Entanglement of indistinguishable particles

Similar documents
Quantum metrology from a quantum information science perspective

Quantum Fisher information and entanglement

Entanglement detection close to multi-qubit Dicke states in photonic experiments (review)

Extremal properties of the variance and the quantum Fisher information; Phys. Rev. A 87, (2013).

arxiv: v2 [quant-ph] 8 Jul 2014

Quantum entanglement and its detection with few measurements

arxiv: v2 [quant-ph] 16 Sep 2014

Quantum estimation for quantum technology

arxiv: v4 [quant-ph] 21 Oct 2014

Introduction to entanglement theory & Detection of multipartite entanglement close to symmetric Dicke states

Quantum metrology with Dicke squeezed states

Physics Reports 509 (2011) Contents lists available at SciVerse ScienceDirect. Physics Reports

Towards quantum metrology with N00N states enabled by ensemble-cavity interaction. Massachusetts Institute of Technology

Nonlinear Quantum Interferometry with Bose Condensed Atoms

Estimation of Optimal Singlet Fraction (OSF) and Entanglement Negativity (EN)

A complete criterion for convex-gaussian states detection

THE INTERFEROMETRIC POWER OF QUANTUM STATES GERARDO ADESSO

PHY305: Notes on Entanglement and the Density Matrix

Witnessing Genuine Many-qubit Entanglement with only Two Local Measurement Settings

IMPROVED QUANTUM MAGNETOMETRY

Classical and quantum simulation of dissipative quantum many-body systems

Estimating entanglement in a class of N-qudit states

Universality of the Heisenberg limit for phase estimation

BOGOLIUBOV TRANSFORMATIONS AND ENTANGLEMENT OF TWO FERMIONS

Quantum Fisher Information. Shunlong Luo Beijing, Aug , 2006

Permutationally invariant quantum tomography

Introduction to Quantum Information Hermann Kampermann

Non-Markovian Quantum Dynamics of Open Systems: Foundations and Perspectives

A tutorial on non-markovian quantum processes. Kavan Modi Monash University Melbourne, Australia

ΑΒΓΔΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΩ αβγδεζηθικλμνξοπρςστυφχψω +<=>± ħ

Introduction to Quantum Mechanics

arxiv: v2 [quant-ph] 2 Aug 2013

Finite temperature form factors in the free Majorana theory

Quantum Memory with Atomic Ensembles

Entanglement witnesses

Entanglement of Identical Particles

Quantum Computing Lecture 3. Principles of Quantum Mechanics. Anuj Dawar

Angular Momentum set II

Bose Description of Pauli Spin Operators and Related Coherent States

Quantum mechanics in one hour

S.K. Saikin May 22, Lecture 13

arxiv: v1 [quant-ph] 19 Oct 2016

Many-Body Coherence in Quantum Thermodynamics

Quantum Metric and Entanglement on Spin Networks

Tutorial: Statistical distance and Fisher information

Representations of angular momentum

Algebraic Theory of Entanglement

Single-Mode Displacement Sensor

Emergence of the classical world from quantum physics: Schrödinger cats, entanglement, and decoherence

arxiv: v1 [quant-ph] 16 Jan 2009

Shunlong Luo. Academy of Mathematics and Systems Science Chinese Academy of Sciences

arxiv: v1 [quant-ph] 31 Oct 2011

Postulates of Quantum Mechanics

Susana F. Huelga. Dephasing Assisted Transport: Quantum Networks and Biomolecules. University of Hertfordshire. Collaboration: Imperial College London

MP 472 Quantum Information and Computation

Quantum Parameter Estimation: From Experimental Design to Constructive Algorithm

arxiv:quant-ph/ v1 14 Mar 2001

Chapter 5. Density matrix formalism

ENTANGLEMENT TRANSFORMATION AT ABSORBING AND AMPLIFYING DIELECTRIC FOUR-PORT DEVICES

Open Quantum Systems. Sabrina Maniscalco. Turku Centre for Quantum Physics, University of Turku Centre for Quantum Engineering, Aalto University

