AY120A,B CHEAT-SHEET FOR SPHERICAL COORDINATE TRANSFORMATION

Similar documents
Transforming from Geographic to Celestial Coordinates

These notes may contain copyrighted material! They are for your own use only during this course.

Understanding Positional Astronomy Part 2 Celestial Co-ordinates Difficulty: Intermediate

Math101, Sections 2 and 3, Spring 2008 Review Sheet for Exam #2:

Exercise 1.0 THE CELESTIAL EQUATORIAL COORDINATE SYSTEM

Selecting an Observing Target

Ay 1 Lecture 2. Starting the Exploration

ASTRONOMICAL COORDINATE SYSTEMS CELESTIAL SPHERE

Celestial Sphere Spectroscopy (Something interesting; e.g., advanced data analyses with IDL)

Astronomical coordinate systems. ASTR320 Monday January 22, 2018

Basics of Proofs. 1 The Basics. 2 Proof Strategies. 2.1 Understand What s Going On

Lecture 10: Powers of Matrices, Difference Equations

PHYSICS 1030 Homework #9

Math 121 (Lesieutre); 9.1: Polar coordinates; November 22, 2017

1 Continuity and Limits of Functions

Due to the fact that we are hurrying to get on the telescope this Tuesday, we will postpone the writing of a formal proposal.

PROBLEM SET #1. Galactic Structure 37 pts total. due Tuesday, 2/19/2019

Page 1. These are all fairly simple functions in that wherever the variable appears it is by itself. What about functions like the following, ( ) ( )

PHYSICS 1030 Homework #9

Mounts and Coordinate Systems

Students will explore Stellarium, an open-source planetarium and astronomical visualization software.

An analogy from Calculus: limits

Coordinate Systems for Astronomy or: How to get your telescope to observe the right object

Math 3361-Modern Algebra Lecture 08 9/26/ Cardinality

The Haar Wavelet Transform: Compression and. Reconstruction

Partial Fractions. June 27, In this section, we will learn to integrate another class of functions: the rational functions.

Introduction to Algebra: The First Week

CHARTING THE HEAVENS USING A VIRTUAL PLANETARIUM

EOS 102: Dynamic Oceans Exercise 1: Navigating Planet Earth

CELESTIAL COORDINATES

Honors Advanced Mathematics Determinants page 1

Lab 2 Working with the X-Band Interferometer

Take the Anxiety Out of Word Problems

Please bring the task to your first physics lesson and hand it to the teacher.

Meridian Circle through Zenith, North Celestial Pole, Zenith Direction Straight Up from Observer. South Celestial Pole

Sequences and infinite series

One-to-one functions and onto functions

Quadratic Equations Part I

[Disclaimer: This is not a complete list of everything you need to know, just some of the topics that gave people difficulty.]

Areas on the Sphere and HEALPix

Numerical Methods Lecture 2 Simultaneous Equations

Astronomy 153 & 154 Lab 2 Excel, Units and Conversions + Angles and Coordinates

MATH 310, REVIEW SHEET 2

Student Activity: Finding Factors and Prime Factors

Row Reduction

Properties of Arithmetic

8. TRANSFORMING TOOL #1 (the Addition Property of Equality)

( )( b + c) = ab + ac, but it can also be ( )( a) = ba + ca. Let s use the distributive property on a couple of

Questions for Today s Class?

Unary negation: T F F T

Finding Limits Graphically and Numerically

5.2 Infinite Series Brian E. Veitch

Experiment #4: Optical Spectrometer and the Prism Deviation

USING YOUR FIELD GUIDE AND STAR CHARTS PRELAB

Maths Pack. Distance Learning Mathematics Support Pack. For the University Certificates in Astronomy and Cosmology

Welcome to Astronomy 402/602

Ratios, Proportions, Unit Conversions, and the Factor-Label Method

MA103 STATEMENTS, PROOF, LOGIC

MITOCW ocw-18_02-f07-lec02_220k

Volume in n Dimensions

Hypothesis testing I. - In particular, we are talking about statistical hypotheses. [get everyone s finger length!] n =

Topic Guide: The Celestial Sphere. GCSE (9-1) Astronomy. Pearson Edexcel Level 1/Level 2 GCSE (9-1) in Astronomy (1AS0)

Local Coordinates. These are centered upon you, the observer.

