Ay1 Lecture 15. Large Scale Structure, its Formation and Evolution

Similar documents
Structure Formation and Evolution"

10.1 The Large Scale Velocity Field

Ay 127. Large Scale Structure: Basic Observations, Redshift Surveys, Biasing

9.1 Large Scale Structure: Basic Observations and Redshift Surveys

Astronomy 422. Lecture 15: Expansion and Large Scale Structure of the Universe

8.1 Structure Formation: Introduction and the Growth of Density Perturbations

Large-Scale Structure

Galaxy clusters. Dept. of Physics of Complex Systems April 6, 2018

Chapter 25: Galaxy Clusters and the Structure of the Universe

Galaxies 626. Lecture 3: From the CMBR to the first star

Lecture Outlines. Chapter 25. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc.

Survey of Astrophysics A110

Superclusters...what are they? They are Superfun!

Outline. Walls, Filaments, Voids. Cosmic epochs. Jeans length I. Jeans length II. Cosmology AS7009, 2008 Lecture 10. λ =

Normal Galaxies (Ch. 24) + Galaxies and Dark Matter (Ch. 25) Symbolically: E0.E7.. S0..Sa..Sb..Sc..Sd..Irr

Clusters: Observations

Astronomy 730. Evolution

Astronomy 330 Lecture Dec 2010

The Cosmological Redshift. Cepheid Variables. Hubble s Diagram

Clusters of galaxies

Part two of a year-long introduction to astrophysics:


Large Scale Structure

3. It is expanding: the galaxies are moving apart, accelerating slightly The mystery of Dark Energy

Chapter 25 (and end of 24): Lecture Notes

Cosmology. Introduction Geometry and expansion history (Cosmic Background Radiation) Growth Secondary anisotropies Large Scale Structure

Hubble s Law. Tully-Fisher relation. The redshift. λ λ0. Are there other ways to estimate distances? Yes.

Chapter 9. Cosmic Structures. 9.1 Quantifying structures Introduction

Galaxies and Cosmology

The visible constituents of the Universe: Non-relativistic particles ( baryons ): Relativistic particles: 1. radiation 2.

Clusters of galaxies and the large scale structure of the universe. Gastão B. Lima Neto IAG/USP

Clusters of Galaxies Groups: Clusters poor rich Superclusters:

Big Galaxies Are Rare! Cepheid Distance Measurement. Clusters of Galaxies. The Nature of Galaxies

Clusters of Galaxies Groups: Clusters poor rich Superclusters:

Astro-2: History of the Universe

Campus Observatory. 7pm. you are here

Chapter 23: Dark Matter, Dark Energy & Future of the Universe. Galactic rotation curves

Clusters: Context and Background

Isotropy and Homogeneity

HW#6 is due; please pass it in. HW#7 is posted; it requires you to write out answers clearly and completely explaining your logic.

Active Galaxies and Galactic Structure Lecture 22 April 18th

The Cosmic Microwave Background

Dark Matter. Galaxy Counts Redshift Surveys Galaxy Rotation Curves Cluster Dynamics Gravitational Lenses ~ 0.3 Ω M Ω b.

Dark Matter / Dark Energy

ASTRON 449: Stellar (Galactic) Dynamics. Fall 2014

Lecture Three: Observed Properties of Galaxies, contd.! Hubble Sequence. Environment! Globular Clusters in Milky Way. kpc

The Millennium Simulation: cosmic evolution in a supercomputer. Simon White Max Planck Institute for Astrophysics

Island Universes. Up to 1920 s, many thought that Milky Way encompassed entire universe.

LECTURE 1: Introduction to Galaxies. The Milky Way on a clear night

Galaxies & Introduction to Cosmology

The Merger History of Massive Galaxies: Observations and Theory

n=0 l (cos θ) (3) C l a lm 2 (4)

A5682: Introduction to Cosmology Course Notes. 11. CMB Anisotropy

AST1100 Lecture Notes

Cosmology. Jörn Wilms Department of Physics University of Warwick.