Multipartite entanglement in fermionic systems via a geometric

Coherence, Discord, and Entanglement: Activating one resource into another and beyond

Homework assignment 3: due Thursday, 10/26/2017

Lecture 19 (Nov. 15, 2017)

Quantum Entanglement- Fundamental Aspects

Quantization of the Spins

1 Quantum field theory and Green s function

d 3 r d 3 vf( r, v) = N (2) = CV C = n where n N/V is the total number of molecules per unit volume. Hence e βmv2 /2 d 3 rd 3 v (5)

arxiv:quant-ph/ v5 10 Feb 2003

Attempts at relativistic QM

Many-Body Fermion Density Matrix: Operator-Based Truncation Scheme

Quantum-limited measurements: One physicist's crooked path from quantum optics to quantum information

Consider a system of n ODEs. parameter t, periodic with period T, Let Φ t to be the fundamental matrix of this system, satisfying the following:

0.5 atoms improve the clock signal of 10,000 atoms

University of New Mexico

Quantum Linear Systems Theory

2 Canonical quantization

4. Two-level systems. 4.1 Generalities

Quantum superpositions and correlations in coupled atomic-molecular BECs

Ultimate bounds for quantum and Sub-Rayleigh imaging

Path Entanglement. Liat Dovrat. Quantum Optics Seminar

Application of Structural Physical Approximation to Partial Transpose in Teleportation. Satyabrata Adhikari Delhi Technological University (DTU)

Lie algebraic aspects of quantum control in interacting spin-1/2 (qubit) chains

Hong-Ou-Mandel effect with matter waves

Quantum noise studies of ultracold atoms

Valid lower bound for all estimators in quantum parameter estimation

Carlton M. Caves University of New Mexico

b) (5 points) Give a simple quantum circuit that transforms the state

arxiv: v3 [quant-ph] 17 Nov 2014

Interferometria atomica con un Condensato di Bose-Einstein in un potenziale a doppia buca

Learning about order from noise

Single-Particle Interference Can Witness Bipartite Entanglement

ψ s a ˆn a s b ˆn b ψ Hint: Because the state is spherically symmetric the answer can depend only on the angle between the two directions.

MESOSCOPIC QUANTUM OPTICS

Quantum Mechanics: Fundamentals

Coherent states, beam splitters and photons

Quantum Fisher Information: Theory and Applications

Matrix Product States

Bose Gases, Bose Einstein Condensation, and the Bogoliubov Approximation

PHYS851 Quantum Mechanics I, Fall 2009 HOMEWORK ASSIGNMENT 10: Solutions

Transcription:

Entanglement of indistinguishable particles Fabio Benatti Dipartimento di Fisica, Università di Trieste QISM Innsbruck -5 September 01

Outline 1 Introduction Entanglement: distinguishable vs identical qubits 3 Quantum metrology: cold atom interferometry 4 Summary F.B., R. Floreanini, U. Marzolino: Ann. Phys. 35 (010) F.B., R. Floreanini, U. Marzolino: JPB 44 (011) G. Argentieri, F.B., R. Floreanini, U. Marzolino: IJQI 9 (011) F.B., R. Floreanini, U. Marzolino: Ann. Phys. 37 (01) F.B., R. Floreanini, U. Marzolino: PRA 85 (01)

Entanglement of Identical Particles From particle entanglement to mode entanglement

Entanglement of Identical Particles From particle entanglement to mode entanglement Identical versus Indistinguishable qubits Single qubit states out of the vacuum 0 : a 0 = 1, b 0 = Two qubits: H = C C i, j, i, j = 1, Two -mode Bosons: Hilbert space H () symm = C 3 1, 1 = (a ) 0,, = (b ) 0 1, +, 1 = a b 0