Chapter Usual types of questions Tips What can go ugly. and, common denominator will be

Lesson 8: Velocity. Displacement & Time

Modern Navigation. Thomas Herring

Chapter 06: Analytic Trigonometry

Chapter 1 Review of Equations and Inequalities

Natural deduction for truth-functional logic

Electron Counting. It s easier to show than to explain, I think.

1 Determination of the Orbit of a Minor Planet Using 3 Observations

Descriptive Statistics (And a little bit on rounding and significant digits)

Chapter 3 ALGEBRA. Overview. Algebra. 3.1 Linear Equations and Applications 3.2 More Linear Equations 3.3 Equations with Exponents. Section 3.

5.2 Proving Trigonometric Identities

Logarithms and Exponentials

=.55 = = 5.05

AP Physics 1 Summer Assignment

Time, coordinates and how the Sun and Moon move in the sky

Lesson 21 Not So Dramatic Quadratics

COMPUTER ACTIVITY 3: THE SEASONS: LENGTH OF THE DAY

Astronomy Using scientific calculators

Geostationary Satellites and Astrophotography

Introduction in Computational Astronomy Building a Space Simulator

Knots, Coloring and Applications

Algebra & Trig Review

Assignment #12 The Milky Way

Mathematics for Graphics and Vision

Solving with Absolute Value

CHAPTER 7: TECHNIQUES OF INTEGRATION

PARALLAX AND PROPER MOTION

LAB 8: INTEGRATION. Figure 1. Approximating volume: the left by cubes, the right by cylinders

30. TRANSFORMING TOOL #1 (the Addition Property of Equality)

Introduction To Astronomy Lesson 1

Astro Navigation (i.e. Celestial Navigation)

Physics 6A Lab Experiment 6

ARE211, Fall2012. Contents. 2. Linear Algebra (cont) Vector Spaces Spanning, Dimension, Basis Matrices and Rank 8

For those who want to skip this chapter and carry on, that s fine, all you really need to know is that for the scalar expression: 2 H

ASTRONOMICAL NAVIGATION

Week 2: Defining Computation

A Review of Coordinates

Transcription:

AY120A,B CHEAT-SHEET FOR SPHERICAL COORDINATE TRANSFORMATION Carl Heiles In our never-ending attempt to make your life easier, we present you with the quickest of quick summaries of spherical coordinate transformation with matrix techniques. For example, you might need to point the telescope at some particular position in the Galaxy. In other words, you need to convert from Galactic coordinates to altitude and azimuth. This involves three separate coordinate transformations: Galactic longitude and latitude to equatorial right ascension and declination [(l,b) (α,δ)]; to hour angle and declination [(α,δ) (ha,δ)]; to azimuth and altitude [(ha,δ) (az,alt)]. Or maybe you need to go all or partway in the the other direction, i.e. [(az,alt) [(α,δ)] or maybe just [(az,alt) [(ha,δ)]. These are conversions among four spherical coordinate systems. Such conversions involve all those complicated combinations of trig functions (sigh). You can write down all these trig functions for the various possible transformation twelve possibilities in all if you include going both directions. But there is a much easier, more elegant, and more politically correct way: using rotation matrices. In this method, you generate a vector in the original coordinate system; convert the vector to another coordinate system by rotating the coordinates using matrix multiplication; and convert the vector to the angles of the new coordinate system. There are two big advantages with this method. First, you can apply several transformations in succession by multiplying the rotation matrices in succession, so you break the process down into single transformations, each with its own rotation matrix. Second, it s easy to go backwards you just use the inverse of the matrix. The method is general and can be applied to any coordinate transformation. Spherical coordinates are characterized by two angles. One goes around the z-axis it is like longitude on the earth. The other goes up and down and is like latitude on the earth. These angles are longitudelike and latitude-like, and we ll denote them by long and lat. Thus, for Galactic coordinates, l is the longitude-like long and b is the latitude-like lat; for equatorial coordinates, it s α (or ha) and δ; for terrestrial coordinates, it s az and alt. One more thing before we get into details. Our discussion is oriented towards astronomy, but the method works for any type of spherical coordinate transformation. There is an excellent, short discussion of the general situation in Goldstein s Classical Mechanics, 4.4; we include a copy of these 3 pages as an attachment at the end.