Physical Cosmology 12/5/2017

Galaxy formation and evolution. Astro 850

The Formation and Evolution of Galaxy Clusters

Galaxies. CESAR s Booklet

A5682: Introduction to Cosmology Course Notes. 12. Dark Matter and Structure Formation

AS1001:Extra-Galactic Astronomy. Lecture 3: Galaxy Fundamentals

Dark Matter ASTR 2120 Sarazin. Bullet Cluster of Galaxies - Dark Matter Lab

3/6/12! Astro 358/Spring 2012! Galaxies and the Universe! Dark Matter in Spiral Galaxies. Dark Matter in Galaxies!

Galaxies. The majority of known galaxies fall into one of three major classes: spirals (78 %), ellipticals (18 %) and irregulars (4 %).

Chapter 19 Galaxies. Hubble Ultra Deep Field: Each dot is a galaxy of stars. More distant, further into the past. halo

13.1 Galaxy Evolution: Introduction

24.1 Hubble s Galaxy Classification

Large Scale Structure (Galaxy Correlations)

Major Review: A very dense article" Dawes Review 4: Spiral Structures in Disc Galaxies; C. Dobbs and J Baba arxiv "

Homework 6 Name: Due Date: June 9, 2008

Introduction. How did the universe evolve to what it is today?

Clusters: Context and Background

Cosmic Distance Determinations

Upcoming class schedule

Chapter 15 Galaxies and the Foundation of Modern Cosmology

BROCK UNIVERSITY. Test 2, March 2015 Number of pages: 9 Course: ASTR 1P02 Number of Students: 420 Date of Examination: March 5, 2015

Other Galaxy Types. Active Galaxies. A diagram of an active galaxy, showing the primary components. Active Galaxies

Rupert Croft. QuickTime and a decompressor are needed to see this picture.

Review of Lecture 15 3/17/10. Lecture 15: Dark Matter and the Cosmic Web (plus Gamma Ray Bursts) Prof. Tom Megeath

Two Main Techniques. I: Star-forming Galaxies

Cosmology. Clusters of galaxies. Redshift. Late 1920 s: Hubble plots distances versus velocities of galaxies. λ λ. redshift =

A5682: Introduction to Cosmology Course Notes. 11. CMB Anisotropy

Clusters: Observations

Chapter 23 Lecture. The Cosmic Perspective Seventh Edition. Dark Matter, Dark Energy, and the Fate of the Universe Pearson Education, Inc.

Question 1. Question 2. Correct. Chapter 16 Homework. Part A

OBSERVATIONAL EVIDENCE FOR DARK MATTER AND DARK ENERGY. Marco Roncadelli INFN Pavia (Italy)

The distance modulus in the presence of absorption is given by

Clusters of Galaxies " High Energy Objects - most of the baryons are in a hot (kt~ k) gas." The x-ray luminosity is ergs/sec"

PHY323:Lecture 7 Dark Matter with Gravitational Lensing

A100H Exploring the Universe: Evolution of Galaxies. Martin D. Weinberg UMass Astronomy

3 The lives of galaxies

What HI tells us about Galaxies and Cosmology

What HI tells us about Galaxies and Cosmology

Astronomy 210 Final. Astronomy: The Big Picture. Outline

The Universe o. Galaxies. The Universe of. Galaxies. Ajit Kembhavi IUCAA

Lecture Outlines. Chapter 24. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc.

Clustering of Galaxies in an Expanding Universe IAS School January 26, 2012 Nanyang Technological University Singapore

Physics of the Large Scale Structure. Pengjie Zhang. Department of Astronomy Shanghai Jiao Tong University

Galaxies Guiding Questions

Dark Matter -- Astrophysical Evidences and Terrestrial Searches

Transcription:

Ay1 Lecture 15 Large Scale Structure, its Formation and Evolution

15.1 Large Structure: Basic Observations and Redshift Surveys

Large-Scale Structure Density fluctuations in the early universe evolve into structures we observe: galaxies, clusters, etc. On scales > galaxies, we talk about the Large Scale Structure (LSS); groups, clusters, filaments, walls, voids, superclusters are the elements of it To map and quantify the LSS (and compare with the theoretical predictions), we need redshift surveys: mapping the 3-D distribution of galaxies in the space Redshifts are a measure of distance in cosmology We now have redshifts measured for ~ 2 million galaxies The existence of clusters was recognized early on, but it took a while to recognize that galaxies are not distributed in space uniformly randomly, but in coherent structures

6000 Brightest Galaxies on the Sky How would the picture of the 6000 brightest stars on the sky look?

A View From Our Galaxy in the Near-IR

Our immediate extragalactic neighborhood; extent ~ 2 Mpc The Local Group

The Local Supercluster A ~ 60 Mpc flattened structure, centered on the Virgo cluster; the Local Group is at the outskirts Many other superclusters are known; these are the largest (~ 100 Mpc) structures known to exist

The Nearby Superclusters

The CfA2 Redshift Survey Slices on the sky: long in Right Ascension, thin in Declination Coma cluster: Note the finger of God effect, due to the velocity disp. in the cluster The Great Wall : ~ 100 Mpc structure

Redshift Space vs. Real Space Real space distribution Fingers of God The effect of cluster velocity dispersion Thin filaments The effect of infall Redshift space apparent distrib.

Huge Redshift Surveys The 2dF (2 degree Field) redshift survey done with the 3.9-m Anglo-Australian telescope by a UK/Aus consortium Redshifts of ~ 250,000 galaxies with B < 19.5 mag, covering 5% of the sky reaching to z ~ 0.3 Spectrograph can measure 400 redshifts at a time Also spectra of ~ 25,000 QSOs out to z ~ 2.3 The Sloan Digital Sky Survey (SDSS) done with a dedicated 2.5-m telescope at Apache Point Observatory in New Mexico Multicolor imaging to r ~ 23 mag, and spectra of galaxies down to r < 17.5 mag, reaching to z ~ 0.4, obtaining ~ 600 (now ~ 1,000) spectra at a time, covering ~ 14,000 deg 2 As of 2012 (SDSS III, DR 9): > 900 million detected sources, ~ 1.5 million galaxy spectra, ~ 670,000 stellar spectra, ~ 230,000 quasar spectra (reaching out to z ~ 6.4)

2dF Galaxy Redshift Survey http://www.mso.anu.edu.au/2dfgrs/

SDSS Redshift Survey http://www.sdss.org

Pencil Beam Surveys To probe structure at higher redshifts is generally done with deep pencil beam surveys in small patches of the sky, but going very deep, using big telescopes Original pencil beam surveys done by D. Koo, R. Kron, & collaborators in early 1990 s showed walls showing up at large redshifts The same structure and scale of voids and walls we see locally seems to continue out to z ~ 1 Even deeper surveys done with Keck and VLT of the Hubble Deep Field and several other deep surveys show the same effects These surveys map out evolution of field galaxies and LSS out to z ~ 1-2

Structures in Deep Redshift Surveys DEEP 2 02 hr field red=emission-line black=absorption Spikes in the redshift histogram as line of sight intersects walls or filaments

?

15.2 Quantifying Large scale Structure: Galaxy Correlations and Power Spectrum

Galaxy Distribution and Correlations If galaxies are clustered, they are correlated This is usually quantified using the 2-point correlation function, ξ (r), defined as an excess probability of finding another galaxy at a distance r from some galaxy, relative to a uniform random distribution; averaged over the entire set: dn Usually represented as a power-law: ( ξ r ) dv1 2 ( r) = ρ 1+ ( ) dv 0 ( ) γ For galaxies, typical correlation or clustering length is r 0 ~ 5 h -1 Mpc, and typical slope is γ 1.8, but these are functions of various galaxy properties; clustering of clusters is stronger ξ ( r) = r / r0

Galaxy Correlation Function As measured by the 2dF redshift survey Deviations from the power law:

ξ(r) Brighter galaxies are clustered more strongly than fainter ones Bright This is telling us something about galaxy formation Faint