Spatial modes a 0 = 1 : one Boson in the left well b 0 = : one Boson in the right well Figure: Double-Well Potential Figure: Left and Right localized states

N -mode Bosons: pseudo-spins Total Boson number: a a + b b = N

N -mode Bosons: pseudo-spins Total Boson number: a a + b b = N Schwinger representation: J x = a b + a b, J y = a b a b i, J z = a a b b Pseudo total angular angular momentum: [J x, J y ] = ij z

N -mode Bosons: pseudo-spins Total Boson number: a a + b b = N Schwinger representation: J x = a b + a b, J y = a b a b i, J z = a a b b Pseudo total angular angular momentum: [J x, J y ] = ij z N standard qubits: N J = j k = Spin Squeezing Inequalities (SSI) k=1 satisfied by fully separable states

N -mode Bosons: pseudo-spins Total Boson number: a a + b b = N Schwinger representation: J x = a b + a b, J y = a b a b i, J z = a a b b Pseudo total angular angular momentum: [J x, J y ] = ij z N standard qubits: N J = j k = Spin Squeezing Inequalities (SSI) k=1 satisfied by fully separable states N -mode Bosons: single particle angular moment not accessible Mode-separable states may violate some SSI

Mode richer structure From Spatial modes to Energy modes Bogolubov transformation: c = a + b, d = a b Single particle energy eigenstates g = d 0 = 1 e = c 0 = 1 + Figure: Ground and first excited states

N distinguishable qubits: separability N distinguishable qubits: natural tensor product structure of single particle Hilbert spaces: N j=1 of single particle algebras: N j=1 M ( ) fully separable states: ρ = k λ k N j=1 Ψk j Ψk j

N distinguishable qubits: separability N distinguishable qubits: natural tensor product structure of single particle Hilbert spaces: N j=1 of single particle algebras: N j=1 M ( ) fully separable states: ρ = k λ k N j=1 Ψk j Ψk j Local operators: tensor products of single qubit operators Total spin operator All rotations are local: J = N j=1 σ j, σ j = (σ jx, σ jy, σ jz ) e iθ J n = N e i θ σj n = e i θ σ1 n e i θ σ n e i θ σ N n j=1

Separability: identical Bosons No natural tensor product structure Only projections onto symmetrized vector states are allowed 1, +, 1 two-mode Bosonic vector states: 1, 1,,,

Separability: identical Bosons No natural tensor product structure Only projections onto symmetrized vector states are allowed 1, +, 1 two-mode Bosonic vector states: 1, 1,,, Bosonic states are not obtainable by symmetrizing density matrices of distinguishable qubits symmetric states ρ ρ not allowed in general: asym ρ ρ asym = Det(ρ) 0, asym = 1,, 1

Separability: identical Bosons No natural tensor product structure Only projections onto symmetrized vector states are allowed 1, +, 1 two-mode Bosonic vector states: 1, 1,,, Bosonic states are not obtainable by symmetrizing density matrices of distinguishable qubits symmetric states ρ ρ not allowed in general: asym ρ ρ asym = Det(ρ) 0, asym = 1,, 1 How to proceed?

Separability: identical Bosons No natural tensor product structure Only projections onto symmetrized vector states are allowed 1, +, 1 two-mode Bosonic vector states: 1, 1,,, Bosonic states are not obtainable by symmetrizing density matrices of distinguishable qubits symmetric states ρ ρ not allowed in general: asym ρ ρ asym = Det(ρ) 0, asym = 1,, 1 How to proceed? Associate locality with commutativity in a second quantized context Zanardi: PRA 65 (00), Narnhofer: PLA 310 (004) Barnum et al., PRL 9 (004)

Locality: commuting sub-algebras Commuting sub-algebras qubits: local (single-particle) algebras commute [ ] A 1, 1 B = 0, A B M (C) M (C)

