MODELING THE EFFECT OF THE INCLINATION ANGLE ON NATURAL CONVECTION FROM A FLAT PLATE The Case of a Pho to vol taic Mod ule

Similar documents
FINITE TIME THERMODYNAMIC MODELING AND ANALYSIS FOR AN IRREVERSIBLE ATKINSON CYCLE

EXPERIMENTAL INVESTIGATION OF A FLOW AROUND A SPHERE

NUMERICAL STUDY OF A MODIFIED TROMBE WALL SOLAR COLLECTOR SYSTEM. Snežana M. DRAGI]EVI] and Miroslav R. LAMBI]

TEST OF TOTAL HEAT FLUX FROM WOOD CRIB FIRE IN AND OUTSIDE COMPARTMENT

TT1300 Se ries. Low Noise Matched Transister Ar ray ICs DESCRIPTION APPLICATIONS FEATURES. Microphone Preamplifiers

MIXED CONVECTION FLOW OF JEFFREY FLUID ALONG AN INCLINED STRETCHING CYLINDER WITH DOUBLE STRATIFICATION EFFECT

NUMERICAL INVESTIGATION OF FLUID FLOW AND HEAT TRANSFER CHARACTERISTICS IN SINE, TRIANGULAR, AND ARC-SHAPED CHANNELS

HEAT EXCHANGER OPERATING POINT DETERMINATION. Dušan D. GVOZDENAC

RADIATION AND CHEMICAL REACTION EFFECTS ON ISOTHERMAL VERTICAL OSCILLATING PLATE WITH VARIABLE MASS DIFFUSION

TOTAL HEAT FLUX ON THE WALL: BENCH SCALE WOOD CRIB FIRES TESTS

NUMERICAL SIMULATION FOR THERMAL CONDUCTIVITY OF NANOGRAIN WITHIN THREE DIMENSIONS

EMPIRICAL CORRELATIONS TO PREDICT THERMOPHYSICAL AND HEAT TRANSFER CHARACTERISTICS OF NANOFLUIDS

EFFECT OF VARIABLE VISCOSITY AND SUCTION/INJECTION ON THERMAL BOUNDARY LAYER OF A NON-NEWTONIAN POWER-LAW FLUIDS PAST A POWER-LAW STRETCHED SURFACE

A CFD ANALYSIS OF ROOM ASPECT RATIO ON THE EFFECT OF BUOYANCY AND ROOM AIR FLOW

Evaluation of Front Morphological Development of Reactive Solute Transport Using Behavior Diagrams

V6309/V Pin Microprocessor Reset Circuit EM MICROELECTRONIC-MARIN SA. Fea tures. Typi cal Op er at ing Con figu ra tion.

HEAT-BALANCE INTEGRAL METHOD FOR HEAT TRANSFER IN SUPERFLUID HELIUM. Bertrand BAUDOUY

Alternative Approaches to Estimating the Linear Propagator and Fi nite-time Growth Rates from Data

APPLICATION OF INVERSE CONCEPTS TO DRYING

Gi ant Res o nance in 4d Photo-Ionization and -Ex ci ta tion of High Z Atoms and Ions; Sys tem atic Study of Dy namic Elec tron-correlation

Density and Partial Mo lar Volumes of Binary Mixtures for the Dimethyl Ether of a Glycol + Eth a nol from T = K to T = 318.

Nikola V. ŽIVKOVI] *, Dejan B. CVETINOVI], Mili} D. ERI], and Zoran J. MARKOVI]

HOW GOOD IS GOODMAN S HEAT-BALANCE INTEGRAL METHOD FOR ANALYZING THE REWETTING OF HOT SURFACES?

PRODUCTIVITY ENHANCEMENT OF STEPPED SOLAR STILL PERFORMANCE ANALYSIS. V. VELMURUGAN, S. SENTHIL KUMARAN, V. NIRANJAN PRABHU, and K.

PERSISTENCE OF THE LAMINAR REGIME IN A FLAT PLATE BOUNDARY LAYER AT VERY HIGH REYNOLDS NUMBER

THEORETICAL ANALYSIS AND EXPERIMENTAL VERIFICATION OF PARABOLIC TROUGH SOLAR COLLECTOR WITH HOT WATER GENERATION SYSTEM

NUMERICAL ANALYSIS OF FORTH-ORDER BOUNDARY VALUE PROBLEMS IN FLUID MECHANICS AND MATHEMATICS

AN INCREASE OF HYDRO-AGGREGATE'S INSTALLED POWER AND EFFICIENCY FACTOR BEFORE THE REVITALIZATION PHASE

MI LAN P. PEŠI] Sci en tific pa per DOI: /NTRP P

EXPERIMENTAL INVESTIGATION OF TURBULENT STRUCTURES OF FLOW AROUND A SPHERE

A NOVEL METHOD FOR ESTIMATING THE ENTROPY GENERATION RATE IN A HUMAN BODY

Ma trix re ar range ment

EFFECT OF CHAR LAYER ON TRANSIENT THERMAL OXIDATIVE DEGRADATION OF POLYETHYLENE

A L A BA M A L A W R E V IE W

DISPERSION MODELING FOR REGULATORY APPLICATIONS

One could hardly imag ine a wide va ri ety of pro cesses in the mod ern world with out ca tal y - sis. Many pro cesses in volved in fuel con ver

SOLAR EQUIPMENT FOR PREHEATING BITUMEN

THE EFFECT OF SURFACE REGRESSION ON THE DOWNWARD FLAME SPREAD OVER A SOLID FUEL IN A QUIESCENT AMBIENT

THEORETICAL-EXPERIMENTAL DETERMINING OF COOLING TIME (t 8/5 ) IN HARD FACING OF STEELS FOR FORGING DIES

EXERGOECONOMIC OPTIMIZATION OF GAS TURBINE POWER PLANTS OPERATING PARAMETERS USING GENETIC ALGORITHMS: A CASE STUDY

Con cen tra tion De pend ence of the Fifth-Order Two-Dimensional Raman Sig nal

THE EFECT OF POLYMERS ON THE DYNAMICS OF TURBULENCE IN A DRAG REDUCED FLOW

NUMERICAL SIMULATION OF POROUS BURNERS AND HOLE PLATE SURFACE BURNERS

THE SPECTRAL RADIATIVE EFFECT OF Si/SiO 2 SUBSTRATE ON MONOLAYER ALUMINUM POROUS MICROSTRUCTURE

Sa lin ity Min i mum in the Up per Layer of the Sea of Ja pan

ul. Mokhovaya 11, k. 7, Moscow, Russia, b Hydrometeorological Research Center of the Russian Federation,

EX PANDED AND COM BINED UN CER TAINTY IN MEA SURE MENTS BY GM COUN TERS

EMPIRICAL SOOT FORMATION AND OXIDATION MODEL. Karima BOUSSOUARA and Mahfoud KADJA

Bimetal Industrial Thermometers

Tie Bar Extension Measuring Chain

VA LENCE XPS STRUC TURE AND CHEM I CAL BOND IN Cs 2 UO 2 Cl 4

ANALYSIS OF PHOTOTHERMAL RESPONSE OF THIN SOLID FILMS BY ANALOGY WITH PASSIVE LINEAR ELECTRIC NETWORKS

EFFECTS OF DIFFERENT MEAN VELOCITY RATIOS ON DYNAMICS CHARACTERISTICS OF A COAXIAL JET

Vas cu lar elas tic ity from re gional dis place ment es ti mates

1 Introduction. 2 The Problem and the present method. 2.1 The problem

FIRE SUPPRESSION STUDIES

Agnese Kukela, Valdis Seglins Uni ver sity of Lat via, 10 Al berta street, Riga, LV-1010, Lat via,

I/O7 I/O6 GND I/O5 I/O4. Pin Con fig u ra tion Pin Con fig u ra tion

EXPERIMENTAL ANALYSIS OF FUZZY CONTROLLED ENERGY EFFICIENT DEMAND CONTROLLED VENTILATION ECONOMIZER CYCLE VARIABLE AIR VOLUME AIR CONDITIONING SYSTEM