ξ(r) Redder galaxies (or early-type, ellipticals) are clustered more strongly than bluer ones (or late-type, spirals) That, too, says something about galaxy formation

Power Spectrum of Galaxy Clustering A more modern alternative to the 2-point correlation function is the Fourier Power Spectrum of the galaxy density field The overall density is expressed as a sum of density waves with varying spatial frequencies and amplitudes The power spectrum tells us how much mass is clumped on what spatial scale It can be directly connected to theoretical predictions Power spectrum and the correlation function are a Fourier pair Log P(k) Log (k) < - Wavelength Frequency ->

Images of Structure on Specific Scales Consider a hypothetical case where the density field has fluctuations on some preferred scale, i.e., with a narrow range of frequencies Power Spectra of fluctuations represented in images below: Amplitude or Power Increasing Size Scale Size Scale 5λ * Size Scale 2λ * Size Scale λ *

The Observed Power Spectrum (Tegmark et al.)

Is the Power Spectrum Enough? These two images have identical power spectra (by construction) The power spectrum alone does not capture the phase information: the coherence of cosmic structures (voids, walls, filaments )

?

15.3 The Large Scale Velocity Field

Peculiar Velocities It means velocities of galaxies in addition to their Hubble flow velocities, i.e., relative to their comoving coordinates restframe Note that we can in practice only observe the radial component They act as a noise (on the V = cz axis, and in addition to errors of distances) in the Hubble diagram (velocity vs. distance), and could thus bias the measurements of the cosmological expansion rate V V pec peculiar velocity V pec,rad V Hubble error in distance V total = V Hubble +V pec,rad Distance

Large-Scale Density Field Inevitably Generates a Peculiar Velocity Field The PSCz survey local 3-D density field A galaxy is accelerated towards the nearby large mass concentrations Integrated over the Hubble time, this results in a peculiar velocity The pattern of peculiar velocities should thus reflect the underlying mass density field

CMBR Dipole: The One Peculiar Velocity We Know Very Well We are moving wrt. to the CMB at ~ 620 km/s towards b=27, l=268 This gives us an idea of the probable magnitude of peculiar velocities in the local universe. Note that at the distance to Virgo (LSC), this corresponds to a ~ 50% error in Hubble velocity, and a ~ 10% error at the distance to Coma cluster.

How to Measure Peculiar Velocities? 1. Using distances and residuals from the Hubble flow: V total = V Hubble + V pec = H 0 D + V pec So, if you know relative distances, e.g., from Tully-Fisher, or D n -σ relation, SBF, SNe, you could derive peculiar velocities A problem: distances are seldom known to better than ~10% (or even 20%), multiply that by V Hubble to get the error of V pec Often done for clusters, to average out the errors, but there could be systematic errors - distance indicators may vary in different environments 2. Statistically from a redshift survey Model-dependent

Measuring Peculiar Velocity Field Using a Redshift Survey Assume that galaxies are where their redshifts imply; this gives you a density field You need a model on how the light traces the mass Evaluate the accelerations for all galaxies, and their esimated peculiar velocities Update the positions according to new Hubble velocities Iterate until the convergence You get a consistent density and velocity field

Virgo Infall, and the Motion Towards the Hydra-Centaurus Supercluster

The Flow Continues? The Shapley Concentration of clusters at ~ 200 Mpc, beyond the Hydra-Centaurus may be responsible for at least some of the large-scale bulk flow

Peculiar Velocities: Summary Measurements of peculiar velocities are very, very tricky Use (relative) distances to galaxies + Hubble flow Use a redshift survey + numerical modeling Several general results: We are falling towards Virgo with ~ 300 km/s, and will get there in about 10-15 Gyr Our peculiar velocity dipole relative to CMB originates from within ~ 50 Mpc The LSC is falling towards the Hydra-Centaurus Supercluster, with a speed of up to 500 km/s The whole local ~ 100 Mpc volume may be falling towards a larger, more distant Shappley Concentration (of clusters) The mass and the light seem to be distributed in the same way on large scales (here and now)

?