Locality: commuting sub-algebras Commuting sub-algebras qubits: local (single-particle) algebras commute [ ] A 1, 1 B = 0, A B M (C) M (C) -mode Bosons: single particle Hilbert space C { 1, } creation and annihilation operators: a, a ; b, b [a, a ] = [b, b ] = 1, [a, b] = 0 Commuting sub-algebras: A = {a, a }, B = {b, b }, [A, B] = 0

Indistinguishable particles: local operators Definition An observable X is (A, B) local iff X = AB A A, B B

Indistinguishable particles: local operators Definition An observable X is (A, B) local iff X = AB A A, B B Example pseudo angular momentum operators: J x = a b + a b (A, B)-non-local rotations:, J y = a b a b i, J z = a a b b (A, B)-local rotation: e i θ Jx = e i θ (a b+a b ), e i θ Jy = e θ (a b a b) e i θ Jz = e i θ a a e i θ b b

Bogolubov transformations c = a + b, d = a b turns (A, B)-local rotations into (C, D)-non-local rotations e i θ Jz = e i θ (c d + d c)

Separability of Bosonic states Definition: Bosonic separable states States ρ on the -mode Boson algebra are (A, B)-separable iff Tr(ρ AB) = ( )( ) p i Tr(ρ (a) i A) Tr(ρ (b) i B), i for all A A, B B, ρ (a,b) i states on the -mode Boson algebra

Separability of Bosonic states Definition: Bosonic separable states States ρ on the -mode Boson algebra are (A, B)-separable iff Tr(ρ AB) = ( )( ) p i Tr(ρ (a) i A) Tr(ρ (b) i B), i for all A A, B B, ρ (a,b) i Example Fock number states: A A, B B: states on the -mode Boson algebra a a n a, n b = n a n a, n b, b b n a, n b = n b n a, n b n a, n b AB n a, n b = n a, n b A n a, n b n a, n b B n a, n b

Theorem ρ is a (A, B) separable state for N -mode Bosons iff ρ sep N A,B = p k k, N k A,B k, N k k=0 (F.B., R. Floreanini, U. Marzolino: Ann. Phys. 35 (010))

Example Fock number states: k, N k A,B = (a ) k (b ) (N k) k!(n k)! 0 (A, B)-local and separable

Example Fock number states: k, N k A,B = (a ) k (b ) (N k) k!(n k)! 0 (A, B)-local and separable Bogulobov rotate the nodes: k, N k A,B = ) k ) N k ( 1 ) N (c d (c + d 0 k!(n k)! (C, D) non-local and entangled

Negativity and Entanglement Witnessing Partial transposition on the first mode N N ρ = ρ kl k, N k l, N l ρ T1 = ρ kl l, N k k, N l k,l=0 k,l=0

Negativity and Entanglement Witnessing Partial transposition on the first mode ρ = N ρ kl k, N k l, N l ρ T1 = k,l=0 N ρ kl l, N k k, N l k,l=0 ) ( ) ρ Negativity: N(ρ) = ρ T1 1 1, ρ T1 1 = Tr( ρ T1 T 1

Negativity and Entanglement Witnessing Partial transposition on the first mode ρ = N ρ kl k, N k l, N l ρ T1 = k,l=0 N ρ kl l, N k k, N l k,l=0 ) ( ) ρ Negativity: N(ρ) = ρ T1 1 1, ρ T1 1 = Tr( ρ T1 T 1 (ρ T1 ) ρ T1 = k,l ρ kl k, N l k, N l ρ T1 1 = k,l ρ kl

Negativity and Entanglement Witnessing Partial transposition on the first mode ρ = N ρ kl k, N k l, N l ρ T1 = k,l=0 N ρ kl l, N k k, N l k,l=0 ) ( ) ρ Negativity: N(ρ) = ρ T1 1 1, ρ T1 1 = Tr( ρ T1 T 1 (ρ T1 ) ρ T1 = k,l ρ kl k, N l k, N l ρ T1 1 = k,l ρ kl N(ρ) = N = k l=0 ρ kl 0 iff ρkl = 0 for all k l

