Swing-By Maneuvers for a Cloud of Particles with Planets of the Solar System

Similar documents
A Study of the Close Approach Between a Planet and a Cloud of Particles

ORBITAL CHARACTERISTICS DUE TO THE THREE DIMENSIONAL SWING-BY IN THE SUN-JUPITER SYSTEM

OPTIMAL MANEUVERS IN THREE-DIMENSIONAL SWING-BY TRAJECTORIES

A STUDY OF POWERED SWING-BY. Antonio Fernando Bertachini de Almeida PRADO

SWING-BY MANEUVERS COMBINED WITH AN IMPULSE

A classification of swing-by trajectories using the Moon

A study of trajectories to the Neptune system using gravity assists

APPLICATION OF THE HÉNON S ORBIT TRANSFER PROBLEM TO MANEUVER A SATELLITE IN A CONSTELLATION

JUPITER SWING-BY TRAJECTORIES PASSING NEAR THE EARTH

Astrodynamics (AERO0024)

THIRD-BODY PERTURBATION USING A SINGLE AVERAGED MODEL

Astrodynamics (AERO0024)

Study of the Fuel Consumption for Station-Keeping Maneuvers for GEO satellites based on the Integral of the Perturbing Forces over Time

Flight and Orbital Mechanics

Lecture D30 - Orbit Transfers

CHANGING INCLINATION OF EARTH SATELLITES USING THE GRAVITY OF THE MOON

Gravity Assisted Maneuvers for Asteroids using Solar Electric Propulsion

A STUDY OF CLOSE ENCOUNTERS BETWEEN MARS AND ASTEROIDS FROM THE 3:1 RESONANCE. Érica C. Nogueira, Othon C. Winter

Optimal Gravity Assisted Orbit Insertion for Europa Orbiter Mission

Low Thrust Sub-Optimal Transfer Trajectories to the Moon

AN ALTERNATIVE DESCRIPTION OF SWING-BY TRAJECTORIES IN TWO AND THREE DIMENSIONS

Which of the following planets are all made up of gas? When a planets orbit around the Sun looks like an oval, it s called a(n)

Analysis of frozen orbits for solar sails

MINIMUM FUEL MULTI-IMPULSIVE ORBITAL MANEUVERS USING GENETIC ALGORITHMS

ORBITAL TRANSFERS BETWEEN HALO ORBITS AND THE PRIMARIES IN THE EARTH-MOON SYSTEM

Design of a Multi-Moon Orbiter

Low-Thrust Trajectories to the Moon

ASEN 5050 SPACEFLIGHT DYNAMICS Interplanetary

ANNEX 1. DEFINITION OF ORBITAL PARAMETERS AND IMPORTANT CONCEPTS OF CELESTIAL MECHANICS

EVALUATION OF A SPACECRAFT TRAJECTORY DEVIATION DUE TO THE LUNAR ALBEDO

SUN INFLUENCE ON TWO-IMPULSIVE EARTH-TO-MOON TRANSFERS. Sandro da Silva Fernandes. Cleverson Maranhão Porto Marinho

The Solar System LEARNING TARGETS. Scientific Language. Name Test Date Hour

STUDYING DIRECT AND INDIRECT EFFECTS OF IMPULSES IN POWERED AERO-GRAVITY-ASSIST MANEUVERS AROUND VENUS

Lecture Outlines. Chapter 6. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc.

Optimal Generalized Hohmann Transfer with Plane Change Using Lagrange Multipliers

Research Article Dynamics of Artificial Satellites around Europa

Part 4: Exploration 1

The Astrodynamics and Mechanics of Orbital Spaceflight

The Solar System. Name Test Date Hour

Orbit Characteristics

18. Kepler as a young man became the assistant to A) Nicolaus Copernicus. B) Ptolemy. C) Tycho Brahe. D) Sir Isaac Newton.

ASTRIUM. Interplanetary Path Early Design Tools at ASTRIUM Space Transportation. Nathalie DELATTRE ASTRIUM Space Transportation.