15. 4 Galaxy Bias and the Evolution of Clustering

Galaxy Biasing Suppose that the density fluctuations in mass and in light are not the same, but Or: (Δρ/ρ) light = b (Δρ/ρ) mass ξ(r) light = b 2 ξ(r) mass Here b is the bias factor. If b = 1, light traces mass exactly (this is indeed the case at z ~ 0, at scales larger than the individual galaxy halos). If b > 1, light is a biased tracer of mass. One possible mechanism for this is if the galaxies form at the densest spots, i.e., the highest peaks of the density field. Then, density fluctuations containing galaxies would not be typical, but rather a biased representation of the underlying mass density field; if 1-σ fluctuations are typical, 5-σ ones certainly are not.

High Density Peaks as Biased Tracers Take a cut through a density field. Smaller fluctuations ride atop of the larger density waves, which lift them up in bunches; thus the highest peaks (densest fluctuations) are a priori clustered more strongly than the average ones: Protocluster Protovoid Thus, if the first galaxies form in the densest spots, they will be strongly clustered, but these will be very special regions.

An Example From a Numerical Simulation All particles 1-σ peaks 2-σ peaks 3-σ peaks Gas/Stars (From an N-body simulation by R. Carlberg) Dark Matter

Galaxy Biasing at Low Redshifts While on average galaxies at z ~ 0 are not biased tracers, there is a dependence on luminosity: the more luminous ones are clustered more strongly, corresponding to higher peaks of the density field. This effect is stronger at higher redshifts. Biasing in the SDSS, Tegmark et al (2004)

Evolution of Clustering Generally, density contrast grows in time, as fluctuations collapse under their own gravity Thus, one generically expects that clustering was weaker in the past (at higher redshifts), and for fainter galaxy samples Amplitude of the angular correlation function on the scale of 1 arcmin, as a function of the survey depth (Coil et al., DEEP survey team)

Evolution of Clustering But at higher redshifts (and fainter/deeper galaxy samples), the trend reverses: stronger clustering at higher redshifts = earlier times! How can that be? The answer is in the evolution of bias (Hubble Deep Field data)

Early Large-Scale Structure: Redshift Spikes in Very Deep Surveys Strong clustering of young galaxies is observed at high redshifts (up to z ~ 3-4), apparently as strong as galaxies today This is only possible if these distant galaxies are highly biased - they are high-sigma fluctuations (Steidel, Adelberger, et al.)

Biasing and Clustering Evolution Strength of clustering Higher density (= higher-σ) fluctuations evolve faster 1-σ flucs. 3-σ flucs. 5-σ flucs. redshift At progressively higher redshifts, we see higher density fluctuations, which are intrinsically clustered more strongly Thus the net strength of clustering seems to increase at higher z s

The Evolution of Bias At z ~ 0, galaxies are an unbiased tracer of mass, b ~ 1 But at higher z s, they are progressively ever more biased (Le Fevre et al., VIMOS Survey Team)

?

15.5 Structure Formation: The Growth of Density Perturbations

Structure Formation and Evolution From this (Δρ/ρ ~ 10-6 ) to this (Δρ/ρ ~ 10 +2 ) to this (Δρ/ρ ~ 10 +6 )

Origin of Structure in the Universe Origin and evolution of the structure in the universe (galaxies, large-scale structures) is a central problem in cosmology Structure is generally thought to arise through a growth of density perturbations which originate in the early universe We think they came from quantum fluctuations in the scalar field that caused inflation, and were then amplified by the exponential inflation of the universe What do we know about the early structure formation? We see CMB fluctuations with δt/t ~ 10-6 ~ Δρ/ρ, since radiation and baryons are coupled before recombination High-z objects: We observe galaxies and quasars at z > 6. A galaxy requires an overdensity of ~ 10 6 relative to the mean