Negativity and Entanglement Witnessing Partial transposition on the first mode ρ = N ρ kl k, N k l, N l ρ T1 = k,l=0 N ρ kl l, N k k, N l k,l=0 ) ( ) ρ Negativity: N(ρ) = ρ T1 1 1, ρ T1 1 = Tr( ρ T1 T 1 (ρ T1 ) ρ T1 = k,l ρ kl k, N l k, N l ρ T1 1 = k,l ρ kl N(ρ) = N = k l=0 ρ kl 0 iff ρkl = 0 for all k l An exhaustive entanglement witness for two-mode Bosons N(ρ) = 0 iff ρ is (A, B)-separable

Spin Squeezing Inequalities SSI: N qubits vs N -mode Bosons Standard qubit entanglement condition Toth et al. PRA 79 (009) J n1 + J n1 N (N 1) J n3 >0 satisfied by (A, B)-separable states ρ = N p k k, N k (A,B) k, N k k=0 for suitable distributions p k. Standard qubit entanglement condition Korbicz et al. PRL 95 (005) N J n + J n < N 4 satisfied by k, N k (A,B), 0 < k < N, n = ẑ

Quantum metrology (Giovannetti et al. Science 306 (004), Phys. Rev. Lett. 96 (006)) Measuring rotation angles on N qubits Rotate an N-qubit density matrix: ρ ρ θ ρ θ = e iθj n 1 ρ e iθj n1 J = N j=1 σ j, σ j = (σ jx, σ jy, σ jz ), J n1 = n 1 J Measure J n, n n 1 and estimate θ with sensitivity δθ

Quantum metrology (Giovannetti et al. Science 306 (004), Phys. Rev. Lett. 96 (006)) Measuring rotation angles on N qubits Rotate an N-qubit density matrix: ρ ρ θ ρ θ = e iθj n 1 ρ e iθj n1 J = N j=1 σ j, σ j = (σ jx, σ jy, σ jz ), J n1 = n 1 J Measure J n, n n 1 and estimate θ with sensitivity δθ Shot Noise: Sub-shot Noise: δ θ = 1 N δ θ < 1 N Heisenberg Limit: δ θ = 1 N

Quantum Estimation and Fisher Information Quantum Fisher information (Paris, I.J.Q.I. 7 (009)) Rotation: ρ ρ θ = e iθj n ρ e iθj n Unbiased quantum estimator Ê: δ ρ θ = Tr ( ρ (Ê θ)) Quantum Fisher Information: ( F[ρ, J n ] = Tr ρ L ) θ=0, θ ρ θ = 1 ( ) [ ] ρ L + L ρ = i J n, ρ

Quantum Estimation and Fisher Information Quantum Fisher information (Paris, I.J.Q.I. 7 (009)) Rotation: ρ ρ θ = e iθj n ρ e iθj n Unbiased quantum estimator Ê: δ ρ θ = Tr ( ρ (Ê θ)) Quantum Fisher Information: ( F[ρ, J n ] = Tr ρ L ) θ=0, θ ρ θ = 1 ( ) [ ] ρ L + L ρ = i J n, ρ Quantum Cramer-Rao bound: δ ρ θ 1 F[ρ, J n ]

Quantum Estimation and Fisher Information Quantum Fisher information (Paris, I.J.Q.I. 7 (009)) Rotation: ρ ρ θ = e iθj n ρ e iθj n Unbiased quantum estimator Ê: δ ρ θ = Tr ( ρ (Ê θ)) Quantum Fisher Information: ( F[ρ, J n ] = Tr ρ L ) θ=0, θ ρ θ = 1 ( ) [ ] ρ L + L ρ = i J n, ρ Quantum Cramer-Rao bound: δ ρ θ 1 F[ρ, J n ] pure states: F[Ψ, J n ]= 4 Ψ J n