ORBITS WRITTEN Q.E. (June 2012) Each of the five problems is valued at 20 points. (Total for exam: 100 points)

1star 1 star 9 8 planets 63 (major) moons asteroids, comets, meteoroids

Chapter 4. Motion and gravity

Cosmology Vocabulary

LOW-COST LUNAR COMMUNICATION AND NAVIGATION

Escape Trajectories from the L 2 Point of the Earth-Moon System

Extending the Patched-Conic Approximation to the Restricted Four-Body Problem

Estimating the trajectory of a space vehicle passing by the Moon using Kalman Filter

CHAPTER 11. We continue to Learn a lot about the Solar System by using Space Exploration

Fundamentals of Satellite technology

Overview of the Solar System

Searching for less perturbed elliptical orbits around Europa

arxiv: v1 [gr-qc] 7 Oct 2009

Introduction to the Solar System

LEARNING ABOUT THE OUTER PLANETS. NASA's Cassini spacecraft. Io Above Jupiter s Clouds on New Year's Day, Credit: NASA/JPL/University of Arizona

9.2 - Our Solar System

Equation of orbital velocity: v 2 =GM(2/r 1/a) where: G is the gravitational constant (G=6.67x10 11 N/m 3 kg), M is the mass of the sun (or central

From the Earth to the Moon: the weak stability boundary and invariant manifolds -

Semi analytical study of lunar transferences using impulsive maneuvers and gravitational capture

ORBITAL MANEUVERS USING GRAVITATIONAL CAPTURE

Analysis of V, Leveraging for Interplanetary Missions

Name Date Class. Earth in Space

What is Earth Science?

Science in the news Voyager s 11 billion mile journey

On The Generalized Hohmann Transfer with Plane Change Using Energy Concepts Part I

Celestial Mechanics Lecture 10

On Sun-Synchronous Orbits and Associated Constellations

Comparative Planetology I: Our Solar System. Chapter Seven

The escape speed for an object leaving the surface of any celestial body of mass M and radius d is

The Jovian Planets. Why do we expect planets like this in the outer reaches of the solar system?(lc)

Chapter 2 Study Guide

Resonance Hopping Transfers Between Moon Science Orbits

Gravity: Motivation An initial theory describing the nature of the gravitational force by Newton is a product of the resolution of the

ANALYSIS OF VARIOUS TWO SYNODIC PERIOD EARTH-MARS CYCLER TRAJECTORIES

THE TRAJECTORY CONTROL STRATEGIES FOR AKATSUKI RE-INSERTION INTO THE VENUS ORBIT

AST 105. Overview of the Solar System

Space Notes 2. Covers Objectives 3, 4, and 8

The B-Plane Interplanetary Mission Design

Modeling the Orbits of the Outer Planets

October 19, NOTES Solar System Data Table.notebook. Which page in the ESRT???? million km million. average.

The Moon s relationship with Earth The formation of the Moon The surface of the Moon Phases of the Moon Travelling to the Moon

Satellite Orbital Maneuvers and Transfers. Dr Ugur GUVEN

ASEN 5050 SPACEFLIGHT DYNAMICS Interplanetary

PATHFINDING AND V-INFININTY LEVERAGING FOR PLANETARY MOON TOUR MISSIONS

Overview of Solar System

Design of low energy space missions using dynamical systems theory

Exercise 4.0 PLANETARY ORBITS AND CONFIGURATIONS

Our Solar System and Its Place in the Universe

ESSE Payload Design. 1.2 Introduction to Space Missions

Interplanetary Mission Opportunities

Astronomy 111 Review Problems Solutions

Ellipses. Gravitation and Mechanics MOPS Ellipse Foci. Any Point on the Curve Distance. Distance B Foci

Identifying Safe Zones for Planetary Satellite Orbiters

MARYLAND U N I V E R S I T Y O F. Orbital Mechanics. Principles of Space Systems Design