Im pact of GPS Ra dio Occultation Refractivity Soundings on a Sim u la tion of Ty phoon Bilis (2006) upon Land fall

Shal low S-Wave Ve loc ity Struc tures in the West ern Coastal Plain of Tai wan

The de sign and use of porous asphalt mixes

Molecular Distance-Edge Vec tor ( ) and Chro mato graphic Retention In dex of Alkanes

RESEARCH IN SOLAR ENERGY AT THE POLITEHNICA UNIVERSITY OF TIMISOARA: STUDIES ON SOLAR RADIATION AND SOLAR COLLECTORS

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9

A NEW COMPACT HEAT ENGINE

A MOD ERN MATH E MAT I CAL METHOD FOR FIL TER ING NOISE IN LOW COUNT EX PER I MENTS

(NTS 092N; 093C, B, G, H),

CATAVASII LA NAȘTEREA DOMNULUI DUMNEZEU ȘI MÂNTUITORULUI NOSTRU, IISUS HRISTOS. CÂNTAREA I-A. Ήχος Πα. to os se e e na aș te e e slă ă ă vi i i i i

P a g e 5 1 of R e p o r t P B 4 / 0 9

BUBBFIL ELECTROSPINNING OF PA66/Cu NANOFIBERS

GENERAL BUILDING HEIGHTS AND AREAS

The Bonding Structure of Quadricyclanylidene Derivatives

A STO CHAS TIC MODEL OF GAMMA-RAY IN DUCED OX IDE CHARGE DIS TRI BU TION AND THRESH OLD VOLT AGE SHIFT OF MOS TRAN SIS TORS

Cation Driven Charge Trans fer in (Co, Fe) Prus sian Blues

Solar Heat Worldwide Markets and Contribution to the Energy Supply 2006

T h e C S E T I P r o j e c t

DETERMINATION OF THERMAL CONDUCTIVITY OF ROCKS SAMPLES USING FABRICATED EQUIPMENT

BCFD a Visual Basic pro gram for cal cu la tion of the fractal di men sion of digitized geological image data using a box-counting technique

Laser Spectroscopic Studies of Tran si tion Metal Con taining Rad i cals

SIMULATION ON MARINE CURRENTS AT MIDIA CAPE-CONSTANTA AREA USING COMPUTATIONAL FLUID DYNAMICS METHOD

OP TI MI ZA TION OF THE SELF-SUF FI CIENT THO RIUM FUEL CY CLE FOR CANDU POWER RE AC TORS

Velocity Models from Three-Dimensional Traveltime Tomography in the Nechako Basin, South-Central British Columbia (Parts of NTS 093B, C, F, G)

DFT Stud ies of H 3 N X (X = Li, Na, K, Rb, Cs and Fr) Sys tems *

MULTI-AXIS IN TE GRATED HALL MAG NETIC SEN SORS

OP TI MI ZA TION OF THE GAS FLOW IN A GEM CHAM BER AND DE VEL OP MENT OF THE GEM FOIL STRETCHER

Anal y sis of Tai pei Ba sin Re sponse for Earth quakes of Var i ous Depths and Locations Using Empirical Data

PREDICTION OF NUCLEATE POOL BOILING HEAT TRANSFER COEFFICIENT

TANTALONIOBATES IN CASSITERITE: INCLUSIONS OR EXSOLUTIONS?

Micellar For ma tion Study of Crown Ether Surfactants

For ma tion of Bacteriochlorophyll Anion Band at 1020 nm Produced by Nu clear Wavepacket Motion in Bacterial Reaction Cen ters

(NTS 092N, O, 093B, C, F, G)

Solvent De pend ent Ultrafast Ground State Recovery Dynamics of Triphenylmethane Dyes

Jilin Uni ver sity, Changchun, , P.R. China 3 De part ment of Chem is try, Baicheng Teacher s Col lege, Baicheng, Jilin, , P.R.

Alles Taylor & Duke, LLC Bob Wright, PE RECORD DRAWINGS. CPOW Mini-Ed Conf er ence Mar ch 27, 2015

Introduction. Methodologies Receiver Function Analysis

Jour nal of the Chi nese Chem i cal So ci ety, 2002, 49,

Geochemistry Projects of the British Columbia Geological Survey

A new non li near DNA mo del. Un nue vo mo de lo no li neal del ADN

Le classeur à tampons

Transcription:

THERMAL SCIENCE: Year 2017, Vol. 21, No. 2, pp. 925-938 925 MODELING THE EFFECT OF THE INCLINATION ANGLE ON NATURAL CONVECTION FROM A FLAT PLATE The Case of a Pho to vol taic Mod ule by Bojan D. PEROVI] a, Jelena Lj. KLIMENTA b, Dragan S. TASI] c, Joan L. G. PEUTEMAN d, Dardan O. KLIMENTA a, and Ljiljana N. ANDJELKOVI] a a Fac ulty of Tech ni cal Sci ences, Uni ver sity of istina in Kosovska Mitrovica, Kosovska Mitrovica, Ser bia b In de pend ent Con sul tant in the Field of Ur ban and Spa tial Plan ning, Nis, Ser bia c Fac ulty of Elec tronic En gi neer ing, Uni ver sity of Nis, Nis, Ser bia d Kulab, KU Leuven, Ostend, Bel gium Orig i nal sci en tific pa per https://doi.org/10.2298/tsci140821059p The main pur pose of this pa per is to show how the in cli na tion an gle af fects nat u ral con vec tion from a flat-plate pho to vol taic mod ule which is mounted on the ground sur face. In or der to model this ef fect, novel cor re la tions for nat u ral con vec tion from iso ther mal flat plates are de vel oped by us ing the fun da men tal dimensionless num - ber. On the ba sis of the avail able ex per i men tal and nu mer i cal re sults, it is shown that the nat u ral con vec tion cor re la tions cor re spond well with the ex ist ing em pir i cal cor re la tions for ver ti cal, in clined, and hor i zon tal plates. Five ad di tional cor re la - tions for the crit i cal Grashof num ber are de rived from the avail able data, three in - di cat ing the on set of tran si tional flow re gime and two in di cat ing the on set of flow sep a ra tion. The pro posed cor re la tions cover the en tire range of in cli na tion an gles and the en tire range of andtl num bers. This pa per also pro vides two worked ex - am ples, one for nat u ral con vec tion com bined with ra di a tion and one for nat u ral con vec tion com bined with forced con vec tion and ra di a tion. Key words: em pir i cal cor re la tion, flat plate, fun da men tal dimensionless num ber, in cli na tion an gle, nat u ral con vec tion, pho to vol taic mod ule Introduction In or der to pro duce the max i mum amount of elec tric ity, a pho to vol taic (PV) mod ule must re ceive the high est pos si ble amount of sun light. When sun light is at its max i mum, tem per - a ture reaches the high est level of in flu ence on the ef fi ciency of a PV mod ule [1-3]. This oc curs when PV mod ules are per pen dic u lar to the in com ing sun rays. The amount of sun light can be also con trolled with the in cli na tion of PV mod ules, which is usu ally set at a nearly op ti mal an gle [4]. Hence, the in cli na tion an gle, y, af fects the ef fi ciency. It is also known that the ef fi ciency of a PV mod ule de pends on heat losses due to nat u ral con vec tion, forced con vec tion, and ra di a tion [5]. More over, nat u ral con vec tion is sig nif i cantly af fected by the in cli na tion an gle, y. There - fore, mod el ing the ef fect of the in cli na tion an gle on nat u ral con vec tion from a PV mod ule is of con sid er able in ter est to the re search ers [5, 6]. *Corresponding author, e-mail: dardan.klimenta@pr.ac.rs

