ADDITIONAL SOLUTIONS for exercises in Introductory Symbolic Logic Without Formal Proofs

Similar documents
Predicate Logic. 1 Predicate Logic Symbolization

Formal Logic: Quantifiers, Predicates, and Validity. CS 130 Discrete Structures

Denote John by j and Smith by s, is a bachelor by predicate letter B. The statements (1) and (2) may be written as B(j) and B(s).

2. Use quantifiers to express the associative law for multiplication of real numbers.

SYMBOLIC LOGIC UNIT 10: SINGULAR SENTENCES

Phil 2B03 (McMaster University Final Examination) Page 1 of 4

INSTITIÚID TEICNEOLAÍOCHTA CHEATHARLACH INSTITUTE OF TECHNOLOGY CARLOW PREDICATE LOGIC

Bertie3 Exercises. 1 Problem Set #3, PD Exercises

Philosophy 240 Symbolic Logic Russell Marcus Hamilton College Fall 2014

Predicate Logic combines the distinctive features of syllogistic and propositional logic.

Formal (Natural) Deduction for Predicate Calculus

Quantifiers Here is a (true) statement about real numbers: Every real number is either rational or irrational.

4 Quantifiers and Quantified Arguments 4.1 Quantifiers

March Algebra 2 Question 1. March Algebra 2 Question 1

Logic. Definition [1] A logic is a formal language that comes with rules for deducing the truth of one proposition from the truth of another.

All psychiatrists are doctors All doctors are college graduates All psychiatrists are college graduates

University of Ottawa CSI 2101 Midterm Test Instructor: Lucia Moura. March 1, :00 pm Duration: 1:15 hs

Introduction to Predicate Logic Part 1. Professor Anita Wasilewska Lecture Notes (1)

RULES OF UNIVERSAL INSTANTIATION AND GENERALIZATION, EXISTENTIAL INSTANTIATION AND GENERALIZATION, AND RULES OF QUANTIFIER EQUIVALENCE

(308 ) EXAMPLES. 1. FIND the quotient and remainder when. II. 1. Find a root of the equation x* = +J Find a root of the equation x 6 = ^ - 1.

Answers to the Exercises -- Chapter 3

PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include

Discrete Mathematics Basic Proof Methods

University of Ottawa CSI 2101 Midterm Test Instructor: Lucia Moura. February 9, :30 pm Duration: 1:50 hs. Closed book, no calculators

Solutions to Exercises (Sections )

CITS2211: Test One. Student Number: 1. Use a truth table to prove or disprove the following statement.

Topic DPL: Answers. Exercise 1.1a Explain why the rule &E for MPL is a sound rule.

Solutions for Chapter 3

Deduction by Daniel Bonevac. Chapter 8 Identity and Functions

2/2/2018. CS 103 Discrete Structures. Chapter 1. Propositional Logic. Chapter 1.1. Propositional Logic

Discrete Structures for Computer Science

Semantics I, Rutgers University Week 3-1 Yimei Xiang September 17, Predicate logic

True/False Problems from Old 115 Exam 1 s

3/29/2017. Logic. Propositions and logical operations. Main concepts: propositions truth values propositional variables logical operations

Predicate Logic Quantifier Rules


1.3 Predicates and Quantifiers

Predicate Logic. Example. Statements in Predicate Logic. Some statements cannot be expressed in propositional logic, such as: Predicate Logic

Parts Manual. EPIC II Critical Care Bed REF 2031


Peano Arithmetic. CSC 438F/2404F Notes (S. Cook) Fall, Goals Now

Propositional Logic Not Enough

QUADRATIC FORMS. A mathematical vignette. Ed Barbeau, University of Toronto

06 From Propositional to Predicate Logic

Lecture 3 : Predicates and Sets DRAFT

Lecture 3: Probability

Mat 243 Exam 1 Review

Section Properties of Rational Expressions

Symbolising Quantified Arguments

Section 1.1 Propositions

Introduction to Sets and Logic (MATH 1190)

DO NOT FORGET!!! WRITE YOUR NAME HERE. Philosophy 109 Final Exam, Spring 2007 (80 points total) ~ ( x)

Before you get started, make sure you ve read Chapter 1, which sets the tone for the work we will begin doing here.

Logic of Sentences (Propositional Logic) is interested only in true or false statements; does not go inside.

ICS141: Discrete Mathematics for Computer Science I

Linear Cyclic Codes. Polynomial Word 1 + x + x x 4 + x 5 + x x + x

Lecture 2. Logic Compound Statements Conditional Statements Valid & Invalid Arguments Digital Logic Circuits. Reading (Epp s textbook)

Mathematical Logic. Reasoning in First Order Logic. Chiara Ghidini. FBK-IRST, Trento, Italy

Chapter 1. Logic and Proof

Natural Deduction is a method for deriving the conclusion of valid arguments expressed in the symbolism of propositional logic.

Predicate Logic Thursday, January 17, 2013 Chittu Tripathy Lecture 04

LECTURE NOTES DISCRETE MATHEMATICS. Eusebius Doedel

Chapter 3. Reading assignment: In this chapter we will cover Sections dx 1 + a 0(x)y(x) = g(x). (1)

KS MATEMATIKA DISKRIT (DISCRETE MATHEMATICS ) RULES OF INFERENCE. Discrete Math Team

CHAPTER 4 CLASSICAL PROPOSITIONAL SEMANTICS

LECTURE NOTES DISCRETE MATHEMATICS. Eusebius Doedel

Example: f(x) = 2x² + 1 Solution: Math 2 VM Part 5 Quadratic Functions April 25, 2017

! Predicates! Variables! Quantifiers. ! Universal Quantifier! Existential Quantifier. ! Negating Quantifiers. ! De Morgan s Laws for Quantifiers

Review: Potential stumbling blocks

MACM 101 Discrete Mathematics I. Exercises on Predicates and Quantifiers. Due: Tuesday, October 13th (at the beginning of the class)

COMP 409: Logic Homework 5

Discrete Mathematics and Its Applications

Arithmetic Operations. The real numbers have the following properties: In particular, putting a 1 in the Distributive Law, we get

Linear Cyclic Codes. Polynomial Word 1 + x + x x 4 + x 5 + x x + x f(x) = q(x)h(x) + r(x),

Motivation. From Propositions To Fuzzy Logic and Rules. Propositional Logic What is a proposition anyway? Outline

Logical Operators. Conjunction Disjunction Negation Exclusive Or Implication Biconditional

Logic Overview, I. and T T T T F F F T F F F F

COMP 182 Algorithmic Thinking. Proofs. Luay Nakhleh Computer Science Rice University

CALCULUS JIA-MING (FRANK) LIOU

Algebra II Vocabulary Word Wall Cards

Solutions to Exercises (Sections )

Section Summary. Predicate logic Quantifiers. Negating Quantifiers. Translating English to Logic. Universal Quantifier Existential Quantifier

CS 250/251 Discrete Structures I and II Section 005 Fall/Winter Professor York

MAT 243 Test 1 SOLUTIONS, FORM A

Proving Arguments Valid in Predicate Calculus

Exercises. Exercise Sheet 1: Propositional Logic

CSE 20: Discrete Mathematics

CS 214 Introduction to Discrete Structures. Chapter 1 Formal Logic. Mikel D. Petty, Ph.D.