9J Gravity and Space ILU

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Question number Answer Notes Marks 1 correctly; (ii) Sun X should be left of the imaginary 5-7 line, reject X placed outside the orbit

Galaxies: enormous collections of gases, dust and stars held together by gravity Our galaxy is called the milky way

Transcription:

Swing-By Maneuvers for a Cloud of Particles with Planets of the Solar System VIVIAN MARTINS GOMES, ANTONIO F. B. A. PRADO National Institute for Space Research INPE - DMC Av. Dos Astronautas 1758 São José dos Campos SP 17-010 BRAZIL vivian.gomes@uol.com.br; prado@dem.inpe.br Abstract: - The idea of the present paper is to study the swing-by maneuver between one of the planets of the Solar System a cloud of particles. This is what happens when a fragmented comet crosses the orbit of a planet like Jupiter, Saturn, etc. We used the dynamical system that is formed by two main bodies (the Sun one of the planets of the Solar System) we assumed that they are in circular orbits around their center of mass a cloud of particles is moving under the gravitational attraction of these two primaries. The motion is assumed to be planar for all the particles the dynamics given by the patched-conic approximation is used, which means that a series of two-body problems are used to generate analytical equations that describe the problem. The main obejctive is to underst the change of the orbit of this cloud of particles after the close approach with the planet. It is assumed that all the particles that belong to the cloud have semi-major axis a ± da eccentricity e ± de before the close approach with the planet. It is desired to known those values after the close approach. In particular, we will study the effects of the periapsis distance in this maneuver. Key-Words: - Astrodynamics, Orbital maneuvers, Swing-By, Gravity assisted maneuvers, Orbital motion. 1 Introduction In the sutdy of space missions, it is very important to consider the problem of performing optimization in fuel expenditure when making orbital maneuvers. References [1] to [5] show some of the techniques that can be used to solve this problem. One of the alternative techniques that can be used with this objective is the close approach between a spacecraft a planet. This is a very popular technique used to decrease fuel expenditure in space missions. This maneuver modifies the velocity, energy angular momentum of a spacecraft. There are many important applications very well known, like the Voyager I II that used successive close encounters with the giant planets to make a long journey to the outer Solar System; the Ulysses mission that used a close approach with Jupiter to change its orbital plane to observe the poles of the Sun, etc. In the present paper we study the close approach between a planet a cloud of particles. It is assumed that the dynamical system is formed by two main bodies (usually the Sun one planet) that are in circular orbits around their center of mass a cloud of particles that is moving under the gravitational attraction of the two primaries. The motion is assumed to be planar for all the particles the dynamics given by the patched-conic approximation is used, which means that a series of two-body problems are used to generate analytical equations that describe the problem. The stard canonical system of units is used it implies that the unit of distance is the distance between the two primaries the unit of time is chosen such that the period of the orbit of the two primaries is π. The goal is to study the change of the orbit of this cloud of particles after the close approach with the planet. It is assumed that all the particles that belong to the cloud have semi-major axis a ± da eccentricity e ± de before the close approach with the planet. It is desired to known those values after the close approach. Among the several sets of initial conditions that can be used to identify uniquely one swing-by trajectory, a modified version of the set used in the papers written by [6], [7] [8] is used here. It is composed by the following three variables: 1) V p, the velocity of the spacecraft at periapse of the orbit around the secondary body; ) The angle ψ, that is defined as the angle between the line M1-M (the two primaries) the direction of the periapse of the trajectory of the spacecraft around M; 3) r p, the distance from the spacecraft to the center of M in the moment of the closest approach to M (periapse distance). The values of V p ψ are obtained from the initial orbit of the spacecraft around the Sun using the patched-conics approximation r p is a free parameter that is varied to obtain the results. ISSN: 1991-8747 869 Issue 11, Volume 3, November 008

