The root mean square value of the distribution is the square root of the mean square value of x: 1/2. Xrms

Similar documents
Grand Canonical Ensemble

1- Summary of Kinetic Theory of Gases

Lecture 21. Boltzmann Statistics (Ch. 6)

The Hyperelastic material is examined in this section.

167 T componnt oftforc on atom B can b drvd as: F B =, E =,K (, ) (.2) wr w av usd 2 = ( ) =2 (.3) T scond drvatv: 2 E = K (, ) = K (1, ) + 3 (.4).2.2

Relate p and T at equilibrium between two phases. An open system where a new phase may form or a new component can be added

Elements of Statistical Thermodynamics

1) They represent a continuum of energies (there is no energy quantization). where all values of p are allowed so there is a continuum of energies.

fiziks Institute for NET/JRF, GATE, IIT JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics Thermodynamics & Statistical Mechanics JEST-2012

Electrochemical Equilibrium Electromotive Force. Relation between chemical and electric driving forces

CLASSICAL STATISTICS OF PARAMAGNETISM

Heisenberg Model. Sayed Mohammad Mahdi Sadrnezhaad. Supervisor: Prof. Abdollah Langari

CME 599 / MSE 620 Fall 2008 Statistical Thermodynamics and Introductory Simulation Concepts

Ερωτήσεις και ασκησεις Κεφ. 10 (για μόρια) ΠΑΡΑΔΟΣΗ 29/11/2016. (d)

Analyzing Frequencies

A Note on Estimability in Linear Models

4D SIMPLICIAL QUANTUM GRAVITY

A NEW GENERALISATION OF SAM-SOLAI S MULTIVARIATE ADDITIVE GAMMA DISTRIBUTION*

Economics 600: August, 2007 Dynamic Part: Problem Set 5. Problems on Differential Equations and Continuous Time Optimization

Phy213: General Physics III 4/10/2008 Chapter 22 Worksheet 1. d = 0.1 m

IV. Transport Phenomena Lecture 35: Porous Electrodes (I. Supercapacitors)

Introduction to Condensed Matter Physics

Jones vector & matrices

Lecture 14. Relic neutrinos Temperature at neutrino decoupling and today Effective degeneracy factor Neutrino mass limits Saha equation

Logistic Regression I. HRP 261 2/10/ am

Special Random Variables: Part 1

Folding of Regular CW-Complexes

Chapter 1. Probability

Review - Probabilistic Classification

Chapter 6 Student Lecture Notes 6-1

The Fourier Transform

8-node quadrilateral element. Numerical integration

ECE507 - Plasma Physics and Applications

Physics of Very High Frequency (VHF) Capacitively Coupled Plasma Discharges

IV. First Law of Thermodynamics. Cooler. IV. First Law of Thermodynamics

10/7/14. Mixture Models. Comp 135 Introduction to Machine Learning and Data Mining. Maximum likelihood estimation. Mixture of Normals in 1D

A Quick introduction to Quantum Monte Carlo methods

Equil. Properties of Reacting Gas Mixtures. So far have looked at Statistical Mechanics results for a single (pure) perfect gas

Soft k-means Clustering. Comp 135 Machine Learning Computer Science Tufts University. Mixture Models. Mixture of Normals in 1D

External Equivalent. EE 521 Analysis of Power Systems. Chen-Ching Liu, Boeing Distinguished Professor Washington State University

Statistical mechanics handout 4

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models

Derivation of Electron-Electron Interaction Terms in the Multi-Electron Hamiltonian

10.40 Appendix Connection to Thermodynamics and Derivation of Boltzmann Distribution

Lecture 23 APPLICATIONS OF FINITE ELEMENT METHOD TO SCALAR TRANSPORT PROBLEMS

2. Grundlegende Verfahren zur Übertragung digitaler Signale (Zusammenfassung) Informationstechnik Universität Ulm

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models

ST 524 NCSU - Fall 2008 One way Analysis of variance Variances not homogeneous

CS-433: Simulation and Modeling Modeling and Probability Review

Assignment 2. Tyler Shendruk February 19, 2010

Physics 256: Lecture 2. Physics

From Structural Analysis to FEM. Dhiman Basu

Chemical Physics II. More Stat. Thermo Kinetics Protein Folding...