A Cosmic Cube Simulation by A. Kravtsov

How Long Does It Take? The (dissipationless) gravitational collapse timescale is on the order of the free-fall time, t ff : R The outermost shell has acceleration g = GM/R 2 It falls to the center in: t ff = (2R/g) 1/2 = (2R 3 /GM) 1/2 (2/Gρ) 1/2 Thus, low density lumps collapse more slowly than high density ones. More massive structures are generally less dense, take longer to collapse. For example: For a galaxy: t ff ~ 600 Myr (R/50kpc) 3/2 (M/10 12 M ) -1/2 For a cluster: t ff ~ 9 Gyr (R/3Mpc) 3/2 (M/10 15 M ) -1/2 So, we expect that galaxies collapsed early (at high redshifts), and that clusters are still forming now. This is as observed!

Non-Spherical Collapse Real perturbations will not be spherical. Consider a collapse of an ellipsoidal overdensity: The expansion turns into collapse along the shortest axis first Perturbation first forms a pancake Then forms filaments Then forms clusters Then along the intermediate axis Then along the longest axis This kinds of structures are seen both in numerical simulations of structure formation and in galaxy redshift surveys

Dark Matter and Damping of Fluctuations Different types of dark matter form structure differently Baryonic dark matter is coupled to radiation, so it does not help in forming structure prior to the recombination Fluctuations can be erased or damped by sound waves (this is also called the Meszaros effect). This is important for slowly moving DM particles, i.e., cold dark matter (CDM) They can be erased by free streaming of relativistic particles, i.e., hot dark matter (HDM); diffusion of photons, which then drag along the baryons in the radiation-dominated era, does the same thing (this is also called the Silk damping) Thus HDM vs. CDM make very different predictions for the evolution of structure in the universe! In any case, the smaller fluctuations are always erased first

Damping of Fluctuations The primordial (H-Z) spectrum Sound waves diminish the strength of small scale fluc s for the CDM case Relativistic streaming and photon diffusion erase them completely for the HDM case

Structure Formation in the Cold Dark Matter Scenario CDM particles don t diffuse out of small lumps. So lumps exist on all scales, both large and small Small lumps collapse first, big things collapse later. The larger overdensities will incorporate smaller things as they collapse, via merging Structure forms early, and it forms bottom-up Galaxies form early, before clusters, and clusters are still forming now This picture is known as hierarchical structure formation This closely matches what we observe, and also produces the right kind of CMB fluctuations

Cooling and Dissipative Galaxy Formation Pure gravitational infall leads to overdensities of ~ 200 when the virialization is complete That is about right for the clusters of galaxies But galaxies are ~ 10 6 times denser than the mean; that means that they had to collapse by an additional factor of 10+ Therefore, they had to release (dissipate) this excess binding energy. This process is called cooling, and it is what separates galaxies from the large scale structure

?

15.6 Galaxy Clusters

Clusters of Galaxies: Clusters are perhaps the most striking elements of the LSS Typically a few Mpc across, contain ~ 100-1000 luminous galaxies and many more dwarfs, masses ~ 10 14-10 15 M Gravitationally bound, but may not be fully virialized Filled with hot X-ray gas, mass of the gas may exceed the mass of stars in cluster galaxies Dark matter is the dominant mass component (~ 80-85%) Only ~ 10-20% of galaxies live in clusters, but it is hard to draw the line between groups and clusters, and at least ~50% of all galaxies are in clusters or groups Clusters have higher densities than groups, contain a majority of E s and S0 s while groups are dominated by spirals Interesting galaxy evolution processes happen in clusters

The Virgo Cluster: Irregular, relatively poor cluster Distance ~ 16 Mpc, closest to us Diameter ~ 10 on the sky, 3 Mpc ~ 2000 galaxies, mostly dwarfs Galaxy Map

The Coma Cluster Visible light Nearest rich cluster, with >10,000 galaxies Distance ~ 90 Mpc Diameter ~ 4-5 on the sky, 6-8 Mpc X-Ray X-ray / visible overlay

The Perseus Cluster

A Very Distant Cluster 0939+4713 (z = 0.41) Visible (HST) X-Ray (Rosat)

