Lattice QCD with Eight Degenerate Quark Flavors

Similar documents
Strong Interactions for the LHC

Walking technicolor on the lattice

arxiv: v1 [hep-lat] 2 Nov 2010

Fermions in higher representations. Some results about SU(2) with adjoint fermions.

The Conformal Window in SU(3) Yang-Mills

Bulk Thermodynamics in SU(3) gauge theory

arxiv: v1 [hep-lat] 12 Nov 2014

The Sextet Model Conformal Symmetry vs. Chiral Symmetry Breaking. Martin Hansen Claudio Pica, Vincent Drach, Ari Hietanen, Francesco Sannino

The high temperature transition and the (quasi)conformal behaviour Albert Deuzeman, MPL, Kohtaroh Miura, Elisabetta Pallante

STRONG INTERACTIONS WITH MANY FLAVORS

Lattice QCD. QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1

arxiv: v1 [hep-lat] 26 Dec 2009

The Phases of QCD in the T, N f Plane

Isospin and Electromagnetism

The phase diagram of QCD from imaginary chemical potentials

Confining and conformal models

Thermodynamics using p4-improved staggered fermion action on QCDOC

Wilson Fermions with Four Fermion Interactions

arxiv: v1 [hep-lat] 5 Nov 2018

Chiral symmetry breaking, instantons, and monopoles

Lattice studies of the conformal window

RG scaling at chiral phase transition in two-flavor QCD

QCD thermodynamics with two-flavours of Wilson fermions on large lattices

QCD thermodynamics OUTLINE:

Finite Chemical Potential in N t = 6 QCD

arxiv: v1 [hep-lat] 12 Nov 2009

Walking step by step on the lattice

Michael CREUTZ Physics Department 510A, Brookhaven National Laboratory, Upton, NY 11973, USA

Cascades on the Lattice

The Polyakov Loop and the Eigenvalues of the Dirac Operator

Infrared conformal gauge theory and composite Higgs

Lattice: Field theories beyond QCD

arxiv: v1 [hep-lat] 5 Nov 2007

arxiv:hep-lat/ v1 5 Oct 2006

Realization of Center Symmetry in Two Adjoint Flavor Large-N Yang-Mills

Critical end point of Nf=3 QCD at finite temperature and density

The Equation of State for QCD with 2+1 Flavors of Quarks

Orientifold planar equivalence.

arxiv: v1 [hep-lat] 3 Nov 2009

Nonperturbative infrared fixed point in sextet QCD

PoS(LAT2006)094. The decay constants f B + and f D + from three-flavor lattice QCD

Meson wave functions from the lattice. Wolfram Schroers

LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky

Massimo D Elia Dipartimento di Fisica and INFN Genova, Via Dodecaneso 33, I Genova, ITALY

Gradient flow running coupling in SU(2) with N f = 6 flavors

First results from dynamical chirally improved fermions

Composite Goldstone Dark Matter: Experimental Predictions from the Lattice Hietanen, Ari; Lewis, Randy; Pica, Claudio; Sannino, Francesco

Double poles in Lattice QCD with mixed actions

Strong coupling study of Aoki phase in Staggered-Wilson fermion

Thermal transition temperature from twisted mass QCD

Exploring composite Higgs scenarios with mass-split models

Probing the Chiral Limit in 2+1 flavor Domain Wall Fermion QCD

IR fixed points in SU(3) Gauge Theories

Strongly coupled gauge theories: What can lattice calculations teach us?

Lecture II: Owe Philipsen. The ideal gas on the lattice. QCD in the static and chiral limit. The strong coupling expansion at finite temperature

Large-volume results in SU(2) with adjoint fermions

Thermodynamics of (2+1)-flavor QCD from the lattice

arxiv: v1 [hep-lat] 24 Dec 2008

The kaon B-parameter from unquenched mixed action lattice QCD

Baryon spectroscopy with spatially improved quark sources

Lattice QCD study for relation between quark-confinement and chiral symmetry breaking

arxiv: v1 [hep-lat] 7 Oct 2007

arxiv: v1 [hep-lat] 15 Nov 2013

arxiv: v2 [hep-lat] 23 Dec 2008

Large scale separation and hadronic resonances from a new strongly interacting sector

Physics Letters B 718 (2012) Contents lists available at SciVerse ScienceDirect. Physics Letters B.

Approaching the conformal window: systematic study of the particle spectrum in SU(2) field theory with N f = 2, 4 and 6.