926 THERMAL SCIENCE: Year 2017, Vol. 21, No. 2, pp. 925-938 It is com mon prac tice for nat u ral con vec tion from PV mod ules to be an a lyzed by us ing the em pir i cal cor re la tions for ver ti cal, in clined, and hor i zon tal iso ther mal flat plates. Many stud ies have been de voted to nat u ral con vec tion from iso ther mal plates and sur faces at in cli na - tion an gles be tween the ver ti cal (y = 0 ) and hor i zon tal (y = 90 ) lim its [7-13]. Some of these stud ies are ex per i men tal [7-10], while oth ers are nu mer i cal [11-13]. Most of the cor re la tions be - tween the av er age Nusselt num ber and the Ray leigh num ber are in the form Nu = CRa n, where C and n are the dimensionless pa ram e ter and ex po nent which de pend on the flow con di tions [14, 15]. There are, how ever, some cor re la tions which are in the form Nu CP n N, where N is the fun da men tal dimensionless num ber for nat u ral con vec tion [15-17]. To the best knowl edge of the au thors, nat u ral con vec tion cor re la tions for in clined and hor i zon tal iso ther mal plates based on the fun da men tal dimensionless num ber were not de scribed else where in the lit er a ture. De vel - op ment of such cor re la tions and their fur ther ap pli ca tion to the flat-plate PV mod ules are the ob - jec tives of this pa per. This pa per in tro duces a set of new cor re la tions for si mul ta neous nat u ral con vec tion from both sur faces of an iso ther mal plate with ar bi trary in cli na tion be tween 0 and 90. This pa - per also pro poses two cor re la tions that ap ply only to lam i nar nat u ral con vec tion from up - ward-fac ing (UF) sur face of a heated plate when its down ward-fac ing (DF) sur face is ther mally n in su lated. All the cor re la tions are in the form Nu(y) =C( y) P, where C de pends on the in cli - N na tion an gle y, n = 1/4 for the lam i nar flow and n = 1/3 for the tur bu lent flow and the flow sep a - ra tion. For any pos i tive an gle of in cli na tion, the di men sion rep re sent ing the height of a plate in the di rec tion of grav ity is adopted as the char ac ter is tic length, L. Ex clud ing the lim its on in cli na - tion, there are no other lim i ta tions with re gard to the cor re la tions. More over, based on [9, 10, 13, 14, 18, 19], five equa tions are con structed for the cal cu la tion of the crit i cal Grashof num bers as func tions of the in cli na tion an gle, y, and the andtl num ber. While three of these five equa tions in di cate the on set of tran si tion from lam i nar to tur bu lent flow re gime, the fourth and fifth equa - tions in di cate the on set of flow sep a ra tion (also bound ary-layer sep a ra tion, stall). The nat u ral con vec tion cor re la tions cover the en tire ranges of in cli na tion an gles and andtl num bers and they are ap plied to es ti mate the as so ci ated heat trans fer co ef fi cients for two dif fer ent PV mod ules, both mounted on the ground sur face and tested un der dif fer ent am bi ent con di tions. The tran si tional flow re gime is mod eled by the cor re la tions which are the same as those used for the tur bu lent flow re gime. The ef fects of the so lar ra di a tion and heat losses due to forced con vec tion and ra di a tion from the outer sur faces of the PV mod ules are taken into con sid - er ation. Cal cu la tion re sults of the two worked ex am ples and the cor re spond ing ex per i men tal data [4, 20, 21] have served to val i date the pro posed mod el ing con cept. Experimental and numerical results used in the present study To de rive the cor re la tions for nat u ral con vec tion, the au thors use the experi- men tal re - sults of Hassan and Mohamed [8], Lim et al. [10], and Heo and Chung [22], the nu mer i cal re - sults of Corcione et al. [13] and one worked ex am ple [14]. Heo and Chung [22] re ported on the ver ti cal iso ther mal cyl in ders, while the oth ers re ported on the ver ti cal, in clined, and hor i zon tal iso ther mal flat plates. Ta ble 1 pro vides the data of dif fer ent rect an gu lar flat plates and dif fer ent cir cu lar cyl - in ders which were ex per i men tally, nu mer i cally, and the o ret i cally an a lyzed. The in cli na tions of the plates change from the ver ti cal to the hor i zon tal ori en ta tion, while the cyl in ders only have a ver ti cal po si tion. The pa ram e ters in di cated in tab. 1 have the fol low ing mean ings: L is the plate height, W the plate width, D the cyl in der di am e ter, and Gr the Grashof num ber.

THERMAL SCIENCE: Year 2017, Vol. 21, No. 2, pp. 925-938 927 Ta ble 1. Sum mary of data rel e vant to plates and cyl in ders used in the pres ent study y [] Ob ject L [m] W or D [m] [ ] Gr [ ] Anal y sis and ref er ence 0 Plate 4 10 0.7 3.74410 11 The o ret i cal, [14] 0, 15, 30, 45, 60, 75 Plate 0.504 0.2 0.71 2.39410 6 Ex per i men tal, [8] 15, 30, 45, 60 Plate 0.504 0.2 0.71 2.39410 6 Nu mer i cal, [13] 0, 5, 10,, 75 Plate Un known Unknown 0.71 14084.51 Nu mer i cal, [13] 0, 5, 10,, 75 Plate Un known Unknown 7 1428.571 Nu mer i cal, [13] 0, 5, 10,, 75 Plate Un known Unknown 70 142.857 Nu mer i cal, [13] 0, 10, 20,, 90 Plate 0.1 0.03 2094 8.0610 7 Ex per i men tal, [10] 0, 10, 20,, 90 Plate 0.35 0.03 2094 3.4510 9 Ex per i men tal, [10] 0 Cyl in der 0.1 0.067 2094 8.0610 7 Experimental, [22] 0 Cyl in der 0.25 0.067 2094 1.2610 9 Experimental, [22] 0 Cyl in der 0.45 0.067 2094 7.3410 9 Experimental, [22] The o ret i cal back ground Natural convection from inclined PV modules Fig ure 1 shows cross-sec tional views of a PV mod ule at in cli na tions of = 0, 0 < y < <.90, and y = 90 in com bi na tion with the cor re spond ing air-flows along its sur faces. As the PV mod ule ro tates from the ver ti cal to the hor i zon tal po si tion, its one sur face faces up wards while an - other one faces down wards. In gen eral, a PV mod ule is not placed ver ti cally or hor i zon tally. The mod ule is in clined at an an gle y to op ti mize the out put power [5]. The av er age Nusselt num ber for the DF sur face of a PV mod ule in clined at an an gle up to 75 can be es ti mated by re plac ing the ac - cel er a tion of grav ity, g, with gcos y in the cor re la tion for nat u ral con vec tion from a ver ti cal plate [5, 13]. Since the buoy ancy force is mainly into the DF sur face of a PV mod ule, a lam i nar flow pre - vails up to very high Ray leigh num bers [23]. Ac cord ing to [9, 10, 14, 19], lam i nar nat u ral con vec - tion from the UF sur face of a PV mod ule can also be af fected by the flow sep a ra tion. The sig nif i cance of the nat u ral con vec tion heat trans fer from a PV mod ule can be de - ter mined by the ra tio of Gr/Re 2, where Re is the Reynolds num ber. If Gr/Re 2 1or Gr/Re 2 1, the con vec tive heat trans fer is dom i nated by nat u ral or forced con vec tion, re spec tively [5]. A Figure 1. Air-flows along a PV module for different inclination angles