Review of the Literature for the Swing-By The literature shows several applications of the swing-by technique. Some of them can be found in Swenson[9], that studied a mission to Neptune using swing-by to gain energy to accomplish the mission; [10], that made a similar study for a mission to Pluto; [11], that formulated a mission to study the Earth s geomagnetic tail; [1], [13] [14], that planned the mission ISEE-3/ICE; [15], that made the first studies for the Voyager mission; [16], that design a mission to flyby the comet Halley; [17], [18] that studied multiple flyby for interplanetary missions; [19] [0] that design missions with multiple lunar swingbys; [1], that studied the effects of the atmosphere in a swing-by trajectory; [], that used a swing-by in Venus to reach Mars; [3], that studied numerically a swing-by in three dimensions, including the effects in the inclination; [4], that considered the possibility of applying an impulse during the passage by the periapsis; [5], that classified trajectories making a swing-by with the Moon. The most usual approach to study this problem is to divide the problem in three phases dominated by the two-body celestial mechanics. Other models used to study this problem are the circular restricted three-body problem (like in [6]) the elliptic restricted three-body problem ([7]). 3 Orbital Change of a Single Particle This section will briefly describe the orbital change of a single particle subjected to a close approach with the planet under the patched-conics model. It is assumed that the particle is in orbit around the Sun with given semi-major axis (a) eccentricity (e). The swing-by is assumed to occur in the planet Jupiter for the numerical calculations shown below, but the analytical equations are valid for any system of primaries. The periapse distance (r p ) is assumed to be known. As an example, for the numerical calculations, the following numerical values are used: a = 1. canonical units, e =, µ J = 0.00094736, r p = 0.000185347 (100000 km = 1.4 Jupiter s radius), where µ J is the gravitational parameter of Jupiter in canonical units (total mass of the system equals to one). The first step is to obtain the energy (EB) angular momentum (CB) of the particle before the swing-by. They are given by: ( 1 µ ) a(1 ) = 1. 0445 CB = e J Then, it is possible to calculate the magnitude of the velocity of the particle with respect to the Sun in the moment of the crossing with Jupiter s orbit (V i ), as well as the true anomaly of that point (q). They come from: rsj 1 a ( 1 ) = 1. 0796 Vi = µ J 1 (1 ) 1 cos a e θ = 1 = 1.591, e r SJ using the fact that the distance between the Sun Jupiter (r SJ ) is one taking only the positive value of the true anomaly. Next, it is calculated the angle between the inertial velocity of the particle the velocity of Jupiter (the flight path angle δ), as well as the magnitude of the velocity of the particle with respect to Jupiter in the moment of the approach (V ). They are given by (assuming a counter-clock-wise orbit for the particle): esin tan 1 θ γ = = 0.558 1 e cos + θ V = Vi + V Vi V cos γ = 0.767, using the fact that the velocity of Jupiter around the Sun (V ) is one. Fig. 1 shows the vector addition used to derive the equations. EB = ( 1 ) µ J a = 0.416 ISSN: 1991-8747 870 Issue 11, Volume 3, November 008

V γ V V i By adding those quantities to the initial values we get the values after the swing-by. They are: E1 = - 0.460, C1 = 1.0346, E = -0.5806, C = 0.8801. Finally, to obtain the semi-major axis the eccentricity after the swing-by it is possible to use the equations: µ a = E Fig. 1 Vector addition during the close-approach. The angle β shown is given by: β = cos 1 V i V V V V = 1.73 Those information allow us to obtain the turning angle (δ) of the particle around Jupiter, from: δ = sin 1 1 1 + r V p µ J = 1.47 The angle of approach (ψ) has two values, depending if the particle is passing in front (when we call Solution 1) or behind (when we call Solution ) the planet. These two values will be called ψ1 ψ. They are obtained from: ψ 1 = π + β + δ = 6.3011 ψ = π + β δ = 6.588 The correspondent variations in energy angular momentum are obtained from the equation C = E = V V sen δ senψ, (since w = 1). The results are: e = C 1 µ a The results are: a 1 = 1.173, e 1 = 37, a = 0.8603, e = 144. 4 Orbital Change of a Cloud of Particles The algorithm just described can now be applied to a cloud of particles passing close to Jupiter Saturn. The idea is to simulate a cloud of particles that have orbital elements given by: a ± da e ± de. The goal is to map this cloud of particles to obtain the new distribution of semi-major axis eccentricities after the swing-by. Fig. (a-f) show some results for Jupiter, for the case da = de = 0.001, r p = 1.1 R J 5.0 R J. Those figures allow us to get some conclusions. The solution called has a larger amplitude than the Solution in both orbital elements, but it concentrates the orbital elements in a line, while the so called Solution generates a distribution close to a square. The area occupied by the points is smaller for. Both vertical horizontal lines are rotated become diagonal lines with different inclinations. The effect of increasing the periapsis distance is to generate plots with larger amplitudes, but with the points more concentrated, close to a straight line. C C 1 = E1 = = E = 0.009811 0.1644 ISSN: 1991-8747 871 Issue 11, Volume 3, November 008