DEPARTMENT OF MATHEMATICS. MA1301 Discrete Mathematics

1 Predicates and Quantifiers

Higher Order Derivatives

Predicates, Quantifiers and Nested Quantifiers

Generator Matrix. Theorem 6: If the generator polynomial g(x) of C has degree n-k then C is an [n,k]-cyclic code. If g(x) = a 0. a 1 a n k 1.

University of California, San Diego Department of Computer Science and Engineering CSE 20. Solutions to Midterm Exam Winter 2018

I. Induction, Probability and Confirmation: Introduction

Unit 2 Rational Functionals Exercises MHF 4UI Page 1

Mathacle. PSet ---- Algebra, Logic. Level Number Name: Date: I. BASICS OF PROPOSITIONAL LOGIC

STRAIGHT LINES EXERCISE - 3

Topic 2 [312 marks] The rectangle ABCD is inscribed in a circle. Sides [AD] and [AB] have lengths

Properties of Context-free Languages. Reading: Chapter 7

Transcription:

1 ADDITIONAL SOLUTIONS for exercises in Introductory Symbolic Logic Without Formal Proofs P. 32 2. P v ~J 3. ~P ~J 4. ~P (~A ~J) 5. ~(J v A) 6. [J v (~A ~J)] 7. J A 8. J (A P) 9. J (A v P) 11. P v (A J) 12. P v ~(J A); this could also be interpreted as P v (~J ~A) 13. ~(A J) 14. ~(J v A) or (~J ~A)16. A J 18. J P P. 42 (6 & 7 are logical equivalences; 2, and 5 are logical implications.) Pp.50-51 I. 1. AB A B B 2. AC AvC A ~C TT T T TT T T F TF F F TF T T T FT F T FT T F F FF F F FF F F T 3. AB A B ~B ~A 4. AC A v C ~A C 5. DE D E E D TT T F F TT T F T TT T T T TF F T F TF T F F TF F F T FT T F T FT T T T FT F T F FF T T T FF F T F FF T F F II. The solutions below utilize the shorter truth table. 1. ST Sv~T T S 2. SR ~SvR R S TT T T T TT T T T TF T F TF F FT F FT T T F FF T F FF T F 3. PC P C ~C ~P 4. EP ~(E P) P ~E 5. PC ~(P C) C P TT T F TT F T TT F T TF F TF T F F TF T F F FT T F FT T F T T FT F T FF T T T FF T F F FF F T 7. JOH ~J ~O ~O H JvH 8. CTP C (TvP) ~T C P TTT F T F T T TTT T T T F TTF F T F T T TTF T T T F TFT F T T TT T TFT T T T T T TFF F T T FF TFF T F F FTT T FF FTT F T F FTF T FF FTF F T F FFT T TT T TT T FFT F T T T FFF T TT T FF FFF F T T T

2 9. APN A (PvN) ~N P 10. QD Q ~D ~Q D TTT T T T F TT FF TTF T T T T T TF TT F TFT T T T F FT TF T T TFF T F F FF FT FTT F T F FTF F T T T FFT F T F FFF F T T F P. 58 In what follows, (a) gives the truth table; (b), the argument form; (c), the argument proposition; (d), the statement form. 1. (a) AB A B ~B ~A (b) p q TT T F F T ~q ~p TF F FT T F T (c) (A B) (~B ~A) FF T T T T (d) (p q) (~q ~p) 2. (a) ABC A (B C) B C (b) [p (p r)] (p q) TTT T T T T TTF T F F (c) [A (B C)] (B C) TFT T T T T TFF T T T T (d) [p (q r)] (p r) FTT F F T FTF F F FFT F F FFF F F 3. (a) A B (A v B) (A B) (A v B) (A v B) A B T T T T T T T T F T F F F T T F F F F F T F (b) (p v q) (p q) (c) {[(A v B) (A B)] (A v B)} (A B) (p v q) (d) [(p v q) (p q)] (p v q)} (p q) (p q) 4. (a) P C ~(P C) C P (b) ~(p q) T T F T q p T F T F F F T F T (c) ~(P C) (C P) F F (d) ~(p q) (q p) 5. (a) E A G ~E v A A G ~(G ~E) (b) ~p v q T T T F T T T T T F F q r T T F F T T F ~(r ~p) T F T F F F T F F F F F (c) [(~E v A) (A G)] ~(G ~E) F T T T T T T T T F T T T F T F (d) [(~p v q) (q r)] ~(r ~p) F F T F F F

3 6. (a) H M H M M H (b) p q (c) (H M) (M H) T F T T q p T F F F T T F (d) (p q) (q p) PP. 67-68 I. When first stating what is in each path in (c) below, I begin with the first path on the left and move to the right. 1. (a) 6 branches; (b) 4 paths; (c) BCA; BC~D; BDA; BD~D 2. (a) 2 " (b) 2 " (c) BDA~E; BD~A. 3. (a) 6 " (b) 4 " (c) BDAE ~E; BDAEF; BD~C~E; BD~C F. 4. (a) O " (b) 1 " (c) CE~F. 5. (a) 4 " (b) 3 " (c) CFG; CFHA; CFHB. 6. 3 or 4 " (b) 3 " (c) AG; AE; AF. 7. 2 2 AGET; AG~BC~E. 8. 3 3 F~E; FG; FH. 9. 5 4 E~BG; E~BH; E~BI;F. II. For each of the problems, I indicate first whether the tree is open or closed and, if it is open, I indicate which paths are open, counting from the left. 1. open tree; left & right-hand paths are open 5. closed tree 2. closed tree 6. closed tree 3. open tree; left path is open 7. open tree; right path is open 4. open tree; left path is open 8. closed tree P. 76 In these exercises, I simply put statements on the tree in the order in which they appear in the argument, rather than in the economical way we do this later, to keep things simple. Note that #4 is an example where the student should add all of the information in premise 3 before the path is closed off. That is, as soon as the student adds "~C," the second and fourth paths close off. Nevertheless, for the sake of clarity, I require the students to add all of premise 3 "~C D," and then check for contradictions. 1. /\ 2. B 3. B A B / \ C / \ ~B A / \ ~B C ~B C x / \ A ~B ~C ~C x ~C ~B C / \ x ~A x x x ~C ~C H x x ~A x 4. /\ 5. / \ 6. B 7. B A B B H G ~A / \ / \ ~G ~G ~G C ~B A ~A C ~A C A A A / \ X ~C x ~C ~C ~C / \ x ~H G ~C D D D G C G C / \ /\ invalid: x ~C x x ~C x ~C ~B H ~B H B,A,~C invalid: x x x x x ~A B,~A,~C,D invalid: B,~A,C,G,H

