A Miniature Cold-Atom Frequency Standard

File name: Supplementary Information Description: Supplementary Figures, Supplementary Notes and Supplementary References

Feedback control of atomic coherent spin states

Coherent manipulation of atomic wavefunctions in an optical lattice. V. V. Ivanov & A. Alberti, M. Schioppo, G. Ferrari and G. M.

Building Blocks for Quantum Computing Part IV. Design and Construction of the Trapped Ion Quantum Computer (TIQC)

arxiv:physics/ v1 [physics.atom-ph] 25 May 2001

Studies on cold atoms trapped in a Quasi- Electrostatic optical dipole trap

Transportable optical clocks: Towards gravimetry based on the gravitational redshift

Determining the Fine Structure Constant with Bose-Einstein Condensate Interferometry

Eximer Lasers UV laser sources Consist two atom types which repel each other eg nobel gas and halide or oxide When excited/ionized atoms attract

Laser cooling and trapping

Christian J. Bordé. Bruxelles, mai 2018

CESIUM ATOMIC FOUNTAIN CLOCKS AT NMIJ

stabilized 10-fs lasers and their application to laser-based electron acceleration

Experimental realization of spin-orbit coupling in degenerate Fermi gas. Jing Zhang

The Nobel Prize in Physics 2012

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris

Optical Lattice Clock with Neutral Mercury

Chapter 4 Atom preparation: optical pumping and conditional loading

Squeezed Light and Quantum Imaging with Four-Wave Mixing in Hot Atoms

Laser Cooling and Trapping of Atoms

Quantum optics and squeezed states of light

Transcription:

Construction of an absolute gravimeter using atom interferometry with cold 87 Rb atoms Patrick Cheinet Julien Le Gouët Kasper Therkildsen Franck Pereira Dos Santos Arnaud Landragin David Holleville André Clairon

Summary Use of the gravimeter: The Watt Balance Principle of our gravimeter, atom interferometry Lasers frequency locks Sensitivity to phase noise Sensitivity to vibrations and rejection method Advancement : the traps Conclusion

The Watt Balance project Objective : Why : Mass metrology: Principle : replace the standard Kg with a definition linked to the Planck s constant h the standard Kg is the last artifact of the international system, observed drift on the primary and secondary standards of 5.1-8 Kg over 3 years goal of 1-8 of relative precision Balance a mechanical power with an electrical power BIPM standard Kg

The Watt Balance project L F Laplace = i L B statical Phase i B F g = m g B i L = m g Dynamical Phase constant speed motion v L E = B L v m g v = E i m Planck s B Constant Josephson Frequency = k f g J v h Necessity of a precise g mesurement

General Principle Raman laser Beams 87 Rb atoms cooled In a D-MOT 1 9 to 1 1 atoms.s -1 1 8 atoms trapped in 1 ms Cooled to a few µk In a 3D-MOT State selection 5S 1/, F=1, m F = > Push beam π/ Detection π π/ Raman laser Beams Raman pulses T=1 ms Total interaction time = interferometer Φ = k eff.g.t

5P 3/ > GHz 5S 1/ > e 3 > e > e 1 > e > virtual state i > 78 nm Stimulated Raman Transitions 87 Rb f > 6.8 GHz δ => Doppler cooling Detection k k 1 p = k k 1 - k k 1 k opt Transition Probability During the transition, the atom takes two photon recoils and change its trajectory π/ pulse : Atomic beam Splitter The lasers couple the f 1 > and f > states in a quantum superposition => Rabi oscillations π/ π Ω Rabi τ π pulse : Atomic mirror f 1 > Raman Trapping same lasers for trapping and Raman

Optical Bench 1 single bench for cooling and Raman pulses F or φ-lock ECL3 MOPA 1 F-LOCK ECL MOPA 6.8 GHz Réf HYPER 4.8 à 6.8 GHz (YIG) ECL1 DETECTION AOM Locked on spectroscopy line TRAPS RAMANS