0 vs. before the Swing-By Fig. (a) Swing-by for a cloud of particles with Jupiter for rp = 1.1 R J. 0.45 0.4 To underst better the importance of the paeriapsis distance, we also made simulations using the value of rp = 5.0 R J. The results are shown below. 0 vs. before the Swing-By Fig. (d) Swing-by for a cloud of particles with Jupiter for rp = 5.0 R J. 0.415 0.41 0.405 0.4 95 9 85 1.44 1.46 1.48 1.5 1.5 1.54 1.56 vs. after Swing-By for Fig. (b) Swing-by for a cloud of particles with Jupiter for rp = 1.1 R J. 0.535 0.53 0.55 0.5 0.515 0.51 0.505 0.5 0.495 0.49 1.85 1.9 1.95.05 vs. after Swing-By for Fig. (e) Swing-by for a cloud of particles with Jupiter for rp = 5.0 R J. 0 0.86 1.005 1.01 1.015 1.0 1.05 1.03 1.035 vs. after Swing-By for Solution Fig. (c) Swing-by for a cloud of particles with Jupiter for rp = 1.1 R J. 45 4 35 3 5 15 0.85 0.855 0.86 0.865 0.87 0.875 0.88 vs. after Swing-By for Solution Fig. (f) Swing-by for a cloud of particles with Jupiter for rp = 5.0 R J. ISSN: 1991-8747 87 Issue 11, Volume 3, November 008

The following figures 3(a-f) show the equivalent results for Saturn. The idea is to verify the differences that are obtained when the main planet is changed, which means that we see the effects of a diferent mass for the planet. 0 vs. before the Swing-By Fig. 3(a) Swing-by for a cloud of particles with Saturn for rp = 1.1 R S. 0.445 0.44 0.435 0.43 0.45 0.4 0.415 0.41 0.405 1.5 1.54 1.56 1.58 1.6 1.6 1.64 1.66 vs. after Swing-By for Fig. 3(b) Swing-by for a cloud of particles with Saturn for rp = 1.1 R S. 08 06 04 0 0.965 0.97 0.975 0.98 0.985 0.99 vs. after Swing-By for Solution Fig. 3(c) Swing-by for a cloud of particles with Saturn for rp = 1.1 R S. To underst better the importance of the paeriapsis distance, we also made simulations using the value of rp = 5.0 R S for Saturn. The results are shown below. 0 vs. before the Swing-By Fig. 3(d) Swing-by for a cloud of particles with Saturn for rp = 5.0 R S. 0.585 0.58 0.575 0.57 0.565 0.56 0.555 0.55 0.545 0.54 0.535.05.1.15..5.3.35 vs. after Swing-By for Fig. 3(e) Swing-by for a cloud of particles with Saturn for rp = 5.0 R S. 8 75 7 65 6 55 5 45 0.8 0.805 0.81 0.815 0.8 0.85 0.83 vs. after Swing-By for Solution Fig. 3(f) Swing-by for a cloud of particles with Saturn for rp = 5.0 R S. ISSN: 1991-8747 873 Issue 11, Volume 3, November 008