4 8. / \ 9. / \ 10. ~D A C X ~X / \ B \ T ~T A B / ~B ~C / / \ / \ / \ ~B ~C ~B x A B A B D ~A D ~A x ~B X ~T X ~T x ~D x ~D x / / / \ \ x / \ ~A ~B ~A ~B ~A ~B ~A ~B G I x ~X ~X x x ~X ~X x H ~I invalid: x x x ~I x C,~B invalid invalid: ~X.~T,B,~A ~D,B,~A,G,H,~I P. 86 1. (1) p q ~q (2)~q p (3) ~p / \ (4) ~~p N.C.,3 ~p q (5) p D.N.,4 x x (6) ~p v q Impl.,1 2. (1) p q ~q (2) ~q p (3) ~p / \ (4) ~~p N.C.,3 p ~p (5) p D.N.,4 q ~q (6) (p q) v (~p ~q) Equiv.,1 x x 3. (1) p p (2) ~q ~q (3) p v q ~p (4) ~(p v q) N.C.,3 ~q (5) ~p ~q DeM., 4 x ~r 4. (1) ~r ~p ~p (2) p v q / \ (3) q v r p q (4) p q x / \ (5) ~(p q) N.C., 4 q r (6) ~pv~q DeM., 5 / \ x ~p ~q x r 5. (1) r ~q (2) p q / \ (3) r p ~p q (4) q / \ x (5) ~q N.C., 4 r ~r (6) ~p v q Impl.,2 p ~p (7) (r p) v (~r ~p) Equiv.,3 x x P. 88 I. 1. 1) A (B C) 2. 1) (C D) (S D) 2) ~A v (B C) Impl.,1 2) ~(C D) v (S D) Impl.,2 3) ~A v (~B v C) Impl.,2 3) (~C v ~D) v (S D) DeM.,2 4) (~C v ~D) v (~S v D) Impl, 3 3. 1) (A v B) C 2) ~(A v B) v C Impl.,1 4. 1) ~(E F) D 3) (~A ~B) v C DeM., 2 2) ~~(E F) v D Impl.,1 3) (E F) v D D.N.,2

5. 1) ~(A B) 6. 1) G (B D) 2) A ~B N.I.,1 2) ~G v (B D) Impl.,1 5 7. 1) A ~(C v E) 8. 1) D ~E 2) ~A v ~(C v E) Impl.,1 2) (D ~E) v (~D ~~E) Equiv.,1 3) ~A v (~C ~E) DeM.,3 3) (D ~E) v (~D E) D.N.,3 9. 1) ~[(A B) ~D] 10. 1) ~A (~B C) 2) (A B) ~D N.I.,1 2) ~~A v (~B C) Impl.,1 3) A v (~B C) D.N..,2 4) A v (~~B v C) Impl.,3 5) A v (B v C) D.N.,4 II. 1. 1) S D S 2. 1) (~D v ~P) C ~C 2) D F ~F 2)..C / \ 3).. S F / \ 3) ~C NC,2 D C 4) ~(S F) NC,3 ~S D 4) ~(~D v ~P) v C Impl,1 P x 5) S ~F NI,4 x / \ 5) (~~D ~~P) v C DeM,4 6) ~S v D Impl,1 ~D F 6) (D P) v C (2) DN,5* invalid: ~C,D,P 7) ~D v F Impl,2 x x ~A P. 95 I. 1. 5) ~A NC,4 / \ ~A C 6) ~A v C Impl,1 / \ / \ 7) ~C v ~D Impl,2 ~C ~D ~C ~D Invalid: X ~A,~C,D ~E 2. 3) B A B 5) ~E NC,4 A 6) ~A v B Impl,1 / \ 7) C (~B v E) Impl,2 ~A B x C / \ ~B E x x 3. 5) ~C ~C 6) ~B v C Impl,1 / \ 7) ~E v (~B v F) (2) Impl,2* ~B C 8) (B E) v (~B ~E) Equiv,3 / \ X B ~B E ~E INVALID: ~C,~B,~E X / \ ~E /\ B F *NOTE: I have applied the same rule twice in a single step, indicating in parentheses how many times I applied the rule. B ~F 4. 5) ~(B F) NC,4 / \ 6) B ~F NI,5 ~F E 7) ~F v E Impl,2 / \ / \ A ~B A ~B 8) ~(B A) v C Impl,3 C x C X invalid: 9) (~B v ~A) v C DeM,8 / \ \ / \ \ B,~F,A,C ~B ~A C ~B ~A C x x x x

6 5. 5) ~[(C A) B] NC,4 C 6) (C A) ~B NI,5 A 7) ~(F v C) v A Impl,1 ~B 8) (~F ~C) v A DeM,7 / \ 9) ~C v B Impl,2 ~C B 10) ~C v (~A v D) (2)Impl,3 X X C ~H II. 2. 1) C (V L) / \ 2) T (H v A)* ~C V 3) L T X L 4) C H / \ 5) ~(C H) NC,4 ~L T 6) C ~H NI,5 X /\ 7) ~C v (V L) Impl,1 ~T / \ 8) ~T v (H v A) Impl,2 invalid: X H A 9) ~L v T Impl,3 C,~H,V,L,T,A X *The consequent here is really an exclusive "or." It would be translated as T [(HvA) ~(H A)]. This will add another pair of branches to the open path, but one will remain open anyway, with the same information in the open path as this tree. T 3. 1) (P T) (I v D) ~I 2) P D / \ 3) T I / / \ 4) ~(T I) NC,3 ~P ~T I D 5) T ~I NI,4 / \ X X / \ 6) ~(P T) v (I v D) Impl,1 P ~P P ~P 7) (~P v ~T) v (I v D) DeM,6 D ~D D ~D invalid: 8) (P D) v (~P ~D) Equiv,2 X X T,~I,~P,~D or T,~I,D,P 4. 1) J (S C) S 2) S (J ~C) / \ 3)..~S ~S J 4) ~~S NC,3 X ~C 5) S DN,4 / \ 6) ~J v (~S v C) (2) Impl,1 ~J /\ 7) ~S v (J ~C) Impl,2 X ~S C X X P. 96 5. 1) P J ~H 2) J H / \ 3) ~H ~J H 4) ~P ~J / \ x 5) ~(~P ~J) NC,4 ~P J 6) ~~P v ~~J DeM,5 / \ x 7) P v J (2)DN,6 P J 8) ~P v J Impl,1 x x 9) ~J v H Impl,2 6. 1) S v G ~R 2) (S v ~T) R / \ 3) G (R v S) ~S R 4)..R T X 5) ~R NC,4 / \ 6) ~(S v ~T) v R Impl,2 ~G \ 7) (~S ~~T) v R DeM,6 / R S 8) (~S T) v R DN,7 S G X X 9) ~G v (R v S) Impl,3 X X