2 1. ROTATION MATRICES: THE METHOD To restate the problem: we start with (long,lat) in one coordinate system and want to convert to (long,lat ) in some other coordinate system. Here s the prescription: Step 1. First, convert the angles to rectangular coordinates. One would usually call these (x,y,z); here, to emphasize the vector/matrix flavor, we call them (x 0,x 1,x 2 ) and denote the 3-element vector x. To accomplish this conversion: x 0 = cos(lat)cos(long), x 1 = cos(lat)sin(long), x 2 = sin(lat). (1a) (1b) (1c) The IDL commands to accomplish this should be obvious, so we won t state them here; but remember to convert the arguments to radians (in IDL, converting degrees to radians is most easily done by multiplying by!dtor). Step 2. Apply the rotation matrix R (we ll discuss its definitions below): x = R x. (2) In IDL, we ll use the IDL variable xp to represent x, and you do matrix multiplication with the operator ##... xp = R##x. (3) Step 3. Convert the primed rectangular coordinates to the new set of spherical coordinates (long,lat ): ( ) x long = tan 1 1 x 0 lat = sin 1 (x 2)., (4a) (4b) To do these in IDL, where we ll write longp, latp: longp = atan(xp(1), xp(0)) latp = asin(xp(2)) ; (5a) (5b)

3 if you want to convert their outputs to degrees, multiply by!radeg. IMPORTANT: writing atan(xp(1), xp(0)) instead of atan(xp(1)/xp(0)) ensures that the angle is given in the correct quadrant. See the IDL documentation. That s it! If you want to go backwards, you just apply the matrix multiplications using the inverse matrices. For rotation matrices, the inverse is always equal to the transpose(!) 1 symbolically for the matrix R, R 1 = R T. So to go from the primed system to the unprimed, you switch the primed and unprimed in equation (2) and use the inverse rotation matrix and in IDL... x = R 1 x = R T x. (6) x = invert(r)##xp = transpose(r)##xp. (7) 2. ROTATION MATRICES: SPECIFICS FOR OUR PROBLEM OK, what are these rotation matrices? We ll do you a big favor and tell you. 2.1. (RA, DEC) to (HA, DEC) any epoch. Converting from (α, δ) (ha, δ) keeps the declination the same and uses the relationship ha = LST α. It is easiest to think of this in two steps, so we express R (α,δ) (ha,δ) = R (α,δ) (ha,δ),2 R (α,δ) (ha,δ),1. (8) First, we rotate around the equatorial pole by an angle equal to the Local Sidereal Time (LST), which does α (α LST): R (α,δ) (ha,δ),1 = cos(lst) sin(lst) 0 sin(lst) cos(lst) 0 0 0 1. (9a) 1 If you don t believe this, check on the R s below in 2!

4 Next, the ha and α go in opposite directions, which is equivalent to converting from the original left-handed to a right-handed coordinate system, so the second step is just to perform this reversal: R (α,δ) (ha,δ),2 = 1 0 0 0 1 0 0 0 1. (9b) The full rotation matrix is the matrix product R (α,δ) (ha,δ),2 R (α,δ) (ha,δ),1. Note the order! Applying R (α,δ) (ha,δ),2 at the beginning in the matrix product means that it operates last on the vector x, which is what we want. So we have as the product... R (α,δ) (ha,δ) = cos(lst) sin(lst) 0 sin(lst) cos(lst) 0 0 0 1. (10) 2.2. (HA, DEC) to (AZIMUTH, ALTITUDE). Because (ha, δ) are Earth-based coordinates, this conversion depends only on your terrestrial latitude φ: R (ha,δ) (az,alt) = sinφ 0 cosφ 0 1 0 cosφ 0 sinφ. (11) 2.3. EQUATORIAL to GALACTIC. R (α,δ)1950 (l,b) = 0.066989 0.872756 0.483539 0.492728 0.450347 0.744585 0.867601 0.188375 0.460200. (12a) This is from Green s Spherical Astronomy, chapter 14.6, problem 14.6 (answers in back of book). We should ve made you derive this, but we re softies. You really should at least glance at Green s chapter 2.7, which defines Galactic coordinates. In truth, the precession of the equatorial coordinate system makes this matrix a function of time: the equatorial coordinates move around the sky, but