In order to make this study more general, we also made some simulations for the planet Uranus. The following figures 4(a-f) show the equivalent results for this planet. The idea is also to verify the differences that are obtained when the main planet is changed, which means that we see the effects of a diferrent mass for the planet. 0 vs. before the Swing-By Fig. 4(a) Swing-by for a cloud of particles with Uranus for rp = 1.1 R U. 0.46 0.455 0.45 0.445 0.44 0.435 0.43 0.45 0.4 1.58 1.6 1.6 1.64 1.66 1.68 1.7 1.7 vs. after Swing-By for Fig. 4(b) Swing-by for a cloud of particles with Uranus for rp = 1.1 R U. 1 1 08 06 04 0 0.94 0.945 0.95 0.955 0.96 0.965 0.97 vs. after Swing-By for Solution Fig. 4(c) Swing-by for a cloud of particles with Uranus for rp = 1.1 R U. Once more, to underst better the importance of the paeriapsis distance, we also made simulations using the value of rp = 5.0 R U for Uranus. The results are shown below. 0 vs. before the Swing-By Fig. 4(d) Swing-by for a cloud of particles with Uranus for rp = 5.0 R U. 0.61 0.605 0.6 0.595 0.59 0.585 0.58 0.575 0.57 0.565 0.56..5.3.35.4.45.5 vs. after Swing-By for Fig. 4(e) Swing-by for a cloud of particles with Uranus for rp = 5.0 R U. ISSN: 1991-8747 874 Issue 11, Volume 3, November 008

0.4 95 9 85 8 75 7 65 6 0.775 0.78 0.785 0.79 0.795 0.8 0.805 vs. after Swing-By for Solution 6 58 56 54 5 5 48 46 44 4 0.8 0.85 0.83 0.835 0.84 vs. after Swing-By for Solution Fig. 4(f) Swing-by for a cloud of particles with Uranus for rp = 5.0 R U. Now, in order to investigate the effects in a planet with a smaller mass, we perform some simulations using the planet Mars as the main body for the Swing-By. The results are shown in Figs 5(a-f). Fig. 5(c) Swing-by for a cloud of particles with Mars for rp = 1.1 R M. And, to follow the simulations made with the other planets, we change the periapsis distance to 5.0 R M. 0 0 vs. before the Swing-By Fig. 5(a) Swing-by for a cloud of particles with Mars for rp = 1.1 R M. vs. before the Swing-By Fig. 5(d) Swing-by for a cloud of particles with Mars for rp = 5.0 R M. 04 46 44 4 4 38 36 34 3 3 8 1.5 1.6 1.7 1.8 1.9 1.3 vs. after Swing-By for Fig. 5(b) Swing-by for a cloud of particles with Mars for rp = 1.1 R M. 0 0.86 1.045 1.05 1.055 1.06 1.065 1.07 1.075 vs. after Swing-By for Fig. 5(e) Swing-by for a cloud of particles with Mars for rp = 5.0 R M. ISSN: 1991-8747 875 Issue 11, Volume 3, November 008