7. 1) S (C I) S 2) C (~D ~H) ~D 3) ~H ~S / \ 4)..S D ~S C 5) ~(S D) NC,4 X I 6) S ~D NI,5 / \ 7) ~S v (C I) Impl,1 ~C / \ 8) ~C v (~~D v ~H) (2) Impl,2 X D ~H 9) ~C v (D v ~H) DN,8 X / \ 10) ~~H v ~S Impl,3 H ~S 11) H v ~S DN,10 X X 7 8. 1) I (C ~L) 10) L v ~D DN,9 I 2) ~L ~D 11) ~D v R Impl,3 R 3) D R / \ 4)..I ~R ~I C 5) ~(I ~R) NC,5 X ~L 6) I ~~R NI,5 / \ invalid: 7) I R DN,6 L ~D I,R,C,~L.~D 8) ~I v (C ~L) Impl,1 X / \ 9) ~~L v ~D Impl,2 ~D R 9. 1) I (~C ~T) I 2) ~(T v C) F ~R 3) F R / \ 4)..I R ~I ~C 5) ~(I R) NC,4 X ~T 6) I ~R NI, 5 / \ 7) ~I v (~C ~T) Impl,1 / F 8) ~~(T v C) v F Impl,2 T C / \ 9) (T v C) v F DN,8 X X ~F R 10) ~F v R Impl,3 X X P. 97 III. A. 5) ~B NC,4 ~B C. 5) ~B NC,4 / \ ~F B ~B / \ X G ~D F / \ ~E X B ~A A X / \ \ / \ H~F C A B D ~D B E ~G ~F C X E X / \ x x X X A C F D D D ~C~C~C x x x B. 5) ~~C NC,4 C C DN,5 / \ ~C ~D X / \ D ~G ~F X / \ \ F A F A / / \ \ \ invalid: C,~D,~F,A,G ~F D~F D~FD~F D G E G E GE G E x x x x xx x

IV. A. 5) ~(G E) NC,4 B. 5) ~(~C ~P) NC,4 6) ~G v ~E DeM,5 6) ~C ~~P) NI,5 7) (A E) v (~A ~E) Equiv,1 7) ~C P DN,6 8) ~A v C Impl,2 8) G [(H ~I)v(~H ~~I)] Equiv,1 9) ~~A v (~E v G) Impl,3 9) G [(H ~I)v(~HvI) DN,8 10) A v (~E v G) DN,9 10) ~(HvI)v(~HvC) (2)Impl,2 11) (~H ~I)v(~HvC) DeM,10 12) ~(~HvF)vP Impl,3 13) (~~H ~F)vP DeM,12 14) (H ~F)vP DN,13 P. 98 C. 5) ~(~CvAvI) NC,4 D. 5) ~[C (BvD)] NC,4 6) ~~C ~A ~I Dem,5 6) C ~(BvD) NI,5 7) C ~A ~I DN,6 7) C (~B ~D) DeM,6 8) (~I B)v(~~I ~B) Equiv,1 8) ~(~D H)v(L A) Impl,2 9) (~I B)v(I ~B) DN,8 9) (~~Dv~H)v(L A) DeM,8 10) ~(GvB)vI Impl,2 10) (Dv~H)v(L A) DN,9 11) (~G ~B)vI DeM,9 11) [(A B) C]v[~(A B) ~C] Equiv,1 12) [(AvB) C]v[~(AvB) ~C] Equiv,3 12) [(A B) C]v[(A ~B) ~C] NI,11 13) [(AvB) C]v[(~A ~B) ~C] DeM,12 13) [(~A v B) C]v[(A ~B) ~C] Impl, 13 14) ~~Hv(~AvD) (2)Impl,3 15) Hv(~AvD) DN,14 8 E. 5) ~[(~Cv~D)v(H ~I)] NC,4 V. C=there is a contracted pelvis 6) ~(~Cv~D) ~(H ~I) DeM,5 T=fetus is in the tranverse position 7) (~~C.~~D) (~Hv~~I) (2) DeM,6 P=Caesarian section should be performed 8) (C D) (~HvI) (3)DN,7 9) ~~Hv(~CvB) Impl,1 First question: (C T) P ~C 10) Hv(~CvB) DN,9 Second question: T P T 11) ~~Iv(BvH) Impl,2 Inference: C P 12) Iv(BvH) DN,11 / \ 13) ~HvI Impl,3 invalid ~C ~T P X P. l08 1.The argument is of course invalid. (The U.S. Supreme Court subsequently overturned the decision on free speech grounds.) 1) (TvO) V 2) V L 3) R (W V) 4) M 5) V O P. 113 I. 1. Only the left path closes off. 2. Only the right path closes off. 3. None of the paths closes off. 4. Both paths close off. P. 114 5. Only the right path remains open. 6. None of the paths closes off. 7. Only the middle path closes off. 8. Both paths close off. 9. Both paths close off. 10. All paths close off. 11. 1. Hj Rj 2. Rs Ms 3. (Hs Ms) Rs 4. (HjvMj) Rj 5. (Hs Rs) Ms P. 118 1. (x)(ox Tx) 2. (x)(px Yx) 3. (x)(hx Rx) 4. (x)[hx (Rx v Mx] 5. (x)[(ox Ex) Vx] 6. (x)[(ox Bx) Dx] 7. (x)[(ox Bx) (Dx v Ex)]