Ch. 24 Molecular Reaction Dynamics 1. Collision Theory

Basic Electrical Engineering for Welding [ ] --- Introduction ---

An Overview of Markov Random Field and Application to Texture Segmentation

Static/Dynamic Deformation with Finite Element Method. Graphics & Media Lab Seoul National University

A NON-LINEAR MODEL FOR STUDYING THE MOTION OF A HUMAN BODY. Piteşti, , Romania 2 Department of Automotive, University of Piteşti

Vibrational analysis for the nuclear electronic orbital method

Introduction to Statistical Methods

September 27, Introduction to Ordinary Differential Equations. ME 501A Seminar in Engineering Analysis Page 1. Outline

te Finance (4th Edition), July 2017.

Today s logistic regression topics. Lecture 15: Effect modification, and confounding in logistic regression. Variables. Example

STATISTICAL MECHANICS

PES 1120 Spring 2014, Spendier Lecture 6/Page 1

Polytropic Process. A polytropic process is a quasiequilibrium process described by

CHAPTER 7d. DIFFERENTIATION AND INTEGRATION

NOTES FOR CHAPTER 17. THE BOLTZMANN FACTOR AND PARTITION FUNCTIONS. Equilibrium statistical mechanics (aka statistical thermodynamics) deals with the

PHY688, Statistical Mechanics

:2;$-$(01*%<*=,-./-*=0;"%/;"-*

Journal of Theoretical and Applied Information Technology 10 th January Vol. 47 No JATIT & LLS. All rights reserved.

CHAPTER 33: PARTICLE PHYSICS

Performance assessment of the window-wall interface. PhD-meeting Nathan Van Den Bossche - 04/06/2010 Department of Architecture Ghent University

Outlier-tolerant parameter estimation

On New Selection Procedures for Unequal Probability Sampling

Electrostatic Surface Waves on Semi-Bounded Quantum Electron-Hole Semiconductor Plasmas

COHORT MBA. Exponential function. MATH review (part2) by Lucian Mitroiu. The LOG and EXP functions. Properties: e e. lim.

Chapter 7 Channel Capacity and Coding

+, where 0 x N - n. k k

ACOUSTIC WAVE EQUATION. Contents INTRODUCTION BULK MODULUS AND LAMÉ S PARAMETERS

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2015

JEE-2017 : Advanced Paper 2 Answers and Explanations

Deconfinement phase transition in SU(3)/Z3 QCD (adj) via the gauge theory/affine XY-model duality

MECH321 Dynamics of Engineering System Week 4 (Chapter 6)

A Probabilistic Characterization of Simulation Model Uncertainties

UNIT 8 TWO-WAY ANOVA WITH m OBSERVATIONS PER CELL

Math 656 Midterm Examination March 27, 2015 Prof. Victor Matveev

Background: We have discussed the PIB, HO, and the energy of the RR model. In this chapter, the H-atom, and atomic orbitals.

Chapter 5 Special Discrete Distributions. Wen-Guey Tzeng Computer Science Department National Chiao University

On determining absolute entropy without quantum theory or the third law of thermodynamics

Chapter 7 Channel Capacity and Coding

PHYS ,Fall 05, Term Exam #1, Oct., 12, 2005

SPECTRUM ESTIMATION (2)

Fundamentals of Continuum Mechanics. Seoul National University Graphics & Media Lab

5.60 Thermodynamics & Kinetics Spring 2008

Circular Wilson loop operator and master field

ANALYSIS: The mass rate balance for the one-inlet, one-exit control volume at steady state is