Fig. 5(f) Swing-by for a cloud of particles with Mars for rp = 5.0 R M. After performing a large number of simulations using different values for the periapsis distance, it is possible to study the effects of this parameter in the whole maneuver. In Fig. 6(a-d), Man1 refers to the solution 1 Man refers to the solution. From those results we can see that different planets show different behaviors regarding this maneuver. Amplitude of the variation in semi-major axis or eccentricity 5 0.5 0. 0.15 0.1 0.05 0 0 0 40 60 Periapsis distance in planet s radius Jupiter da man 1 de man 1 da man de man Fig. 6(a) Effects of the periapsis distances for Jupiter. Amplitude of the variation in semi-major axis or eccentricity 1 08 06 04 0 0.935 0.94 0.945 0.95 0.955 0.96 0.035 0.03 0.05 0.0 0.015 0.01 0.005 vs. after Swing-By for Solution 0 0 0 40 60 Periapsis distance in planet s radius Mars da man 1 de man 1 da man de man Fig. 6(b) Effects of the periapsis distances for Mars. Amplitude of the variation in semi-major axis or eccentricity 5 0.5 0. 0.15 0.1 0.05 0 0 0 40 60 Periapsis distance in planet s radius Saturn da man 1 de man 1 da man de man Fig. 6(c) Effects of the periapsis distances for Saturn. Amplitude of the variation in semi-major axis or eccentricity 5 0.5 0. 0.15 0.1 0.05 0 0 0 40 60 Periapsis distance in planet s radius Uranus da man 1 de man 1 da man de man Fig. 6(d) Effects of the periapsis distances for Uranus. For the large planets, the amplitude has a sharp maximum for the variation in amplitude. It means that there is a specific value for the periapsis distance that maximizes the dispersion of the particles. This information can be used for practical applications, like in the case that you can control the periapsis distance (like a satellite that will explode, but that you can control its trajectory before the explosion), then you can choose the position that causes larger amplitudes. For Mars the behavior shows a decreasing amplitude, so if you want to maximize the amplitude you need to send the spacecraft as close as possible to the planet. 5 Conclusion The figures above allow us to get some conclusions. The solution called has a larger amplitude than the Solution in both orbital elements, but it concentrates the orbital elements in a line, while the so called Solution generates a distribution close to a square. The area occupied by the points is smaller for. Both vertical horizontal lines are rotated become diagonal lines with different inclinations. The effect of ISSN: 1991-8747 876 Issue 11, Volume 3, November 008