Quantum Estimation and Fisher Information Quantum Fisher information (Paris, I.J.Q.I. 7 (009)) Rotation: ρ ρ θ = e iθj n ρ e iθj n Unbiased quantum estimator Ê: δ ρ θ = Tr ( ρ (Ê θ)) Quantum Fisher Information: ( F[ρ, J n ] = Tr ρ L ) θ=0, θ ρ θ = 1 ( ) [ ] ρ L + L ρ = i J n, ρ Quantum Cramer-Rao bound: δ ρ θ 1 F[ρ, J n ] pure states: F[Ψ, J n ]= 4 Ψ J n convexity: ρ = j λ j Ψ j Ψ j : F[ρ, J n ] j λ j F[Ψ j, J n ]

QFI and Metrology QFI and separability: N standard qubits Fully separable N-qubit states: ρ N sep = k λ k Ψ N k Ψ N k, Ψ N k = N ψj k j=1

QFI and Metrology QFI and separability: N standard qubits Fully separable N-qubit states: ρ N sep = k λ k Ψ N k Ψ N k, Ψ N k = N ψj k j=1 From convexity (Pezzé, Smerzi, PRL (10)): F[ρ N sep, J n] j λ j F[Ψ N j, J n ] =4 j λ j J Ψ N n j

QFI and Metrology QFI and separability: N standard qubits Fully separable N-qubit states: ρ N sep = k λ k Ψ N k Ψ N k, Ψ N k = N ψj k j=1 From convexity (Pezzé, Smerzi, PRL (10)): F[ρ N sep, J n] j λ j F[Ψ N j, J n ] =4 j λ j J Ψ N n j Fully separable vector state Ψ FS : Ψ FS J n N 4 Fully separable mixed state ρ N FS : F[ρ N FS, J n ] N

Entanglement necessary to beat the shot-noise limit Quantum Cramer-Rao bound δ ρθ 1 F[ρ, J n ] In order to have necessarily 1 F[ρ, J n ] δ ρθ< 1 N F[ρ, J n ] > N

Cold atom interferometry Mach-Zehnder interferometry with ultracold atoms C. Gross et al., M.F. Riedel et al.: Nature 464 (010) N ultracold atoms trapped by a double-well potential as pseudo qubits via the Schwinger representation J x = a b + a b, J y = a b a b i, J z = a a b b If they were standard quits the locality of rotations would require entangled input states However, trapped cold atoms are Bosons: single angular momenta not accessible rotations not necessarily local

Beating the shot-noise limit with Bosons Quantum Fisher Information (A, B)-separable Fock states: k, N k A,B : n = (n x, n y, 0), ] F [ k, N k A,B, J n = 4 k,n k A,B J n = N ( k + 1) k > N k 0, N

Beating the shot-noise limit with Bosons Quantum Fisher Information (A, B)-separable Fock states: k, N k A,B : n = (n x, n y, 0), ] F [ k, N k A,B, J n = 4 k,n k A,B J n = N ( k + 1) k > N k 0, N Getting close to the Heisenberg limit F[ρ, J n ] = N : ] N/, N/ A,B = F [ N/, N/ A,B, J n = N + N (F.B., R. Floreanini, U. Marzolino: J. Phys. B 44 (011))

Non-locality from the apparatus Sub-shot noise with (A, B)-separable states: How?