9 P. 122 1. 1) (x)[tx (Sx v Kx)] 2) (x)(kx Gx) Tj 3) Tj ~Kj 4) Kj / \ 5) ~Kj NC,4 ~Tj / \ 6) Tj (Sj v Kj) UI,1 x Sj Kj 7) Kj Gj UI,2 / \ x 8) ~Tj v (Sj v Kj) Impl,6 ~Kj Gj 9) ~Kj v Gj Impl,7 invalid: Tj,~Kj,Sj 2. 1) (x)[(gx v Kx) Tx] ~Tj 2) ~Tj Kj 3) ~Kj / \ 4) ~~Kj NC,3 ~Gj Tj 5) Kj DN,4 ~Kj x 6) (Gj v Kj) Tj UI,1 x 7) ~(Gj v Kj) v Tj Impl,6 8) (~Gj ~Kj) v Tj DeM,7 Df 3. 1) (x)(dx Fx) 7) ~Df v Ff Impl,6 ~Pf 2) (x)(fx Px) 8) Ff Pf UI,2 / \ 3) Df 9) ~Ff v Pf Impl,8 ~Df Ff 4) Pf x / \ 5) ~Pf NC,4 ~Ff Pf 6) Df Ff UI,1 x x 4. 1) (x)[(dx Tx) (Cx Tx)] ~Tr 2) ~Tr Cr 3) ~Cr / \ 4) ~~Cr NC,3 5) Cr DN,4 ~Dr Tr 6) (Dr Tr) (Cr Tr) UI,1 / \ 7) (~Dr v Cr) (~Cr v Tr) (2)Impl,6 ~Cr Tr ~Cr Tr x x x x (The first premise does not refer to all x's that are both dogs and cats, so it is not (x)[(dx Cx) Tx]. One could also read the "and" as an "or" yielding (x) (Dx v Cx) Tx.) 5. 1) (x)[(dx (Ix v Vx)] Dl 2) (x)[(ix Dx) Tx] ~Vl 3) Dl ~Vl ~Il 4) Il / \ 5) ~Il NC,4 ~Dl \ 6) Dl (Il v Vl) UI,1 x Il Vl 7) ~Dl v (Il v Vl) Impl,6 x x 8) (Ia Da) Ta UI,2 9) ~(Ia Da) v Ta Impl,8 10) (~Ia v ~Da) v Ta) DeM,9

10 P. 125 Dr 2. 1) (x)(dx ~Vx) ~Pr 2) (x)(vx ~Px) / \ 3) Dr ~Dr ~Vr 4) Pr x / \ 5) ~Pr NC,4 ~Vr ~Pr 6) Dr ~Vr UI,1 invalid: Dr,~Pr,~Vr 7) ~Dr v ~Vr Impl,6 8) Vr ~Pr UI,2 Dr Vr Pr Dr ~Vr Vr ~Pr Dr Pr 9) ~Vr v ~Pr Impl,8 T F F T T T F T T F 3. 1) (x)[dx ~(Ix.Gx)] Dr 2) Dr ~Ir 3) ~Ir ~Gr 4) Gr / \ 5) ~Gr NC,4 ~Dr / \ 6) Dr ~(Ir.Gr) UI,1 x ~Ir ~Gr 7) ~Dr v ~(Ir.Gr) Impl,1 8) ~Dr v (~Ir v ~Gr) Dem,7 invalid: Dr, ~Ir,~Gr 4. 1) (x)[(bx Sx) ~Nx] 2) (x)(tx Bx) Tr 3) Tr Nr 4) ~Nr / \ 5) ~~Nr NC,4 / \ ~Nr 6) Nr DN,5 ~Br ~Sr x 7) (Br Sr) ~Nr UI,1 / \ / \ 8) ~(Br Sr) v ~Nr Impl,7 ~Tr Br ~Tr Br 9) (~Br v ~Sr) v ~Nr DeM,8 x x x 10) Tr Br UI,2 11) ~Tr v Br Impl,10 invalid: Tr,Nr,~Sr,Br Br Sr Nr Tr (Br.Sr) ~Nr Tr. Br Tr ~Nr T F T T T F F T T T T F P. 128 1. ( x)(dx Vx) 2. ( x)(dx ~Gx) 3. ( x)[dx (Bx Gx)] 4. ( x)[px (Tx ~Ex)] 5. ( x)[px ~(Ix Hx)] P. 141, I. 1. ( x)~cx 2. ( x)(cx) 3. ( x)~(ax Bx) 4. ( x)(bx Cx) 5. (x)~bx 6. (x)~(ax Bx) 7. (x)(ax Bx) 8. (x)~(ax Cx Dx) P. 142 II. 1. 4) ~( x)ax NC,3 ~Aa 5) (x)~ax QE,4 Ba 6) ~Aa UI,5 / \ invalid 7) Aa Ba UI,1 ~Aa Ba 8) ~Aa v Ba Impl,7 9) Ba UI,2

11 / \ 2. 4) ~( x)(~bx Ax) NC,3 Ba ~Aa 5) (x)~(~bx Ax) QE,4 / \ \ 6) ~(~Ba Aa) UI,5 ~Ba Ca ~Ba Ca 7) ~~Ba v ~Aa DeM,6 x / \ \ 8) Ba v ~Aa DN,7 ~Aa Ba ~Aa Ba ~Aa Ba 9) Aa Ba UI,1 x 10) ~Aa v Ba Impl,9 invalid: Ba,Ca,~Aa or Ba, Ca or 11) Ba Ca UI,2 ~Aa,~Ba or ~Aa,Ca or ~Aa, 12) ~Ba v Ca Impl,11 Ca,Ba 3. 4) ~( x)(bx v Dx) NC,3 ~Ba 5) (x)~(bx v Dx) QE,4 ~Da 6) ~(Ba v Da) UI,5 / \ invalid 7) ~Ba ~Da DeM,6 ~Aa Ca 8)(Aa v Ba) Ca UI,1 ~Ba \ 9) ~(AavBa) v Ca Impl,8 / \ ~Ba Da 10) (~Aa ~Ba) v Ca DeM,9 ~Ba Da x 11) Ba Da UI,2 x 12) ~Ba v Da Impl,11 4. 5) ~(~Aa.~Ba) NC,4 ~Ca 6) ~~Aa v ~~Ba DeM,5 / \ 7) Aa v Ba (2)DN,5 Aa Ba 8) Aa Ba UI,1 / \ / \ 9) ~Aa v Ba Impl,8 ~Aa Ba ~Aa Ba 10) Ba Ca UI,2 x / \ \ 11) ~Ba v Ca Impl,10 ~Ba Ca ~Ba Ca ~Ba Ca x x x x x x 5. 1) (x)(px Bx) 2) (x) (Mx ~Bx) / \ 3) ( x)(px ~Mx) ~Pa Ma 4) ~( x)(px ~Mx) NC,3 / \ / \ 5) x)~(px ~Mx) QE,4 ~Ma ~Ba ~Ma ~Ba 6)~(Pa ~Ma) UI,5 /\ / \ x / \ 7) ~Pa v ~~Ma DeM,6 ~Pa Ba ~Pa Ba ~Pa Ba 8) ~Pa v Ma DN,7 x x 9) Pa Ba UI, 1 10) ~Pa v Ba Impl,9 invalid 11) Ma ~Ba UI,2 12) ~Ma v ~Ba Impl,11 6. 1) (x)[px (Cx v Ix)] / \ 2) (x)(gx ~Ix) / \ 3) ( x)(gx Cx) / / \ 4) ~( x)(gx Cx) NC,3 ~Pa Ca Ia 5) (x) ~(Gx Cx) QE,4 / \ / \ / \ 6) ~(Ga Ca) UI,5 ~Ga ~Ia ~Ga ~Ia ~Ga ~Ia 7) ~Ga v ~Ca DeM,6 / \ / \ / \ / \ / \ x 8) Pa (Ca v Ia) UI,1 ~Ga~Ca~Ga~Ca~Ga~Ca~Ga~Ca~Ga~Ca 9) ~Pa v (Ca v Ia) Impl,8 x x 10) Ga ~Ia UI,2 11) ~Ga v ~Ia Impl,10