5 the Galactic ones do not. Precession amounts to nearly an arcminute per year! In principle, you should derive the matrix for the current epoch. In practice, you may not need such high accuracy. Better than the 1950 version are the numbers for epoch 2000, which are in Green s equation (14.55); epoch 2000 is lots closer to the present than is epoch 1950: R (α,δ)2000 (l,b) = 0.054876 0.873437 0.483835 0.494109 0.444830 0.746982 0.867666 0.198076 0.455984. (12b) 2.4. Precession converting equatorial between epochs. We won t need these for the lab course, but we give you the info for the sake of completeness. Generating the rotation matrix for precession is a bit tedious and we won t give the explicit formulae here. They are in Green s book. The elements of the matrix are in equation (9.31). These elements contain angles, which depend on time as in equation (9.23) if you are converting from epoch 2000 to some other epoch. Precession isn t all there is; for precision exceeding 10 you also need to account for nutation of the Earth, which has a random component and is not completely predictable. For the complete story, see Green s chapter 9 and The Astronomical Almanac 1998, pages B39-B43 for interested parties only! 3. DOING ALL THIS IN IDL Obviously, all this stuff is simple in IDL, which deals easily with matrices. Before beginning, though, a cautionary note about 2-D arrays in IDL: 3.1. A CRUCIAL PRELIMINARY: 2-D arrays in IDL. In a computer, a multidimensional data set can be indexed in two ways, the column-major and row-major formats. IDL uses the row-major format, as does Fortran; the other major language, C, uses column-major. Suppose you have a 2 2 matrix called A. In IDL s row-major format, when you type [print, A] IDL prints [ A 0,0 A 1,0 A 0,1 A 1,1 ], (13a)

6 which is different from what you are used to seeing in standard matrix notation which is the column-major format [ ] A 0,0 A 0,1. (13b) A 1,0 A 1,1 In this writeup, we are defining matrices such that, when displayed in a standard IDL print statement, they look correct. For example, in equation (12b), the upper right-hand element 0.483835 is R 2,0. If you want to be a purist and define the matrices in the standard manner, that is with the lower left-hand element 0.483835 being R 0,2 instead of R 2,0, go ahead and do so. You then need to do two things. First, if you want to see the matrix displayed in the usual way, then print its transpose by typing [print, transpose(a)]. Second, in all our IDL matrix equations, replace ## by #. Why does IDL do this nonstandard thing? It s because it s more straightforward for image processing, in which traditionally the images are scanned row-by-row (as in a TV set) instead of column-by-column. And IDL s origins are image processing, not matrix math. 3.2. Try the following examples in IDL. TestR (ha,δ) (az,alt), goingbothforwardsandbackwards. Foranobservatoryatlatitude41.36, (az,alt) = (137.60,32.43 ) transforms to (ha,δ) = (325.05s, 6.52 ). Hour angle is usually given in hours using sexagesimal notation: ha = 21 h 40 m 12 s.) See the IDL functions sixty and ten to go back and forth between decimal and sexagesimal notations. Test R (α,δ) (ha,δ) by making up your own example, using the fact that ha = LST α. Test R (α,δ)1950 (l,b) for the Crab Nebula. The Crab has 1950 equatorial coordinates (α,δ) = (05 h 31 m.5,21 59 ) and Galactic coordinates (l,b) = (184 33, 5 47 ). Finally, put them all together and make sure that works, too. For all of these, make sure you know how to go backwards! For example, suppose you want to convert (az,alt) (α,δ). You need to first apply R 1 (ha,δ) (az,alt) and then R 1 (α,δ) (ha,δ). So the full rotation matrix in this case is... Again, note the order! Applying R 1 (α,δ) (ha,δ) it operates last on the vector x. R (az,alt) (α,δ) = R 1 (α,δ) (ha,δ) R 1 (ha,δ) (az,alt) (14) at the beginning in the matrix product means that

7

8

9