928 THERMAL SCIENCE: Year 2017, Vol. 21, No. 2, pp. 925-938 value of Gr/Re 2 ~ 1 means both nat u ral and forced con vec tion heat trans fers have sig nif i cant ef - fects [5]. Correlations for natural convection from isothermal plates In or der to cal cu late the nat u ral con vec tion heat trans fer from ver ti cal, in clined, and hor i zon tal iso ther mal flat plates, the au thors de rived cor re la tions of the fol low ing form: where N is de fined as [15] Nu( y ) C( y )( ) n N (1) N Ra 1 0. 492 These cor re la tions are sim i lar to the ones for ver ti cal plates and cyl in ders from [15]. In ac cor dance with [15-17], eq. (1) can be ap plied to any char ac ter is tic length, an gle of in cli na tion be tween 0 and 90 from the ver ti cal, and andtl num ber be tween 0.001 and pos i tive in fin ity. The cor re la tions (1) are de rived based on the ex ist ing em pir i cal cor re la tions [14, 15], ex per i men tal data [10, 22], and nu mer i cal re sults [12]. All the new cor re la tions, to gether with the lim i ta tions, flow re gimes, ref er ences, and cor re spond ing in di ca tions, are pre sented in tab. 2. It can be shown that eqs. (6)-(12) can be re duced ex actly to cor re la tions for the ver ti cal po si tion or to cor re la tions for the hor i zon tal po si tion. It can also be seen that eqs. (11) and (18) are very sim i lar to eqs. (10) and (17), re spec tively. The cor re la tions (1) agree well with the ex ist ing ones. The pa ram e ters Gr cr1, Gr cr2, and Gr cr3, which are given in tab. 2, rep re sent the crit i cal Grash of num bers in di cat ing the on set of tran si tion from lam i nar to tur bu lent flow re gime, i. e. the first ap pear ance of in sta bil ity of lam i nar flow over an in clined flat plate. In tab. 2 are also shown Gr cr4 and Gr cr5 in di cat ing the on set of flow sep a ra tion. The Gr cr1, Gr cr2, and Gr cr4 cor re spond to the UF sur face, while Gr cr3 and Gr cr5 cor re spond to the DF sur face. If the Grashof num ber is larger than the ap pro pri ate crit i cal Grashof num ber Gr cr1, Gr cr2 or Gr cr3, the Nusselt num ber starts de vi at ing from lam i nar be hav ior. More over, if Grashof num ber is larger than Gr cr4 or Gr cr5, Nusselt num ber is also af fected by the flow sep a ra tion [9, 10, 14]. An in crease in the in cli na tion an gle, y, de creases Gr cr1, Gr cr2, and Gr cr4 and in creases Gr cr3 and Gr cr5. Also, an in crease in the andtl num ber has a destabilizing ef fect on the flow and de - creases the crit i cal Grashof num bers [11]. A set of ex per i men tal data con cern ing the crit i cal Grashof num bers Gr cr1, Gr cr2, Gr cr3, Gr cr4, and Gr cr5, which mark the first ap pear ance of in sta bil - ity or the on set of flow sep a ra tion at dif fer ent in cli na tions and andtl num ber, was re ported in [9, 10, 14, 18, 24-27]. Ac cord ing to [9], af ter the flow sep a ra tion takes place the Nusselt num ber for the UF sur face of a hor i zon tal plate may be con sid ered to be in agree ment with Chur chill and Chu cor re - la tion for tran si tional and tur bu lent flows along the sur faces of a ver ti cal plate. This is also in agree ment with Black and Norris [24] cor re la tion for a tur bu lent flow along the UF sur face of a hor i zon tal plate. Since the flow sep a ra tion from a DF sur face is not ex pected [8], it is as sumed that the cor re spond ing Nusselt num ber cor re la tions agree with those for lam i nar nat u ral con vec - tion from the DF sur faces of hor i zon tal and in clined plates. This as sump tion is well ver i fied in ex per i ments of Lim et al. [10]. More over, the ex per i ments of Lim et al. [10], as well as of Heo and Chung [22], have shown that the flow sep a ra tion from the sur faces of a ver ti cal plate can be mod eled by us ing the Chur chill and Chu cor re la tion for the lam i nar flow along the sur faces of a ver ti cal plate. While eqs. (11) and (18) are de rived based on the ex per i men tal re sults for the flat (2)

THERMAL SCIENCE: Year 2017, Vol. 21, No. 2, pp. 925-938 929 Ta ble 2. Cor re la tions for nat u ral con vec tion from isothermal plates and surfaces Nu(yCy n N = Ra/(1+0.492/) Plate tem per a ture is con stant 0.001 + Ge om e try Flow Cor re la tion Range of Gr Plate Sur. re gime C(y) n Ver ti cal y = 0 I nclined, 0 < y < 90 H orizontal y = 90 Ref er ence SF a Gr Gr cr4 Lam i nar 0.67 1/4 [15] (3) Gr cr1 Gr > Gr cr4 Sep a ra tion 0.057 1/3 [10, 14, 24] c (4) UF DF UF DF Gr > Gr cr1 Turbulent 0.1335 1/3 [14] d (5) Gr Gr cr4 for y < 21.42 b, Gr Gr cr1 for 21.42 y < 30 or Gr Gr cr2 for y 30 Gr cr1 Gr > Gr cr4 for y< 21.42 Gr > Gr cr4 for y 21.42 Gr > Gr cr1 for y < 21.42,Gr cr1 < Gr Gr cr4 for 21.42 y < 30 or Gr cr2 < Gr Gr cr4 for y 30 Lam i nar plate with H/W = 11.67, all other cor re la tions are de rived from the avail able data on flat plates with H/W 3.33. There fore, the ra tio H/W 3.33 can also be in tro duced as a lim it ing cri te rion for eqs. (3)-(19) and the five crit i cal Grashof num bers. Eqs. 0.376 + 0.294 (cos y) 1/4 1/4 [12, 14, 15] e (6) 0.616 + 0.054 (cos ) 1/4 1/4 [14, 15] f (7) Sep a ra tion 0.057 + 0.098 (sin y) 1/3 1/3 [10, 14, 24] c (8) Turbulent 0.1335 + 0.0456 (sin y 1/3 [14] d (9) Gr Gr cr5 Lam i nar 0.308 + 0.362 (cos y) 1/4 1/4 [12, 14, 15] e (10) Gr cr3 Gr > Gr cr5 Sep a ra tion 0.046 + 0.011 (cos y) 1/3 1/3 [10, 14, 24] c (11) Gr > Gr cr3 Turbulent 0.036 + 0.0975 (cos y) 1/3 1/3 [14] d (12) Gr Gr cr2 Lam i nar 0.376 1/4 [12, 14, 15] e (13) 0.616 1/4 [14, 15] f (14) Gr > Gr cr4 Sep a ra tion 0.155 1/3 [10, 14, 24] c (15) Gr cr2 < Gr Gr cr4 Turbulent 0.1791 1/3 [14] d (16) Gr Gr cr5 Lam i nar 0.308 1/4 [12, 14, 15] e (17) Gr cr3 Gr > Gr cr5 Sep a ra tion 0.046 1/3 [10, 14, 24] c (18) Gr > Gr cr3 Turbulent 0.036 1/3 [14] d (19) a An ab bre vi a tion of sideward-fac ing. b The in cli na tion an gle of 21.42 co mes from Gr cr1 = Gr cr4. c Cor re la tions de rived based on ex per i ments with in clined plates con ducted by Lim et al. [10], ex per i ments with in clined..cyl in ders con ducted by Heo and Chung [22], and cor re la tions pro vided by Chur chill and Chu (for a lam i nar flow along the..sur faces of a ver ti cal plate) [14], Black and Norris (for a tur bu lent flow along the UF sur face of a hor i zon tal plate) [24] and..mcadams (for a lam i nar flow along the DF sur face of a hor i zon tal plate) [14]. d Cor re la tions de rived based on cor re la tions pro vided by Chur chill and Chu (for tran si tional and tur bu lent flows along the..sur faces of a ver ti cal plate) [14], Fujii and Imura (for a tur bu lent flow along the UF sur face of a hor i zon tal plate) [9, 14] and..mcadams (for a lam i nar flow along the DF sur face of a hor i zon tal plate) [14]. e Cor re la tions de rived based on cor re la tions pro vided by Arpaci et al. (for a lam i nar flow along the sur faces of a ver ti cal plate)..[15] and McAdams (for a lam i nar flow along the sur faces of a hor i zon tal plate) [14], and nu mer i cal study con ducted by Wei..et al. (for a lam i nar flow along the sur faces of a hor i zon tal plate) [12]. f Cor re la tions de rived based on cor re la tions pro vided by Arpaci et al. (for a lam i nar flow along the sur faces of a ver ti cal plate)..[15] and McAdams (for a lam i nar flow along the sur faces of a hor i zon tal plate) [14]. These two cor re la tions ap ply only to..lam i nar nat u ral con vec tion from the UF sur face of a heated plate when its DF sur face is ther mally in su lated.