Non-locality from the apparatus Sub-shot noise with (A, B)-separable states: How? The interferometer is (A, B)-non-local Take n = (0, 1, 0): ρ ρ θ = exp(i θ J y )ρ exp( i θ J y ) J y = a b a b i = exp(i θ J y ) (A, B) non-local

Non-locality from the apparatus Sub-shot noise with (A, B)-separable states: How? The interferometer is (A, B)-non-local Take n = (0, 1, 0): ρ ρ θ = exp(i θ J y )ρ exp( i θ J y ) J y = a b a b i = exp(i θ J y ) (A, B) non-local Theorem If the state (A, B)-separable and the apparatus (A, B)-local then [ ] F ρ sep (A,B), J A + J B = 0 FB, D. Braun: submitted to PRA

Entangling noise (A, B)-dephasing noise Lindblad master equation: ( t ρ(t) = γ J z ρ(t)j z 1 { }) Jz, ρ(t) Solution: mixture of (A, B)-local operations ρ(t) = 1 π + Exponential decay of (A, B)-entanglement: du e u /4 e i tγ/ u J z ρ e +i tγ/ u J z N A,B (ρ(t)) = k l e tγ(k l) / ρ kl e tγ/ N A,B (ρ)

(C, D)-entangling noise Initial (C, D)-separable state: State at time t > 0: ρ(t) = 1 π + (c ) N N! 0 = N, 0 C,D du e u /4 e i tγ/ u J z N, 0 C,D N, 0 e i tγ/ u J z e i tγ/ u J z N, 0 C,D = 1 ( ξt c + i (1 ξ t )d ) N 0 N! ) tγ ξ t = cos (u ρ(t) (C, D)-entangled: ρ(t) = N ρ kl (t) k, N k (C,D) k, N k k,l=0 (G. Argentieri, F.B., R. Floreanini, U. Marzolino: IJQI 9 (011))

QFI and dephasing Can a (C, D)-entangling environment increase QFI? NO

QFI and dephasing Can a (C, D)-entangling environment increase QFI? NO (C, D)-entangling irreversible time-evolution ρ(t) = 1 π + du e u /4 e i tγ/ u J z ρ e +i tγ/ u J z = t [ρ]

QFI and dephasing Can a (C, D)-entangling environment increase QFI? NO (C, D)-entangling irreversible time-evolution ρ(t) = 1 π + du e u /4 e i tγ/ u J z ρ e +i tγ/ u J z = t [ρ] Monotonicity under CPU maps ρ G[ρ]: F[G[ρ], J n ] F[ρ, J n ]

QFI and dephasing Can a (C, D)-entangling environment increase QFI? NO (C, D)-entangling irreversible time-evolution ρ(t) = 1 π + du e u /4 e i tγ/ u J z ρ e +i tγ/ u J z = t [ρ] Monotonicity under CPU maps ρ G[ρ]: F[G[ρ], J n ] F[ρ, J n ] From monotonicity and t = t s s : if 0 s t F[ρ(t), J n ] = F[ t s+s [ρ], J n ] F[ s [ρ], J n ] = F[ρ(s), J n ]

Conclusions Summary

Conclusions Summary Identical particles: mode-dependent entanglement

Conclusions Summary Identical particles: mode-dependent entanglement Algebraic formulation of mode-entanglement: commuting sub-algebras

Conclusions Summary Identical particles: mode-dependent entanglement Algebraic formulation of mode-entanglement: commuting sub-algebras Double-well interferometry with BECs: shot-noise limit beaten by mode separable states

Conclusions Summary Identical particles: mode-dependent entanglement Algebraic formulation of mode-entanglement: commuting sub-algebras Double-well interferometry with BECs: shot-noise limit beaten by mode separable states Physical origin: non-local action of the interferometer

Conclusions Summary Identical particles: mode-dependent entanglement Algebraic formulation of mode-entanglement: commuting sub-algebras Double-well interferometry with BECs: shot-noise limit beaten by mode separable states Physical origin: non-local action of the interferometer Noise can destroy as well as create mode-entanglement

Conclusions Summary Identical particles: mode-dependent entanglement Algebraic formulation of mode-entanglement: commuting sub-algebras Double-well interferometry with BECs: shot-noise limit beaten by mode separable states Physical origin: non-local action of the interferometer Noise can destroy as well as create mode-entanglement The noise-generated entanglement is not metrologically useful