LECTURE 6 TRANSFORMATION OF RANDOM VARIABLES

9.5 Complex variables

Statistical Thermodynamics: Sublimation of Solid Iodine

Transcription:

Background and Rfrnc Matral Probablty and Statstcs Probablty Dstrbuton P(X) s a robablty dstrbuton for obsrvng a valu X n a data st of multl obsrvatons. It can dscrb thr a dscrt ( = 1 to N) data st or contnuous functon. For th contnuous dstrbuton, P(X) s known as a robablty dnsty, and P(X) dx s th robablty of obsrvng a valu btwn X and X + dx wthn a larg saml. ll robablty dstrbutons ar normalzd such that Dscrt Contnuous N P 1 PXdX 1 1 h man or avrag valu of X for ths dstrbuton s 1 N N N 1 1 X X PX X P X dx h root man squar valu of th dstrbuton s th squar root of th man squar valu of x: Xrms X 1/ h man s th frst momnt of th dstrbuton, th man squar valu s th scond momnt, and th n th momnt of P(x) s n 1 N n N n n N 1 1 X X PX X P X dx h wdth of th dstrbuton functon about ts man s quantfd through th standard dvaton σ or varanc σ : X X Gaussan Dstrbuton h Gaussan normal dstrbuton s a contnuous dstrbuton functon commonly usd to dscrb a larg numbr of ndndnt samls from a random dstrbuton. P X 1 ( X X) x h dstrbuton functon s comltly dscrbd by ts man and varanc. ll hghr momnts of ths dstrbuton ar zro. h most robabl valu, or ak, of th dstrbuton s th man, and th wdth s gvn by th standard dvaton. h robablty dnsty wth ±1σ of th man s 68.% ndr okmakoff 6/9/17

and wthn ±σ s 95.4%. h full-wdth of P(X) at half th maxmum hght (FWHM) s 8ln.355. Bnomal and Posson Dstrbutons bnomal dstrbuton s a dscrt robablty dstrbuton that rlats to th numbr of tms of obsrvng N succssful vnts from a srs of M ndndnt trals on a bnary varabl (ys/no; u/down). For nstanc th numbr of tms of obsrvng N cos of th amno acd tyrosn wthn a rotn squnc of lngth M. ltrnatvly w can say that t gvs th robablty that N random vnts han durng a gvn rod of tm, M. Lk th numbr of barrr crossngs (ums) durng a tm wndow n a two-stat tractory. Consdr th numbr of ways of uttng N ndstngushabl obcts nto M quvalnt boxs: M! M N!( M N)! N (Not: In th lmt M N, Ω M N /N!). h chocs mad hr ar bnary, snc any gvn box can thr b mty or occud. Ω s also known as th bnomal coffcnt. Howvr, unlk a con toss, a bnary varabl nd not hav qual robablty for th two outcoms. W can say that w know th robablty that a box s occud s o. hn th robablty that a box s mty s = 1 o. h robablty that n a gvn ralzaton wth M boxs that N ar occud and M N ar N M N mty s. hn multlyng th robablty for a gvn ralzaton and th numbr of o ossbl ralzatons, th robablty of obsrvng N of M boxs occud s M M! PNM (, ) o o (1 o) N N!( M N)! N M N N MN hs s th bnomal dstrbuton. h avrag numbr of occud boxs s N = N o. Gaussan dstrbuton mrgs from th bnomal dstrbuton n th lmt that th numbr of trals bcoms larg (M ). h man valu of th dstrbuton s No and standard dvaton s No(1 o). Posson dstrbuton mrgs n th lmt that th numbr or trals (M) bcoms larg and th robablty of obsrvng an occud box s small, o 1. N N PN ( ) N! N

h man of th Posson dstrbuton s N and th standard dvaton σ = N 1/. Fluctuatons n 1/ N scal as σ, and th fluctuatons rlatv to th man as / NN. hn w s that fluctuatons ar most aarnt to th obsrvr for small N wth th bggst contrast for N = 1. 1 1. M. B. Jackson, Molcular and Cllular Bohyscs. (Cambrdg Unvrsty Prss, Cambrdg, 6), Ch. 1. 3