930 THERMAL SCIENCE: Year 2017, Vol. 21, No. 2, pp. 925-938 In ac cor dance with [9, 10, 13, 14, 18, 19], the fol low ing equa tions are de rived to cal cu - late the crit i cal Grashof num bers Gr cr1, Gr cr2, Gr cr3, Gr cr4, and Gr cr5 as func tions of the in cli na tion an gle y and the andtl num ber: 1 Gr cr1 10 ( 24. 258 cos y13. 028) for UF sur face and 0 < y < 30 (20) 1 Gr cr2 10 ( 5 cos y3. 65) for UF sur face and 30 y 90 (21) 17. 10 Grcr3 11 e ( y ln 2)/ 90for UF sur face and 0 y 90 (22) 1 Gr cr4 10 ( 5 cos y4. 9) for UF sur face and 0 < y 90 (23). Grcr5 109 9 e ( y ln 2)/ 90for UF sur face and 0 y < 90 (24) as well as for H/W 3.33 and 0.001 +, as shown in fig. 2. Fig ure 2. A com par i son be tween the crit i cal Grashof num bers Gr cr1, Gr cr2, Gr cr3, Gr cr4, and Gr cr5 and the associated experimental data for different angles of inclination and andtl numbers Fur ther more, the Grashof num ber for a ver ti cal cyl in der is de fined us ing its height, L, as a char ac ter is tic length. If the ther mal bound ary layer thick ness is not large com pared to the cyl in der di am e ter, D, the nat u ral con vec tion heat trans fer may be cal cu lated with the same cor - re la tions used for ver ti cal flat plates. Ac cord ing to [22], a ver ti cal iso ther mal cyl in der may be treated as a ver ti cal iso ther mal flat plate when the fol low ing cri te rion for transversal cur va ture ef fect is valid in the range of andtl num ber from 0.01 to 4173: 4 Gr L D L 4892. 0006085. 11474. 1/ 2 2 (25)

THERMAL SCIENCE: Year 2017, Vol. 21, No. 2, pp. 925-938 931 This im plies that the ex per i men tal data on ver ti cal cyl in ders, which are dis played in tab. 2, can be used in the pres ent study. Heat trans fer model This sec tion pro vides guid ance for the mod el ing of the heat trans fer along the sur faces of the PV mod ule, as shown in fig. 3. The av er age val ues of the heat trans fer co ef fi cients are cal cu - lated us ing the law of con ser va tion of en ergy, cor - re la tions for nat u ral con vec tion given in tab. 2 and a num ber of the ex ist ing cor re la tions for forced con vec tion and ra di a tion. All the pa ram e ters dis - played in this sec tion and their mean ings are in - cluded in the No men cla ture. Fig ure 3 shows the sky and the ground are mod eled as two un bounded par al lel flat plates. The four sides of the PV mod - ule are as sumed to be adi a batic and the two sur - faces of the PV mod ule are as sumed to be at a con - stant tem per a ture T PV = (T UF + T DF )/2. The ground tem per a ture T g is as sumed to equal the sky tem per - a ture T sky, which is mod eled by the cor re la tion of Swinbank [28]. The heat trans fer co ef fi cients cor re spond ing to the pro cesses Q th,s,ufa y, Q' th,s,ufa, Q tr,s,ufa, Q th,s,dfa, Q' th,s,dfa, and Q tr,s,dfa are h UF = h UF (y, h' UF, h r,uf, h DF = h DF (y, h' DF, and h r,df, re spec tively. As sum ing a num ber of the afore men tioned pa ram e ters are known, heat losses due to nat u ral con vec tion need to be es ti mated for dif fer ent in cli na tions y. The it er a tive pro ce dure for com put ing h UF and h DF re quires knowl edge of T PV, h' UF, h r,uf, h' DF, and h r,df, which are ini tially un known. To ob tain an ini tial es ti mate of T PV, the same nu mer i cal value should be taken for all un known co ef fi cients (for ex am ple 12 Wm 2 K 1 ). There - fore, an ini tial es ti mate of T PV can be ob tained from [29]: a S Q E,s,S Q th,s,uf a Q' th,s,uf a Q tr,s,uf a Q th,s,d Fa th,s,df a tr,s,df a el where T PV More pre cisely: Q' Q Q / S (26) a S QE,s,S Qel / S ( huf h' UF hdf h' DF ) Ta hr,uf Tsky hr,df Tg h h' h h h' h UF UF r,uf DF DF r,df Figure 3. Heat transfer along the surfaces of the PV module s Q th,s,uf a h UF ( T PV T a ), Q ' th,s,uf a h ' UF ( T PV T a ), Q tr,s,uf a hr,uf ( TPV Tsky ), h e s ( T 2 T 2 )( T T ), Q h ( T T ), Q' h' (T T ), r,uf UF SB PV sky PV sky th,s,df a DF PV a th,s,df a DF PV Q tr,s,df a hr,df ( TPV Tg ), hr,df edf ssb ( TPV 2 Tg 2 )( TPV Tg ), Qel helasqe,s,ss, QE,s,S Q' E,s,Scos d, and Tsky Tg 00552. Ta 1.5. For forced con vec tion from the UF and DF sur faces of the PV mod ule and any di rec - tion of the wind, the fol low ing cor re la tions can be used [30]: (27) a

932 THERMAL SCIENCE: Year 2017, Vol. 21, No. 2, pp. 925-938 Nu 0664. Re1/ 2 1/ 3 for Re n / n 5 105 w L (28) Nu ( 0037. Re 4 / 5 871) 1 / 3 for Re nw L / n 5 10 5 (29) where Nu is the cor re spond ing Nusselt num ber, Re the Reynolds num ber, v w the wind ve loc - ity, and n the ki ne matic vis cos ity of the air. For the case of ra di a tion, the cor re spond ing heat trans fer co ef fi cients are non-lin ear and cal cu lated as sum ing the op ti cally thin limit. More de tails on this heat trans fer model can be found in [29], where a sim i lar model was pre sented. Re sults and dis cus sion Validation of the proposed correlations Fig ure 4 shows the re sults ob tained by fit ting eqs. (3), (4), (6), (8), (10), and (11) to the nu mer i cal and ex per i men tal re sults in [8, 10, 13, 22]. Ac cord ing to this fig ure, in al most all cases, the Nusselt num ber reaches its max i mum for the in cli na tion of y = 0. The Nusselt num ber grad u ally de creases as the in cli na tion an gle y in creases and reaches its min i mum for y = 90. An ex cep tion oc curs in cases of the lam i nar and tur bu lent flows with the flow sep a ra - tion from the UF sur faces when the Nusselt num ber has its min i mum for y = 0 and its max i - mum for y = 90, as shown in figs. 4(b) and 4(c). The cor re la tions for lam i nar nat u ral con vec - tion with out the flow sep a ra tion from the UF and DF sur faces re veal sim i lar trends with very small dif fer ences. The rel a tive er rors be tween the nu mer i cal or ex per i men tal data and the data ob tained by the pro posed cor re la tions for in clined plates are lower than 19.31% for a lam i nar re - Figure 4. A comparison between the Nusselt number calculated using the equations from tab. 2 and relevant data from the literature: (a) in case when the flows are laminar; (b) in case when the flows are laminar and affected by the flow separation; and (c) in case when the flows are turbulent and affected by the flow separation