12 P. 146 2. 4) ~( x)cx NC,3 Aa 5) (x)~cx QE,4 ~Ca 6) Aa EI,2 / \ 7) ~Ca UI,5 ~Aa Ca 8) (Aa v Ba) Ca UI,1 ~Ba x 9) ~(Aa v Ba) v Ca Impl,8 x 10) (~Aa ~Ba) v Ca DeM,9 P. 147 3. 5) ~( x)dx NC,4 Aa 6) (x)~dx QE,5 Ba 7) Aa Ba EI,1 ~Da 8) ~Da UI,6 / \ 9) (Ba Ca) Da UI,2 ~Aa Da 10) ~(Ba Ca) v Da Impl,9 x x (second premise is 11) (~Ba v ~Ca) v Da DeM,10 not really needed) 12) Aa Da UI,3 13) ~Aa v Da Impl,12 4. 5) ~(x)(ex Ax) NC,4 14) Aa Ba UI,1 Ea 6) ( x)~(ex ~Ax) QE,5 15) ~Aa v Ba Impl,14 Aa 7) (x)(ex ~Dx) QE,3 16) Ba Da UI,2 / \ 8) ~(Ea ~Aa) EI,6 17) ~Ba v Da Impl,16 ~Ea ~Da 9) Ea ~~Aa NI,8 x / \ 10) Ea Aa DN,9 ~Ba Da 11) (x)(x ~Dx) QE,3 / \ x 12) Ea ~Da UI,11 ~Aa Ba 13) ~Ea v ~Da Impl,12 x x 5. 5) ~( x)~ax NC,4 12) ~(Ca v ~Da) v ~Ba Impl,11 Ca 6) (x)ax QE,5 13) (~Ca ~Da) v ~Ba DeM, 12 Aa 7) Ca EI,3 / \ 8) Aa UI,6 ~Ca ~Ba 9) Aa Ba UI,1 ~Da / \ 10) ~Aa v Ba Impl,9 x ~Aa Ba 11) (Ca v Da) ~Ba UI,2 x x 6. 1) (x)(cx Lx) 7) Ca ~Wa NI,6 Ca 2) (x)(lx Wx) 8) Ca La UI,1 ~Wa 3) (x)(cx Wx) 9) ~Ca v La Impl,8 / \ 4) ~(x)(cx Wx) NC,3 10) La Wa UI,2 ~Ca La 5) ( x)~(cx Wx) QE,4 11) ~La v Wa Impl,10 x / \ 6) ~(Ca Wa) EI,5 ~La Wa x x 7. Ca 1) (x)(fx Sx) 6) Ca Fa EI,2 Fa 2) ( x)(cx Fx) 7) ~(Ca Sa) UI,5 / \ 3) ( x)(cx Sx) 8) ~Ca v ~Sa DeM,7 ~Ca ~Sa 4) ~( x)(cx Sx) NC,3 9) Fa Sa UI,1 x / \ 5) (x)~(cx Sx) QE,4 10) ~Fa v Sa Impl,9 ~Fa Sa x x