Transition to φ-lock Error Signal (MHz) 3 5 15 1 GHz Sweep in 8µs, lasers unlocked Master Repumper YIG 15 1 5-5 -1 Frequency change (MHz) Fixed ramps applied on lasers controls Error Signal (MHz),5, 1,5 1,,5, -,5-1, -1,5 -, GHz Sweep in 8µs, lasers locked Master Repumper YIG 15 1 5-5 -1 Frequency change (MHz) 5-15 5 1 15 5 3 35 4 45 5 Time (ms) -,5-15 1 3 4 5 6 7 8 9 1 Time (ms) 8 Phase error (mrad) 6 4 -.8 ms to sweep by GHz 3 ms to reach the 1 mrad level -4-4 6 8 Time (ms)

87 Rb Atomic interferometer ϕ 1 (t) = k 1 z(t) + ϕ 1 (t) 5P 3/ > GHz i > π/ φ( ) = φ(t) = ϕ (t) ϕ 1 (t) is printed on the atomic phase 78 nm π π/ 1 φ( T ) = keff gt φ( T ) = k gt eff Interferometer s phase shift Φ = φ ( ) φ ( T ) + φ(t ) 5S 1/ > f > 6.8 GHz f 1 > P 1+ cos( Φ) = Φ = k eff ϕ (t) = k z(t) + ϕ (t). g. T + φ () φ ( T ) + φ (T ) T=5ms => ~1 6 rad

Transfer function H(ω) for laser phase noise Sϕ(ω) σ Φ = H(ω) Sϕ(ω)dω Phase power spectral density Theory (T=5ms): H(f)² Experiment (gyroscope) 1 1,1,1 Theory Experiment 1 1E-3 1 1E-4 1 3 4 5 6 Frequency (Hz) <H(f) >,1,1 /(πf/ω) 1 1 1E-3 1 1 1 1 3 1 4 1 5 1 6 Frequency (Hz) H(f),1,1 1E-3 4iωΩ H ω) = ω Ω ( ω( T sin( + τ R ) ω( T )(cos( + τ R ) Ω ωt ) + sin( )) ω 1E-4 131 1315 13 135 133 Frequency (Hz)

Two possible sources: Raman laser phase noise Reference frequency phase stability: 1. mrad Estimated for state of the art quartz oscillator Residual noise of the Phaselock loop: σ Φ = 1E-8 Experimental result Weighted with H(ω): T=1ms and τ=1 µs σ Φ =1.3 mrad σ Φ Total contribution: = 1.75 mrad => 9 ng/shot Sφ(f) (rad.hz -1 ) 1E-9 1E-1 1E-11 1E-1 1 1 1 1 1 1 1 1E7 Frequency (Hz)

phase/position δφ <=> k eff δz Sensitivity to vibrations σ Φ = ω H ( ) keff Sa( ω) dω ω 4 acceleration noise (m s -4 /Hz) 1E-9 1E-1 1E-11 1E-1 1E-13 1E-14 1E-15 Noise level in the lab Weighted noise 1E-16,1 1 1 1 Frequency (Hz) Required vibration noise level (>.3 Hz) : 1 ng/hz 1/ Up to 8 Hz : Need for vibration isolation and compensation

Vibration rejection Act on the Raman phase difference to compensate for vibrations Seismometer Interferometer PLL ECL Method tested on auxiliary experiment H A A? J E $ @ * Raman laser N / # 4 A B & " = 8 +! - +, ),, )?? 6 B!!! With a seismometer

D-MOT Detection Photodiode Progress report 3D-MOT trapping lasers Cold atoms 5x1 8 3D-MOT D-MOT flux density (at.m -1 ) 4x1 8 3x1 8 x1 8 1x1 8 Atoms loaded,x1 9 1,5x1 9 1,x1 9 5,x1 8 4 6 8 speed (m.s -1 ) D-MOT total flux =1 1 atoms.s -1,,,5 1, Time (s) 3D-MOT loading rate = 3.1 9 atoms.s -1

Conclusion Expected sensitivity : 1-9 g after a few seconds Expected accuracy : 1-9 g - Cold atom sources obtained - Raman lasers phase-locked -First atom interferometry signals: early 5 Limited by vibrations Preliminary vacuum chamber => test the system -Implement the vibration isolation platform and the vibration rejection