THERMAL SCIENCE: Year 2017, Vol. 21, No. 2, pp. 925-938 933 gime with out and with the flow sep a ra tion, figs. 4(a) and 4(b), and lower than 28.24% for a tur - bu lent re gime with the flow sep a ra tion, fig. 4(c). Max i mum rel a tive er rors are ob tained for the ex per i men tal re sults of Lim et al. [10], i. e. for the plates with di men sions of 0.1 0.03 m 2 and 0.35 0.03 m 2. For other plates, the er rors are def i nitely smaller, i. e. from 0 to about 15%. The in flu ence of the in cli na tion an gle on the lam i nar nat u ral con vec tion from an iso - ther mal plate for = 0.71 and Gr = 2.39410 6 is shown in fig. 5(a). Fig ure 5(a) il lus trates the com par i sons be tween eqs. (6), (7), and (10) on one side and the cor re la tions of Chur chill and Chu in [14], Raithby and Hollands [23], Al-Araby and Sakr [31], and Corcione et al. [13] on the other. There are a large num ber of cor re la tions for lam i nar nat u ral con vec tion avail able in the lit er a ture since the in clined plate sur rounded by air is fre quently en coun tered in prac tice. In or - der to pro vide a com par i son, the pres ent pa per se lects some of the most com monly used em pir i - cal cor re la tions for the av er age Nusselt num ber. Equa tions (6), (7), and (10) fol low the trends of se lected cor re la tions, al though giv ing dif fer ent rel a tive er rors. The small est er rors are be tween these three equa tions and the cor re la tion of Raithby and Hollands [23]. For in stance, eqs. (6), (7), and (10) for y = 75 give er rors with re spect to the cor re la tion of Raithby and Hollands [23] which equal 29.91, 45.36, and 25.7%, re spec tively. These er rors orig i nate from the fact that the cor re la tion of Raithby and Hollands [23] rep re sents the arith me tic mean of the av er age Nusselt num ber for the UF sur face of the plate and the av er age Nusselt num ber for the DF sur face of the plate, of course, com par ing to the eqs. (6), (7), and (10). More over, these equa tions give the ex - pected trends but over es ti mate the Nusselt num bers cal cu lated us ing the cor re la tion of Raithby and Hollands [23]. The ef fect of the in cli na tion an gle on the tur bu lent nat u ral con vec tion from an iso ther - mal plate of di men sions 4 m by 10 m for = 0.7 and Gr = 3.74410 11 is shown in fig. 5(b). Fig - ure 5(b) com pares the eqs. (9) and (12) with the cor re la tions of Fujii and Imura [9, 14], Chur chill and Chu in [14], McAdams in [14], and Black and Norris [24]. In some of these cor re la tions, the Rayleigh num ber is mod i fied with sin y or cos y. In ac cor dance with fig. 5(b), eq. (9) fol lows the trend of the cor re la tion of Fujii and Imura [9, 14] be tween the in cli na tions of 20-90, as well as the trend of the cor re la tion of Black and Norris [24] be tween the in cli na tions of 45-90. A max i mum rel a tive er ror of 5.59% is ob - tained for the UF sur face. Fig ure 5(b) also shows that eq. (12) fol lows the trend of a mod i fied Fig ure 5. A com par i son be tween the equa tions from tab. 2 and the ex ist ing cor re la tions: (a) for lam i nar natural convection and (b) turbulent natural convection

934 THERMAL SCIENCE: Year 2017, Vol. 21, No. 2, pp. 925-938 cor re la tion of Chur chill and Chu in [14]. The stan dard cor re la tion of Chur chill and Chu [14] for tran si tional and tur bu lent flows along the sur faces of a ver ti cal plate is mod i fied with cos y. The rel a tive er rors be tween the eq. (12) and the mod i fied cor re la tion of Chur chill and Chu in [14] are lower than 18.8% for 0 y 80 (i. e. be tween 0-18.8%). Worked examples In this pa per, the pro posed cor re la tions are ap plied to study two dif fer ent PV mod ules. Heat trans fer pro cesses as so ci ated with these two PV mod ules are pre sented in fig. 3. Each PV mod ule has a width, W = W PV, and a height, L = L PV char ac ter is tic length. The PV mod ules are mounted on the ground sur face at dif fer ent in cli na tions from the ver ti cal, y. Each PV mod ule has a so lar-to-elec tric power con ver sion ef fi ciency, h el, a so lar ab sorp tion co ef fi cient of the UF sur face, a S, a ther mal emis sion co ef fi cient of the UF sur face, e UF, and a ther mal emis sion co ef fi - cient of the DF sur face, e DF. The PV mod ules are sit u ated in en vi ron ments hav ing dif fer ent tem - per a tures, T a, and a pres sure of 1 at mo sphere. The PV mod ules are ex posed to the ef fects of di - rect so lar irradiance, Q' E,s,S, and wind ve loc ity, v w. Heat ex change be tween the first PV mod ule and its en vi ron ment oc curs through nat u ral con vec tion and ra di a tion. In the case of the sec ond PV mod ule, heat ex change oc curs through mixed con vec tion and ra di a tion. The PV mod ules are also as sumed to be solid, iso tro pic, and ho mo ge neous ma te ri als. The heat trans fer co ef fi cients due to con vec tion and ra di a tion (h UF, h' UF, h r, UF, h DF, h' DF, and h r,df ) need to be cal cu lated for var i ous in cli na tion an gles. Ex am ple 1. W = W PV = 0.5442 m, L = L PV = 0.43 m, h el = 0.14, a S = 0.97, e UF = 0.91, e DF = 0.85, T a = 22 C, y = 53, Q' E,s,S = 920 Wm 2, and v w = 0 ms 1 [20]. Ex am ple 2. W = W PV = 0.468 m, L = L PV = 0.624 m, h el = 0.113, a S = 0.97, e UF = 0.91, e DF = 0.85, T a = 36 C, y = 42, Q' E,s,S = 997cos (48 ) Wm 2, and v w = 2.3 ms 1 [4, 21]. Ta bles 3 and 4 sum ma rize the an a lyt i cal re sults ob tained for these two ex am ples. Ta - ble 3 cor re sponds to the first PV mod ule, while tab. 4 cor re sponds to the sec ond one. For each in cli na tion an gle y a set of 12 to 14 it er a tions was needed. The heat trans fer co ef fi cients are cal - cu lated us ing a MATLAB pro gram. Ta ble 3. Heat trans fer co ef fi cients for the first PV mod ule at dif fer ent in cli na tion an gles y [ ] d [ ] T PV [C] h UF and h UF h r,uf h DF and h DF h r,df 0 53 38.907 3.787 and 0 5.367 3.787 and 0 5.014 10 43 43.424 4.003 and 0 5.496 4.001 and 0 5.133 20 33 47.057 4.134 and 0 5.601 4.128 and 0 5.232 30 23 48.878 4.991 and 0 5.654 4.152 and 0 5.282 40 13 50.490 5.174 and 0 5.702 4.142 and 0 5.326 50 3 51.247 5.287 and 0 5.724 4.074 and 0 5.347 53 0 52.312 4.512 and 0 5.756 4.074 and 0 5.376 60 7 52.101 4.578 and 0 5.750 3.974 and 0 5.371 70 17 51.084 4.609 and 0 5.719 3.765 and 0 5.342 80 27 49.261 4.564 and 0 5.665 3.434 and 0 5.292 90 37 47.830 4.504 and 0 5.623 1.928 and 0 5.253