Constant and Unts Practcal Unts and Idntts for Bohyscal Puross 1 m 1 9 nm 1 1 Å 1 1 m 1 nm 1 9 m 1 N 1 1 N 1 aj 1 18 J zj 1 1 J 3 N nm 3 zj nm 4 t 3 K k B 4.1 N nm.5 kj/mol.6 kcal/mol 1 56 nm 4 k B k B 5 mv 4

hrmodynamcs Frst Law du dq dw w: Work rformd by th surroundngs on th systm. Mchancal work: lnar dslacmnt, strtchng surfac aganst surfac tnson, and volum xanson aganst an xtrnal rssur. Elctrcal work: dw qe dr Magntc work: dw s ntrnal to th systm. q: Hat addd to th systm. dw f dr da dv xt xt M db s fld s xtrnal to th systm or dw B dm f th fld C: Hat caacty lnks hat and tmratur. t constant rssur: dq Cd Scond Law ds dq rv Stat Functons Intrnal Enrgy, U: U q w du ds dv dn Natural varabls: N, S, V Enthaly, H: H U V dh ds Vd dn Natural varabls: N, S, 1 H ( ) H ( ) C d Hlmholtz fr nrgy, or F: U S d dv Sd dn Natural varabls: N, V, mor gnrally: d S d wrv whr wrv dv dn f dr da dq Gbbs fr nrgy, G: G H S V dg Sd Vd dn Natural varabls: N,, mor gnrally: dg Sd wrv 1 5

whr w rv Vd dn f dr da dq For a rvrsbl rocss at constant and, ΔG s qual to th non-v work don on th systm by th surroundngs. Gnrally: (dg), w non-v. Chmcal otntal: Entroy: G N N,,{ N }, V,{ N} G S V If you know th fr nrgy, you know vrythng! V G V H G S H G G U H V U G G U S G G C S C G G C V U Sontanous Procsss Condtons that dtrmn th drcton of sontanous chang and th condtons for qulbrum dg d ds du dh,, N V,, N H, V, S, N, S, N Chmcal Equlbra G rxn H rxn K q x(g rxn S rxn / R ) G rxn roducts N N ractants 6

Statstcal hrmodynamcs h artton functons lay a cntral rol n statstcal mchancs. ll th thrmodynamc functons can b calculatd from thm. Mcrocanoncal Ensmbl (N,V,E) ll mcrostats ar qually robabl: P = 1/Ω whr Ω s th numbr of dgnrat mcrostats. S kln Boltzmann ntroy n trms of dgnracy Canoncal Ensmbl (N,V,) vrag nrgy E s fxd. Canoncal Partton Functon: Q For on artcl n n dmnsons: Q E / k E/ k de 1 H ( q, )/ k n n n Q dq d h h classcal artton functon for N non-ntractng artcls n 3D: 1 Q d d 3 N H(, q )/ k h, N whr,, 3 3 3 3 q q q q q x y z 3 If th kntc and otntal nrgy trms n th Hamltonan ar sarabl as N V q thn h / mk. So whr 1/ 3 3 ( )/ 1 N N V q k 3 N ( )/ k Q dq d h 3 N 1 V q Q dq / k, 7

Mcrostat Probablts P E / Q E k or dscrbng th robablty of occuyng mcrostats of an nrgy E, whch hav a dstngushabl dgnracy of g(e): P E E / k ge ( ) Q or as a robablty dnsty: Pr E( r)/ k Q Intrnal Enrgy Hlmholtz Fr Enrgy U E P E 1 Q E E /k Q(N,,V) lads to (N,,V). Usng d dv Sd dn : U S U k lnq 8

ll th othr functons follow from Q, U and U 1 U k C V U lnq S U C S V N k lnq k lnq,n,v k k lnq V lnq N,N,V k Entroy Entroy n trms of mcrostat robablts and dgnracs S k U k P E k But E k lne k, so S k P ln E k lnq k P ln E Q P ln P S k P ln P lnq Gbbs quaton: S n trms of mcrostat robablts 9