Visible (HST) One of the most distant clusters now known, 1252-2927 (z = 1.24) X-Ray

Surveys for Galaxy Clusters Galaxy clusters contain galaxies, hot gas, and dark matter, and we can search for them through each of these components 1. Optical: Look for overdensities of galaxies on the sky Could use colors for an additional selection Disadvantage: vulnerable to projection effects 2. X-Ray: Clusters contain hot gas, and are prominent X-ray sources Much less vulnerable to accidental projection effects 3. Sunyaev-Zeldovich effect: Distortion of the CMB due to photons scattering off electrons in the cluster Advantage: redshift independent, can see clusters far away 4. Weak Gravitational Lensing: look for systematic distortions in background galaxy images Selection based on mass. Difficult observationally

Some important trends: Spatial distribution of galaxies: Elliptical-rich and regular clusters: spatial distribution is smooth and symmetric, density increases rapidly towards cluster center Spiral-rich and irregular clusters are not symmetric, little central concentration. Spatial density is ~ uniform Morphological segregation: In spiral-rich clusters, radial distribution of E, SO, Sp galaxies is about the same In Elliptical-rich clusters, relative space density of spirals decreases rapidly to cluster core (morphology-density relation) What does it all mean? Regular, Elliptical-rich clusters have had time to relax and reach dynamic equilibrium Intermediate and Irregular clusters are still in the process of coming together, have not yet reached dynamic equilibrium

Hot X-ray Gas in Clusters Some of the gas is primordial, never condensed into galaxies, and heated via shocks as the gas falls into the cluster potential But some must have come from galaxies, expelled by galactic winds, since metallicity is ~ 1/3 Solar Virial equilibrium temperature T ~ 10 7 10 8 K Excellent probe of the cluster gravitational potential, used to measure cluster masses Temperatures are not uniform: hot spots may be due to mergers as clumps of galaxies fell into the cluster, or to energy input by active galactic nuclei There are good correlations between the cluster mass, X-ray luminosity, and temperature

Substructure in the X-Ray Gas High resolution observations with Chandra show that many clusters have substructure in the X-ray surface brightness: hydrodynamical equilibrium is not a great approximation, clusters are still forming Bow shock Filament 1E 0657-56 A 1795

Synyaev-Zeldovich Effect Clusters of galaxies are filled with hot X-ray gas The electrons in the intracluster gas will scatter the background photons from the CMBR to higher energies and distort the blackbody spectrum This is detectable as a slight temperature dip or bump in the radio map of the cluster, against the uniform CMBR background Spectrum distortion Radio map Outgoing CMB photon Incoming CMB photon Galaxy Cluster with hot gas

Virial Masses of Clusters: Virial Theorem for a test particle (a galaxy, or a proton), moving in a cluster potential well: E k = E p / 2 m g σ 2 / 2 = G m g M cl / (2 R cl ) where σ is the velocity dispersion Thus the cluster mass is: M cl = σ 2 R cl / G Typical values for clusters: σ ~ 500-1500 km/s R cl ~ 3-5 Mpc Thus, typical cluster masses are M cl ~ 10 14-10 15 M The typical cluster luminosities (~ 100-1000 galaxies) are L cl ~ 10 12 L, and thus (M/L) ~ 200-500 in solar units Lots of dark matter!

Dark Matter and X-Ray Gas in Cluster Mergers: The Bullet Cluster (1E 0657-56) The dark matter clouds largely pass through each other, whereas the gas clouds collide and get shocked, and lag behind Blue: dark matter, as inferred from weak gravitational lensing (Bradac et al.)

Hydrogen Gas Deficiency As gas-rich galaxies (i.e., spirals) fall into clusters, their cold ISM is ram-pressure stripped by the cluster X-ray gas Thus, evolution of disk galaxies can be greatly affected by their largescale environment Gaseous disks of spirals are much smaller closer to the Virgo cluster center +

Intracluster Light Probably caused by galaxy-galaxy or galaxy-cluster potential tidal interactions, which do not result in outright mergers Diffuse light in Virgo Mihos et al.

?