THERMAL SCIENCE: Year 2017, Vol. 21, No. 2, pp. 925-938 935 Ta ble 4. Heat trans fer co ef fi cients for the sec ond PV mod ule at dif fer ent in cli na tion an gles y [ ] d [ ] T PV [C] h UF and h UF h r,uf h DF and h DF h r,df 0 42 45.711 2.976 and 7.519 6.122 2.976 and 7.519 5.719 10 32 47.404 3.090 and 7.519 6.174 3.089 and 7.519 5.767 20 22 48.676 3.155 and 7.518 6.212 3.150 and 7.518 5.803 30 12 49.242 3.883 and 7.518 6.230 3.150 and 7.518 5.819 40 2 49.560 3.985 and 7.518 6.240 3.117 and 7.518 5.828 42 0 49.569 3.998 and 7.518 6.240 3.105 and 7.518 5.828 50 8 49.666 3.390 and 7.518 6.243 3.053 and 7.518 5.831 60 18 49.055 3.426 and 7.518 6.224 2.925 and 7.518 5.814 70 28 48.004 3.392 and 7.519 6.192 2.736 and 7.519 5.784 80 38 46.534 3.285 and 7.519 6.147 2.455 and 7.519 5.742 90 48 44.848 3.115 and 7.518 6.096 1.338 and 7.518 5.694 It can be no ticed from tabs. 3 and 4 that the heat losses due to nat u ral con vec tion from the sur faces of the PV mod ules change be tween: (1) 13.863-20.175% for the UF sur face of the first PV mod ule; (2) 8.126-16.092% for the DF sur face of the first PV mod ule; (3) 6.775-9.451% for the UF sur face of the sec ond PV mod ule; and (4) 3.082-7.504% for the DF sur face of the sec ond PV mod ule. The heat losses due to nat u ral con vec tion are ex pressed as a per cent age of the to tal heat loss. Trends of the heat trans fer co ef fi cients h UF and h DF are sim i lar to those ob tained by Lim et al. [10] for in clined flat plates. More over, the re sults ob tained for y = 53 and y = 42 cor re spond well with the ex per i ments per formed by Date et al. [20] and Ali et al. [21], re spec tively. Con clu sions The main con clu sions aris ing from the pres ent pa per are as fol lows. A set of new cor re la tions for nat u ral con vec tion with out and with the flow sep a ra tion, based on the fun da men tal dimensionless num ber, is de rived and suc cess fully val i dated. The cor re la tions ap ply to ver ti cal, in clined, and hor i zon tal flat plates as well as sur faces. In or der to cal cu late the crit i cal Grashof num bers, the fol low ing five cor re la tions are used: (1) a new cor re la tion in di cat ing the on set of tran si tional/tur bu lent flow along the UF sur face of a flat plate for 0 < y < 30, (2) a known cor re la tion of Corcione et al. [13] in di cat ing the on set of tran si tional/tur bu lent flow along the UF sur face of a flat plate for 30 y 90, (3) a mod i fied cor re la tion of Warneford [18] in di cat ing the on set of tran si tional/tur bu lent flow along the DF sur face of a flat plate for 0 y 90, (4) a new cor re la tion in di cat ing the on set of flow sep a ra tion along the UF sur face of a flat plate for 0 < y 90, and (5) a new cor re la tion in di cat ing the on set of flow sep a ra tion along the DF sur face of a flat plate for 0 y 90. All the pro posed cor re la tions for nat u ral con vec tion and the crit i cal Grashof num bers are lim ited by the ra tio of H/W 3.33 and gen er al ized to the en tire range of andtl num bers (0.001 +) with a sat is fac tory ac cu racy.

936 THERMAL SCIENCE: Year 2017, Vol. 21, No. 2, pp. 925-938 In tro duc ing the pro posed cor re la tions into the heat trans fer model, a sim ple al go rithm to es ti mate the av er age heat trans fer co ef fi cients due to nat u ral con vec tion, forced con vec tion, and ra di a tion is de vel oped. The heat trans fer co ef fi cients due to nat u ral con vec tion are avail able for dif fer ent in cli na tion an gles. The pro posed heat trans fer model that is based on the Swinbank cor re la tion [28] gives better re sults than the mod els de vel oped us ing the ra di a tion shape fac tors. The heat trans fer co ef fi cients due to nat u ral con vec tion from the in clined PV mod ules have trends which are in the line with the ex pec ta tions. The heat losses due to nat u ral con vec tion from the UF and DF sur faces of the PV mod ules are be tween 6.775-20.175% and 3.082-16.092% of the to tal heat loss, re spec tively. Lower val ues of the heat losses due to nat u ral con vec tion cor re spond to the case when the trans fer of heat is af fected by the wind. The pre sented an a lyt i cal re sults cor re spond well with ex ist ing ex per i men tal data. Acknowledgement This pa per was based on re search con ducted within the pro ject TR33046 funded by the Min is try of Ed u ca tion, Sci ence, and Tech no log i cal De vel op ment of the Re pub lic of Serbia. Nomenclature C pa ram e ter in eq. (1), [ ] D cyl in der di am e ter, [ ] g ac cel er a tion of grav ity, [ms 2 ] Gr Grashof num ber, [ ] Gr cr crit i cal Grashof num ber, [ ] h DF, h UF co ef fi cients due to nat u ral convection...from the DF and UF sur faces,...re spec tively, h DF, h UF co ef fi cients due to forced con vec tion. from the DF and UF sur faces,...re spec tively, h r,df, h r,uf coefficients due to radiation from the...df and UF sur faces, re spec tively,... L plate height, cyl in der height or...char ac ter is tic length, [m] L PV height of a PV mod ule, [m] n ex po nent in eq. (1), [ ] n DF a nor mal to the DF sur face, [ ] n UF a nor mal to the UF sur face, [ ] Nu Nusselt num ber, [ ] andtl num ber, [ ] Q E,s,S so lar irradiance com po nent which is...nor mal to the UF sur face, [Wm 2 ] Q E,s,S di rect so lar irradiance, [Wm 2 ] Q el to tal elec tric power gen er ated by a...pv mod ule, [W] Q th,s,dfa nat u ral con vec tion from the DF...sur face to the air, [Wm 2 ] Q th,s,dfa forced con vec tion from the DF Q th,s,ufa...sur face to the air, [Wm 2 ] nat u ral con vec tion from the UF...sur face to the air, [Wm 2 ] Q th,s,ufa forced con vec tion from the UF...sur face to the air, [Wm 2 ] Q tr,s,dfa net ra di a tion trans fer from the DF...sur face to the am bi ent, [Wm 2 ] Q tr,s,ufa net ra di a tion trans fer from the UF...sur face to the am bi ent, [Wm 2 ] Ra Ray leigh num ber, [ ] Re Reynolds num ber, [ ] S ac tive area of a PV mod ule, [m 2 ] T a air tem per a ture, [K] or [C] T DF tem per a ture of the DF sur face, [K] T g ground tem per a ture, [K] T PV av er age tem per a ture of a PV mod ule,...[k] or [C] T sky sky tem per a ture, [K] T UF tem per a ture of the UF sur face, [K] v w wind ve loc ity, [ms 1 ] W plate width, [m] width of a PV mod ule, [m] W PV Greek sym bols a S d e DF e UF g h el solar absorption coefficient of the UF...sur face of a PV mod ule, [ ] an gle be tween the sun rays and the nor mal n UF, [] ther mal emis sion co ef fi cient of the...df sur face of a PV mod ule, [ ] ther mal emis sion co ef fi cient of the UF sur face of a PV mod ule, [ ] an gle be tween the ver ti cal and the...normal n UF or n DF, [] solar-to-electric power conversion ef fi ciency, [ ]