increasing the periapse distance is to generate plots with larger amplitudes, but with the points more concentrated, close to a straight line. In general, results like those ones shown here can be used to underst better the effects of the periapsis distance. References: [1] Prado, AFBAP, "Low-Thrust Trajectories to the Moon", Computer Simulation in Modern Science, Vol 1, 008, pg 89-94. WSEAS Press, ISBN 978-960-474-010-9. Editor-in-Chief: Nikos Mastorakis. [] Gomes, VM, Prado, AFBAP, Kuga, HK, "Orbital maneuvers Using Low Thrust", Recent Advances in Signal Processing, Robotics Automation, pg. 10-15. WSEAS Press, ISBN 978-960-474-054-3. [3] Gomes, VM, Prado, AFBAP, "A Study of the Close Approach Between a Planet a Cloud of Particles", Recent Advances in Signal Processing, Robotics Automation, pg. 16-131. WSEAS Press, ISBN 978-960-474-054-3. [4] Vaz, BN, Prado, AFBAP, "Sub-Optimal Orbital Maneuvers for Artificial Satellites", WSEAS TRANSACTIONS on APPLIED THEORETICAL MECHANICS, Issue 8, Volume 3, August 008. [5] Santos, DPS, Casalino, L, Colasurdo, G, Prado, AFBAP, "Optimal Trajectories using Gravity Assisted Maneuver Solar Electric Propulsion (Sep) Towards Near-Earth-Objects", Proceedings of the 4th WSEAS International Conference on APPLIED THEORETICAL MECHANICS (MECHANICS '08), pg 6-68, Cairo, Egypt December 9-31, 008. [6] BROUCKE, R.A. (1988). "The Celestial Mechanics of Gravity Assist", AIAA Paper 88-40. [7] BROUCKE, R.A. & A.F.B.A. PRADO (1993). "Jupiter Swing-By Trajectories Passing Near the Earth", Advances in the Astronautical Sciences, Vol. 8, No, pp. 1159-1176. [8] PRADO, A.F.B.A. (1993). "Optimal Transfer Swing-By Orbits in the Two- Three-Body Problems", Ph.D. Dissertation, Dept. of Aerospace Engineering Engineering Mechanics, Univ. of Texas, Austin, TX. [9] SWENSON, B.L. (199). "Neptune Atmospheric Probe Mission", AIAA Paper 9-4371. [10] WEINSTEIN, S.S. (199). "Pluto Flyby Mission Design Concepts for Very Small Moderate Spacecraft", AIAA Paper 9-437. [11] FARQUHAR, R.W. & D.W. DUNHAM (1981). "A New Trajectory Concept for Exploring the Earth's Geomagnetic Tail", Journal of Guidance, Control Dynamics, Vol. 4, No., pp. 19-196. [1] FARQUHAR, R., D. MUHONEN & L.C CHURCH (1985). "Trajectories Orbital Maneuvers for the ISEE-3/ICE Comet Mission", Journal of Astronautical Sciences, Vol. 33, No. 3, pp. 35-54. [13] EFRON, L., D.K. YEOMANS & A.F. SCHANZLE (1985). "ISEE-3/ICE Navigation Analysis," Journal of Astronautical Sciences, Vol. 33, No. 3, pp. 301-33. [14] MUHONEN, D., S. DAVIS, & D. DUNHAM (1985). "Alternative Gravity-Assist Sequences for the ISEE-3 Escape Trajectory," Journal of Astronautical Sciences, Vol. 33, No. 3, pp. 55-73. [15] FLANDRO, G. (1966). "Fast Reconnaissance Missions to the Outer Solar System Utilizing Energy Derived from the Gravitational Field of Jupiter," Astronautical Acta, Vol. 1, No. 4. [16] BYRNES, D.V. & L.A. D'AMARIO (198) "A Combined Halley Flyby Galileo Mission," AIAA paper 8-146. In: AIAA/AAS Astrodynamics Conference, San Diego, CA, Aug. [17] D'AMARIO, L.A., D.V. BYRNES & R.H STANFORD. (1981). "A New Method for Optimizing Multiple-Flyby Trajectories," Journal of Guidance, Control, Dynamics, Vol. 4, No 6, pp. 591-596. [18] D'AMARIO, L.A., D.V. BYRNES & R.H. STANFORD (198). "Interplanetary Trajectory Optimization with Application to Galileo," Journal of Guidance, Control, Dynamics, Vol. 5, No. 5, pp. 465-471. [19] MARSH, S.M. & K.C. HOWELL (1988). "Double Lunar Swingby Trajectory Design," AIAA paper 88-489. [0] DUNHAM, D. & S. DAVIS (1985). "Optimization of a Multiple Lunar-Swingby Trajectory Sequence," Journal of Astronautical Sciences, Vol. 33, No. 3, pp. 75-88. [1] PRADO, A.F.B.A. & R.A. BROUCKE (1994). "A Study of the Effects of the Atmospheric Drag in Swing-By Trajectories," Journal of the Brazilian Society of Mechanical Sciences, Vol. XVI, pp. 537-544. [] STRIEPE, S.A. & R.D. BRAUN (1991). "Effects of a Venus Swingby Periapsis Burn During an Earth-Mars Trajectory," The Journal of the Astronautical Sciences, Vol. 39, No. 3, pp. 99-31.. [3] FELIPE, G. & A.F.B.A. PRADO (1999). Classification of Out of Plane Swing-by ISSN: 1991-8747 877 Issue 11, Volume 3, November 008

Trajectories. Journal of Guidance, Control Dynamics, Vol., No. 5, pp. 643-649. [4] PRADO, A.F.B.A. (1996). "Powered Swing- By". Journal of Guidance, Control Dynamics, Vol. 19, No. 5, pp. 114-1147. [5] PRADO, A.F.B.A. & R.A. BROUCKE (1995). "A Classification of Swing-By Trajectories using The Moon". Applied Mechanics Reviews, Vol. 48, No. 11, Part, November, pp. 138-14. [6] PRADO, A.F.B.A. (1997). "Close-approach Trajectories in the Elliptic Restricted Problem", Journal of Guidance, Control, Dynamics, Vol. 0, No. 4, pp. 797-80. [7] SZEBEHELY, V. (1967). Theory of Orbits, Academic Press, New York, Chap. 10. ISSN: 1991-8747 878 Issue 11, Volume 3, November 008