13 8. 1) ( x)(lx.~jx) 8) ~La v ~~Sa DeM,7 La 2) (x)[(lx.~jx) ~S] 9) ~La v Sa DN,8 ~Ja 3) ( x)(lx ~Sx) 10) (La ~Ja) ~Sa UI,2 / \ 4) ~( x)(lx ~Sx) NC3 11) ~(La ~Ja) v ~Sa Impl,10 ~La Sa 5) (x)~(lx ~Sx) QE,4 12) (~La v ~~Ja) v ~Sa DeM,11 x / \ 6) (La ~Ja) EI,1 13) (~La v Ja) v ~Sa DN,12 / \ ~Sa 7) ~(La ~Sa) UI,5 ~La Ja x x x 9. 1) (x)[px (Cx Ix)] 9) Pa (Ca Ia) UI,1 Pa 2) ( x)(px Lx) 10) ~Pa v (Ca Ia) Impl,9 La 3) ( x)(lx Cx) / \ 4) ~( x)(lx Cx) NC,3 ~La ~Ca 5) (x)~(lx Cx) QE,4 x / \ 6) (Pa La) EI,2 ~Pa Ca 7) ~(La Ca) UI,5 x Ia 8) ~La v ~Ca DeM,7 x 10. Ca 1) (x)[ca (Ix v Vx)] 9) Ca (~~Ra ~Fa) DeM,8 Ra 2) (x)(ix ~Rx) 10) Ca (Ra ~Fa) DN,9 ~Fa 3) (x)(vx Fx) 11) Ca (Ia v Va) UI,1 / \ 4) (x)[cx (~Rx v Fx)] 12) ~Ca v (Ia v Va) Impl,11 ~Ia ~Ra 5) ~(x)[cx (~Rx v Fx)] NC,4 13) Ia ~Ra UI,2 / \ x 6) ( x)~[cx (~Rx v Fx)] QE,5 14) ~Ia v ~Ra Impl,13 ~Ca / \ 7) ~[Ca (~Ra v Fa)] EI,6 15) Va Fa UI,3 x Ia Va 8) Ca ~(~Ra v Fa) NI,7 16) ~Va v Fa Impl,15 x / ~Va Fa x x P. 151 1. 1) (x) (Cx Ex) 8) Ca ~Ma NI,7 Ca 2) (x)[ex (Mx v Ix)] 9) Ca Ea UI,1 ~Ma 3) (x)(cx ~Ix) 10) ~Ca v Ea Impl,9 / \ 4) (x)(cx Mx) 11) Ea (Ma v Ia) UI,2 ~Ca Ea 5) ~(x)(cx Mx) NC,4 12) ~Ea v (Ma v Ia) Impl,11 x / \ 6) ( x)~[cx Mx) QE,5 13) Ca ~Ia UI,3 ~Ea Ma Ia 7) ~(Ca Ma) EI,6 14) ~Ca v ~Ia Impl,13 x x / \ 2. La 1) ( x)(px.cx) 7) ~(La Ca) EI, 6 ~Ca 2) ~(x)(lx Cx) 8) La ~Ca NI,7 Pb 3) ( x)(lx ~Px) 9) Pb Cb EI,1 Cb 4) ~( x)(lx ~Px) NC,3 10) ~(La ~Pa) UI,5 / \ 5) (x)~(lx ~Px) QE,4 11) ~La v ~~Pa DeM,10 ~La Pa 6) ( x)~(lx Cx) QE,2 12) ~La v Pa DN,11 x 3. 1) (x) (Bx Fx) 10) Ba Fa UI,1 Ca 2) (x)(rx Bx) 11) ~Ba v Fa Impl,10 Ra 3) ( x)(cx Rx) 12) Ra Ba UI,2 / \ 4) ( x)(cx Fx) 13) ~Ra v Ba Impl,12 ~Ca ~Fa 5) ~( x)(cx Fx) NC,4 x / \ 6) (x)~(cx Fx) QE,5 ~Ba Fa 7) Ca Ra EI,3 / \ x 8) ~(Ca Fa) UI,6 ~Ra Ba 9) ~Ca v ~Fa DeM,8 x x ~Ca ~Ia x x

14 4. 1) (x)[(px v Cx) Fx] Aa 2) ( x)(ax Px) Pa 3) ( x)(ax Cx) / \ 4) ~( x)(ax Cx) NC,3 ~Aa ~Ca 5) (x)~(ax Cx) QE,4 x / \ 6) Aa Pa EI,3 ~Pa Fa 7) ~(Aa Ca) UI,5 ~Ca 8) ~Aa v ~Ca DeM,7 x 9) (Pa v Ca) Fa UI,1 10) ~(Pa v Ca) v Fa Impl,9 11) (~Pa ~Ca) v Fa DeM,10 5. 1) (x)[(px v Cx) Rx] 9) Pa Sa DN,8 Pa 2) (x)(ax ~Sx) 10) (Pa v Ca) Ra UI,1 Sa 3) (x)(cx ~Ax) 11) ~(Pa v Ca) v Ra Impl,10 / \ 4) (x)(px ~Sx) 12) (~Pa.~Ca) v Ra DeM,11 ~Pa Ra 5) ~(x)(px ~Sx) NC,4 13) Aa ~Sa UI,2 ~Ca / \ 6) ( x)~(px ~Sx) QE,5 14) ~Aa v ~Sa Impl,13 x ~Aa ~Sa 7) ~(Pa ~Sa) EI,6 15) Ca ~Aa UI,3 / \ x 8) Pa ~~Sa NI,7 16) ~Ca v ~Aa Impl,15 ~Ca ~Aa 6. 1) (x)(hx ~Vx) 7) La ~~Va) NI,6 La 2) (x)(lx Hx) 8) La Va DN,7 Va 3) (x)(lx ~Vx) 9) Ha ~Va UI,1 / \ 4) ~(x)(lx ~Vx) NC,3 10) ~Ha v ~Va) Impl,9 ~Ha ~Va 5) ( x)~(lx ~Vx) QE,4 11) La Ha UI,2 / \ x 6) ~(La ~Va) EI,5 12) ~La v Ha Impl,11 ~La Ha x x 7. 1) (x)(bx Fx) Oa 2) (x)(ox ~Tx) Ba 3) (x)[(fx ~Tx) Px] ~Pa 4) (x)[(ox Bx) Px] / \ 5) ~(x)[(ox Bx) Px] NC,4 ~Oa ~Ta 6) ( x)~[(ox Bx) Px] QE,5 x / \ 7) ~[(Oa Ba) Pa] EI,6 / \ Pa 8) (Oa Ba) ~Pa NI,7 ~Fa Ta x 9) Ba Fa UI,1 / \ x 10) ~Ba v Fa Impl,9 ~Ba Fa 11) Oa ~Ta UI,2 x x 12) ~Oa v ~Ta Impl,11 13) (Fa ~Ta) Pa UI,3 14) ~(Fa ~Ta) v Pa Impl,13 15) (~Fa ~~Ta) v Pa DeM,14 16) (~Fa v Ta) v Pa DN,15