THERMAL SCIENCE: Year 2017, Vol. 21, No. 2, pp. 925-938 937 n ki ne matic vis cos ity of the air, [m 2 s -1 ] N fun da men tal dimensionless number...for nat u ral con vec tion, [ ] s SB Stefan-Boltzmann con stant, //[Wm 2 K 4 ] y angle of inclination from the vertical,...[] Subscripts a cr DFa E el g L N air or am bi ent crit i cal from the down ward-fac ing sur face...to wards the air or the am bi ent ir ra di a tion elec tri cal ground.cyl in der height as a char ac ter is tic...length nat u ral con vec tion r ra di a tion S so lar s per square me ter sky sky th convection or nat u ral con vec tion tr ther mal ra di a tion UFa from the up ward-fac ing sur face...to wards the air or the am bi ent w wind Su per script ' forced con vec tion Acronyms DF downward-facing PV photovoltaic SB Stefan-Boltzmann SF sideward-fac ing UF upward-facing Ref er ences [1] Ali, M., et al., Per for mance En hance ment of PV Cells through Mi cro-chan nel Cool ing, AIMS En ergy, 3 (2015), 4, pp. 699-710 [2] Bashir, M. A., et al., Com par i son of Per for mance Mea sure ments of Pho to vol taic Mod ules dur ing Win ter Months in Taxila, Pa ki stan, In ter na tional Journal of Photoenergy, 2014 (2014), ID 898414 [3] Ali, H. M., et al., Ef fect of Dust De po si tion on the Per for mance of Pho to vol taic Mod ules in Taxila, Pa ki - stan, Ther mal Sci ence, On-line first, https://doi.org/10.2298/tsci140515046a [4] Bashir, M. A., et al., An Ex per i men tal Investigation of Performance of Photovoltaic Modules in Pakistan, Ther mal Sci ence, 19 (2015), Suppl. 2, pp. S525-S534 [5] Armstrong, S., Hurley, W. G., A Ther mal Model for Pho to vol taic Pan els un der Vary ing At mo spheric Con di tions, Ap plied Ther mal En gi neering, 30 (2010), 11-12, pp. 1488-1495 [6] Hussein, H. M. S., et al., Per for mance Evaluation of Photovoltaic Modules at Different Tilt Angles and Ori en ta tions, En ergy Con ver sion and Management, 45 (2004), 15-16, pp. 2441-2452 [7] Warner, C. Y., Arpaci, V. S., An Ex per i men tal In ves ti ga tion of Tur bu lent Nat u ral Con vec tion in Air at Low es sure along a Ver ti cal Heated Flat Plate, In ter na tional Jour nal of Heat and Mass Trans fer, 11 (1968), 3, pp. 397-406 [8] Hassan, K.-E., Mohamed, S. A., Nat u ral Con vec tion from Iso ther mal Flat Sur faces, International Journal of Heat and Mass Trans fer, 13 (1970), 12, pp. 1873-1886 [9] Fujii, T., Imura, H., Nat u ral Con vec tion from a Plate with Ar bi trary In cli na tion, International Journal of Heat and Mass Trans fer, 15 (1972), 4, pp. 755-764 [10] Lim, C.-K., et al., Nat u ral Con vec tion Heat Trans fer on In clined Plates, Trans ac tions of the KSME B, 35 (2011), 7, pp. 701-708 [11] Lin, M.-H., Chen, C.-T., Nu mer i cal Study of Ther mal In sta bil ity in Mixed Con vec tion Flow over Hor i - zon tal and In clined Sur faces, In ter na tional Jour nal of Heat and Mass Trans fer, 45 (2002), 8, pp. 1595-1603 [12] Wei, J. J., et al., Si mul ta neous Nat u ral-convection Heat Transfer above and below an Isothermal Horizon - tal Thin Plate, Nu mer i cal Heat Trans fer, Part A, 44 (2003), 1, pp. 39-58 [13] Corcione, M., et al., Nat u ral Con vec tion from In clined Plates to Gases and Liq uids when Both Sides are Uni formly Heated at the same Tem per a ture, International Journal of Thermal Sciences, 50 (2011), 8, pp. 1405-1416 [14] Holman, J. P., Heat Trans fer, 8 th ed., McGraw-Hill, Inc., Sin ga pore, 1999 [15] Arpaci, V. S., et al., In tro duc tion to Heat Transfer, entice Hall Inc., Up per Sad dle, River, N. J., USA, 2000 [16] Larsen, P. S., Arpaci, V. S., On the Sim i lar ity So lu tions to Lam i nar Nat u ral Con vec tion Bound ary Lay ers, In ter na tional Jour nal of Heat and Mass Trans fer, 29 (1986), 2, pp. 342-344

938 THERMAL SCIENCE: Year 2017, Vol. 21, No. 2, pp. 925-938 [17] Arpaci, V. S., Microscales of Tur bu lence and Heat Trans fer Cor re la tions, International Journal of Heat and Mass Trans fer, 29 (1986), 8, pp. 1071-1078 [18] Warneford, I. P., Nat u ral Con vec tion from an In clined Flat Plate, Ph. D. the sis, Uni ver sity of Nottingham, Nottingham, UK, 1975 [19] Chang, K. S., et al., Laminar Natural Convection Heat Transfer from Sharp-Edged Horizontal Bars with Flow Separation, In ter na tional Jour nal of Heat and Mass Trans fer, 31 (1988), 6, pp. 1177-1187 [20] Date, A., et al., Cool ing of So lar Cells by Chim ney-in duced Nat u ral Draft of Air, oceedings, 48 th AuSES An nual Con fer ence (So lar 2010), Canberra, Australia, 2010 [21] Ali, H. M., et al., Out door Test ing of Pho to vol taic Mod ules dur ing Sum mer in Taxila, Pa ki stan, Thermal Sci ence, 20 (2016), 1, pp. 165-173 [22] Heo, J.-H., Chung, B.-J., Nat u ral Con vec tion Heat Trans fer on the Outer Sur face of In clined Cyl in ders, Chem i cal En gi neer ing Sci ence, 73 (2012), May, pp. 366-372 [23] Raithby, G. D., Hollands, K. G. T., Nat u ral Con vec tion, in: Hand book of Heat Trans fer, (Eds. W. M. Rohsenaw, J. P. Hartnett, Y. I. Cho), McGraw-Hill Book Com pany, New York, USA, 1998, pp. 4.1-4.99 [24] Black, W. Z., Norris, J. K., The Ther mal Struc ture of Free Con vec tion Tur bu lence from In clined Iso ther - mal Sur faces and its In flu ence on Heat Trans fer, In ter na tional Jour nal of Heat and Mass Trans fer, 18 (1975), 1, pp. 43-50 [25] Lock, G. S. H., et al., A Study of In sta bil ity in Free Con vec tion from an In clined Plate, Ap plied Sci en tific Re search, 18 (1968), 1, pp. 171-182 [26] Lloyd, J. R., Spar row, E. M., On the In sta bil ity of Nat u ral Con vec tion Flow on In clined and Ver ti cal Sur - faces, Jour nal of Fluid Me chan ics, 42 (1970), 3, pp. 465-470 [27] Lloyd, J. R., et al., Lam i nar, Tran si tion and Turbulent Natural Convection Adjacent to Inclined and Verti - cal Sur faces, In ter na tional Jour nal of Heat and Mass Trans fer, 15 (1972), 3, pp. 457-473 [28] Swinbank, W. C., Long-Wave Ra di a tion from Clear Skies, Quarterly Journal of the Royal Meteorological So ci ety, 89 (1963), 381, pp. 339-348 [29] Klimenta, D., et al., An a lyt i cal and Nu mer i cal Mod el ing of the Ef fect of the Tilt An gle on Nat u ral Con vec - tion from ETCs and PV Pan els, Hu man i ties and Sci ence Uni ver sity Jour nal - Technics, ISSN: 2222-5064 (2014), 10, pp. 148-161 [30] Incropera, F. P., et al., Fun da men tals of Heat and Mass Trans fer, 6 th ed., John Wiley and Sons Inc., New York, USA, 2007 [31] Al-Arabi, M., Sakr, B., Nat u ral Con vec tion Heat Trans fer from In clined Iso ther mal Plates, International Jour nal of Heat and Mass Trans fer, 31 (1988), 3, pp. 559-566 Paper submitted: August 21, 2014 Paper revised: November 26, 2015 Paper accepted: March 14, 2016 2017 So ci ety of Ther mal En gi neers of Ser bia Pub lished by the Vin~a In sti tute of Nu clear Sci ences, Bel grade, Ser bia. This is an open ac cess ar ti cle dis trib uted un der the CC BY-NC-ND 4.0 terms and con di tions