Quark Mass and Flavour Dependence of the QCD Phase Transition. F. Karsch, E. Laermann and A. Peikert ABSTRACT

QCD-like theories at finite density

Chiral restoration and deconfinement in two-color QCD with two flavors of staggered quarks

RG scaling at chiral phase transition! in two-flavor QCD

Possible Color Octet Quark-Anti-Quark Condensate in the. Instanton Model. Abstract

condensates and topology fixing action

Large-N c universality of phases in QCD and QCD-like theories

Phases and facets of 2-colour matter

Dual quark condensate and dressed Polyakov loops

Λ QCD and Light Quarks Contents Symmetries of the QCD Lagrangian Chiral Symmetry and Its Breaking Parity and Handedness Parity Doubling Explicit Chira

Light hadrons in 2+1 flavor lattice QCD

Light pseudoscalar masses and decay constants with a mixed action

arxiv:hep-lat/ v2 18 Jul 2006

Some selected results of lattice QCD

arxiv:hep-lat/ v2 13 Oct 1998

arxiv:hep-ph/ v1 23 Jan 2003 QCD PHASE DIAGRAM AT SMALL DENSITIES FROM SIMULATIONS WITH IMAGINARY µ

arxiv: v1 [hep-lat] 30 Dec 2010

New Frontiers of Lattice Field Theories

arxiv:hep-lat/ v1 13 Sep 1995

QCD in an external magnetic field

Cold and dense QCD matter

PoS(LAT2006)208. Diseases with rooted staggered quarks. Michael Creutz Brookhaven National Laboratory, Upton, NY 11973, USA

arxiv: v1 [hep-lat] 25 Sep 2014

Pseudoscalar Flavor-Singlet Physics with Staggered Fermions

SUNY Stony Brook August 16, Wolfram Weise. with. Thomas Hell Simon Rössner Claudia Ratti

Maria Paola Lombardo GGI Firenze March 2014

Calculation of decay constant using gradient flow, towards the Kaon bag parameter. University of Tsukuba, A. Suzuki and Y.

Critical Temperature and Equation of state from N f = 2 twisted mass lattice QCD

QCD and Instantons: 12 Years Later. Thomas Schaefer North Carolina State

MILC results and the convergence of the chiral expansion

Minimal Walking Technicolor: Phenomenology and Lattice Studies. 1 Introduction and a concrete model

in Lattice QCD Abstract

Transcription:

Lattice QCD with Eight Degenerate Quark Flavors Xiao-Yong Jin, Robert D. Mawhinney Columbia University Lattice 2008

Outline Introduction Simulations and results Preparations Results Conclusion and outlook

Phase diagram [Dennis D. Dietrich, Francesco Sannino, arxiv:hep-ph/0611341v1]

Recent works on the lattice SU(2), 2 flavors in symmetric representation Simon Catterall, Francesco Sannino, arxiv:0705.1664v1 [hep-lat] SU(2), 2 flavors in adjoint representation. Luigi Del Debbio, Agostino Patella, Claudio Pica, arxiv:0805.2058v1 [hep-lat] Running of coupling using Schrodinger functional. Thomas Appelquist, George T. Fleming, Ethan T. Neil, Phys. Rev. Lett. 100, 171607 (2008), (arxiv:0712.0609v2 [hep-ph]) Finite temperature phase transition of 8 flavors using Asqtad. Albert Deuzeman, Maria Paola Lombardo, Elesabetta Pallante, arxiv:0804.2905v2 [hep-lat] And much more in this conference.

Outline Introduction Simulations and results Preparations Results Conclusion and outlook

Algorithm test in 4 flavors Comparison between RHMC and Φ algorithm using naive staggered fermion, Wilson gauge, N f = 4, m q = 0.015, β = 5.4 Algorithm Φ RHMC Plaquette 0.560130(14) 0.560072(30) ψψ 0.0404(1) 0.04105(19) m π 0.3210(40) 0.3191(36) m π2 0.3543(35) 0.361(20) m ρ 0.4763(59) 0.481(10) m ρ2 0.4777(84) 0.459(40) Results of Φ algorithm are from ChengZhong Sui, Ph. D. thesis, Columbia University, 2000.

DBW2 improved gauge action More dynamic flavors on the lattice make the gauge field rougher. DBW2 smooths out the gauge field. DBW2 with naive staggered fermion runs fast.

Effect on taste symmetry breaking Quenched results from M. Cheng, et. al., arxiv:hep-lat/0612030v1. Dark blue symbol is dynamic result from staggered DBW2 action with 2 flavors.