Ensmbl vrags Othr ntrnal varabls (X) can b statstcally dscrbd by N X PX P E 1 Q E / k For our uross, w wll s that translatonal, rotatonal, and conformatonal dgrs of frdom ar sarabl Q Q trans Q rot Q conf... Grand Canoncal Ensmbl (μ, V, ) vrag nrgy E and avrag artcl numbr N ar fxd. hrmodynamc quantts dnd on mcrostats () and artcl ty (). P ( ) s th robablty that a artcl of ty wll occuy a mcrostat of nrgy E: P ( ) E ( )/k B N ( )/k B U EP ( )E ( ) and N P ( ) N( ) h grand canoncal artton functon s Q(N,V, ) N ( )/k B Strlng s roxmaton For larg N: N! N ln N N or N! N N N N! N ln N N 1 ln( N ) Frst Law Rvstd Lt s rlat work and th acton of a forc to changs n statstcal thrmodynamc varabls: h ntrnal nrgy:.. L. Hll, n Introducton to Statstcal hrmodynamcs. (ddson-wsly, Radng, M, 196),. 11 13, 66 77. 1

U E P E du dee dp P de Not th rlatonsh btwn ths xrsson and th Frst Law: du d q d w d q rv ds E dp dw dv P de 11

Contnuum Elctrostatcs h ntracton of chargs can b formulatd through a Forc, Fld, or Potntal. Consdr th ntracton btwn two ons and B, saratd by a dstanc r, wth chargs q and qb. q r qb B Forc Coulomb s Law gvs th forc that B xrts on. r ( r r ) r B r rˆ r / r f 1 qq 4 B r rˆ 1 Work Elctrcal work coms from movng chargs dw f dr s long as q and ar ndndnt of r, and th rocss s rvrsbl, thn work only dnds on r, and s ndndnt of ath. o mov artcl B from ont 1 at a saraton r to ont at a saraton r rqurs th followng work w 1 1 1 1 qqb 4 r r q r r qb Fld, E h lctrc fld s a vctor quantty that dscrbs th acton of charg B at ont s E ( r ) 1 q rˆ B 4 r rˆ s a unt vctor ontng from r B to r. E s rlatd to forc that chargd artcl B xrts on a chargd tst artcl at through f q E ( r ) Mor gnrally for th fld xrtd by multl chargd artcls at ont r s th vctor sum of th fld from multl chargs (): 1 q E( r ) E ( r ) rˆ 4 r 1

whr r r r and th unt vctor rˆ ( r r )/ r. ltrnatvly for a contnuum charg dnsty ρ(r), 1 ( r r) E( r) ( ) d 3 4 r r r r Elctrcal work coms from movng chargs n an lctrostatc fld s dw qedr Elctrostatc Potntal, Φ h lctrostatc otntal Φ s a scalar quantty dfnd n trms of th lctrc fld through E or E r dr h ntgral xrsson llustrats th rlatonsh btwn th lctrostatc otntal at ont and th work ndd to mov a artcl wthn that otntal. h lctrostatc otntal at ont, whch rsults from a ont charg at B, s 1 q 4 r B or for a contnuum: 1 ( r) ( r) d 4 r r r s rlatd to th otntal nrgy for ntracton btwn two chargs as 1 qq U q qbb 4 r hs s th Coulomb ntracton otntal. Mor gnrally, for many chargs, th ntracton nrgy s 1 U q( r) 1 ( ) ( ) d r r r h factor of ½ s to assur that on dos not doubl count th ntracton btwn two artcls. B 13