Outline Introduction Simulations and results Preparations Results Conclusion and outlook

Simulation Details β Size m q Trajectories ψψ m ρ r 0 0.58 16 3 32 0.025 1330 2760 0.09973(27) 0.812(11) 4.39(56) 0.015 880 1950 0.06582(13) 0.619(13) 5.05(78) 24 3 32 0.025 1060 3390 0.100381(67) 0.7832(30) 4.126(96) 0.015 960 2930 0.06652(11) 0.6126(28) 5.10(11) 0.56 16 3 32 0.024 970 4920 0.13643(20) 0.9431(38) 3.19(18) 0.016 1040 3730 0.10147(26) 0.803(12) 3.68(15) 24 3 32 0.024 1010 3340 0.13668(14) 0.9693(69) 3.120(48) 0.016 1040 3190 0.10208(12) 0.8085(93) 3.793(97) 0.008 1000 2970 0.06148(16) 0.6022(73) 4.716(92) 0.54 16 3 32 0.03 1010 6220 0.23100(20) 1.258(17) 2.197(52) 0.02 990 5300 0.19646(28) 1.176(19) 2.350(47) 0.01 1030 5520 0.14464(37) 0.993(14) 2.849(51) 24 3 32 0.01 1070 2860 0.14393(39) 1.022(17) 2.830(48) Trajectory length is 0.5 in MD unit. Measurements are done every 10 trajectories. All simulation of lattice size 24 3 32 and some of 16 3 32 are done on NYBlue(BlueGene/L).

Evolution of ψψ, β = 0.58, m q = 0.015 Staggered DBW2, β = 0.58, m q = 0.015, 8 flavors, 16 3 32 ψψ 0.074 0.072 0.07 0.068 0.066 0.064 0.062 0.06 0.058 0.056 ordered start disordered start 0 200 400 600 800 1000 1200 1400 1600 1800 2000

Evolution of ψψ, β = 0.54, m q = 0.01 0.16 0.155 Staggered DBW2, β = 0.54, m q = 0.01, 8 flavors 24 3 32 ordered start 16 3 32 ordered start 16 3 32 disordered start 0.15 ψψ 0.145 0.14 0.135 0.13 0 1000 2000 3000 4000 5000 6000

Heavy quark potential Heavy quark potential measured on ensemble of β = 0.56, m q = 0.008, with lattice size of 24 3 32 2.5 2 V (r) r 0 r 1 1.5 1 0.5 0 2 4 6 8 10 r

r 0 from heavy quark potential 7 6 β = 0.58 β = 0.56 β = 0.54 5 r0 4 3 2 1 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 m q

r 1 from heavy quark potential 4.5 4 β = 0.58 β = 0.56 β = 0.54 3.5 3 r1 2.5 2 1.5 1 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 m q

Chiral condensate Chiral extrapolation 0.3 0.25 β = 0.58 β = 0.56 β = 0.54 0.2 ψψ 0.15 0.1 0.05 0 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 m q

Chiral condensate a 2 dependence Unrenormalized chiral condensate in naive linear extrapolation. 1.45 1.4 1.35 1.3 ψψ r 3 1 1.25 1.2 1.15 1.1 1.05 1 0.95 0 0.05 0.1 0.15 0.2 0.25 0.3 (a/r 1 ) 2

Goldstone Pion mass Chiral extrapolation 0.35 0.3 0.25 β = 0.58 β = 0.56 β = 0.54 0.2 m 2 π 0.15 0.1 0.05 0-0.05 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 m q

Non-Goldstone Pion mass Chiral extrapolation 1.6 1.4 1.2 β = 0.58 β = 0.56 β = 0.54 1 m 2 π 0.8 0.6 0.4 0.2 0-0.2 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 m q Scalar channel of the meson propagators. Corresponds to r σ sσ 123 = 1 + +

Rho mass Chiral extrapolation 1.6 1.4 β = 0.58 β = 0.56 β = 0.54 1.2 1 mρ 0.8 0.6 0.4 0.2 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 m q

Rho mass a 2 dependence mρr1 1.95 1.9 1.85 1.8 1.75 1.7 1.65 1.6 1.55 1.5 1.45 0 0.05 0.1 0.15 0.2 0.25 0.3 (a/r 1 ) 2

Conclusion and outlook Conclusion System behaves as in normal chiral symmetry breaking phase. ψψ obtains non zero value in the chiral limit and continuum limit. Goldstone Pion mass vanishes in the chiral limit. Outlook Deal with chiral logarithms, if high quality results are needed. Investigate rapid transition from β = 0.56 to β = 0.54. Explore into the proposed conformal window (More flavors!).