15 8. 1) (x)(bx Fx) Oa 2) (x)[(fx Rx) ~Px] Ba 3) ( x)[(ox Bx) (Fx Rx)] Fa 4) ( x)(bx ~Px) Ra 5) ~( x)(bx ~Px) NC,4 / \ 6) (x)~(bx ~Px) QE,5 / \ ~Pa 7) Oa Ba (Fa Ra) EI,3 ~Fa ~Ra \ 8) Ba Fa UI,1 x x ~Ba Pa 9) ~Ba v Fa Impl,8 x x 10) (Fa Ra) ~Pa UI,2 11) ~(Fa Ra) v ~Pa Impl,10 first premise is not needed 12) (~Fa v ~Ra) v ~Pa DeM,11 13) ~(Ba ~Pa) UI,6 14) ~Ba v ~~Pa DeM,13 15) ~Ba v Pa DN,14 Aa 9. 1) (x)(ax Fx) 8) ~(Fa ~Ea) UI,6 / \ 2) ( x)(ax (Rx v ~Hx) 9) ~Fa v ~~Ea DeM,8 Ra ~Ha 3) (x)(rx ~Ex) 10) ~Fa v Ea DN,9 / \ / \ 4) ( x)(fx ~Ex) 11) Aa Fa UI,1 ~Aa Fa ~Aa Fa 5) ~( x)(fx ~Ex) NC,4 12) ~Aa v Fa Impl,11 x / \ x / \ 6) (x)~(fx ~Ex) QE,5 13) Ra ~Ea UI,3 ~Ra ~Ea ~Ra ~Ea 7) Aa (Ra v ~Ha) EI,2 14) ~Ra v ~Ea Impl,13 x / \ / / \ (diagram 7,12,14,10) ~Fa Ea~Fa Ea ~Fa Ea x x x x x 10. 1) ( x)(bx ~Dx) 2) (x)(bx ~Sx) 3) (x)[(dx Bx) Hx] 4) ( x)(hx ~Sx 5) ~( x)(hx ~Sx) NC,4 Ba 6) (x)~(hx ~Sx) QE,5 Da 7) Ba ~Da EI,1 / \ 8) ~(Ha ~Sa) UI,6 ~Ba ~Sa 9) ~Ha v ~~Sa DeM,8 x / \ 10) ~Ha v Sa DN,9 / \ \ 11) Ba ~Sa UI,2 ~Da ~Ba Ha 12) ~Ba v ~Sa Impl,11 x x / \ 13) (Da Ba) Ha UI,3 ~Ha Sa 14) ~(Da Ba) v Ha Impl,13 x x 15) (~Da v ~Ba) v Ha DeM,14 (diagramming 7,12,15,10) P. 153 I. 3. [(x)(~bx)] [( x)(ex)] 1. [( x)(bx)] [(x)(gx)] 4. [(x)(bx Gx)] v [( x)[~px)] 2. [(x)~bx] [( x)ex] 5. [(x)(cx)] v (( x)(ex)] P. 154, II, 2. Ca 1) (x)[cx (Dx v ~Lx)] 9) Ca Da DN,8 Da 2) (x)~(lx ~Dx) 10) Cb ~Lb EI,3 Cb 3) ( x)(cx ~Lx) 11) Ca (Da v ~La) UI,1 ~Lb 4) (x)(cx ~Dx) 12) ~Ca v (Da v ~La) Impl,11 / \ 5) ~(x)(cx ~Dx) NC,4 13) ~(La ~Da) UI,2 / / \ 6) ( x)~(cx ~Dx) QE,5 14) ~La v ~~Da DeM,13 ~Ca Da ~La 7) ~(Ca ~Da) EI,6 15) ~La v Da DN,14 x / \ / \ 8) Ca ~~Da NI,7 ~La Da ~La Da

3. Ea 1) (x)(ax v Sx) 7) ( x)~[(ex ~Sx) Dx] QE,3 ~Da 2) ( x)ex 8) Ea EI,2 Eb 3) ~(x)[(ex ~Sx) Dx] 9) ~[(Eb ~Sb) Db] EI,7 ~Sb 4) ( x)dx 10) (Eb ~Sb) ~Db NI,9 ~Db 5) ~( x)dx NC,4 11) ~Da UI,6 / \ 6) (x)~dx QE,5 12) Aa v Sa UI,1 Aa Sa 16 4. 1) (x)(ex ~Sx) 2) ( x)(ex) 8) ~Da UI,6 Ea 3) (x)(ex Dx) 9) Ea ~Sa UI,1 ~Da 4) ( x)dx 10) ~Ea v ~Sa UI,3 / \ 5) ~( x)dx NC,4 11) Ea Da UI,3 ~Ea Da 6) (x)~dx QE,5 12) ~Ea v Da Impl,11 x x 7) Ea EI,2 (diagramming 7,8,12 only) 5. 1) (x)[(vx Dx) Mx] 2) (x) (Rx Vx) 3) ( x)(rx Dx) Ra 4) ( x)(rx Mx) Da 5) ~( x)(rx Mx) NC,4 / \ 6) (x)~(rx Mx) QE,5 ~Ra ~Ma 7) Ra Da EI,3 x / \ 8)~(Ra Ma) UI,6 / \ \ 9) ~Ra v ~Ma DeM,8 ~Va ~Da Ma 10) (Va Da) Ma UI,1 / \ x x 11) ~(Va Da) v Ma Impl,10 ~Ra Va 12) (~Va v ~Da) v Ma DeM,11 x x 13) (Ra Va) UI,2 14) ~Ra v Va Impl,13 6. 1) (x)(hx Dx) 2) (x)(dx Ix) or (x) (~Ix ~Dx) Ia 3) (x)(ix Hx) ~Ha 4) ~(x)(ix Hx) NC,3 / \ 5) ( x)~(ix Hx) QE,4 ~Ha Da 6) ~(Ia Ha) EI,5 / \ / \ 7) Ia ~Ha NI,6 ~Da Ia ~Da Ia 8) Ha Da UI,1 x 9) ~Ha v Da Impl,8 10) Da Ia UI,2 11) ~Da v Ia Impl,10 Ia 7. ~Wa 1) (x)(ax Wx) 8) ~(Ia ~Da) UI,6 / \ 2) ( x)(ix ~Wx) 9) ~Ia v ~~Da DeM,8 ~Ia Da 3) (x)(dx Ax) 10) ~Ia v Da DN,9 x / \ 4) ( x)(ix ~Dx) 11) Aa Wa UI,1 ~Aa Wa 5) ~( x)(ix ~Dx) NC,4 12) ~Aa v Wa Impl,11 / \ x 6) (x)~(ix ~Dx) QE,5 13) Da Aa UI,3 ~Da Aa 7) Ia ~Wa EI,2 14) ~Da v Aa Impl,13 x x

17 8. 1) (x)(cx Ex) 9) Sa Ta DN,8 Sa 2) (x)(sx ~Cx) 10) Cb Tb EI,3 Ta 3) ( x)(cx Tx) 11) Ca Ea UI,1 Cb 4) (x)(sx ~Tx) 12) ~Ca v Ea Impl,11 Tb 5) ~(x)(sx ~Tx) NC,4 13) Sa ~Ca UI,2 / \ 6) ( x)~(sx ~Tx) QE,5 14) ~Sa v ~Ca Impl,13 ~Sa ~Ca 7) ~(Sa ~Ta) EI,6 x / \ 8) Sa ~~Ta NI,7 ~Ca Ea P. 159 2. ( y) Py (x) (Px Sxy) 3. ( y) Py (x) (Px Syx) 4. (x)(y) {[(Px Py) Ixy] Sxy} 5. ~(x)(y) {[(Px Py) Sxy] Ixy} P. 198 I. 1. Abusive ad hominem; 2. circumstantial ad hominem; 3. appeal to force; 4. pointing to the other wrong; 5. appeal to self-righteousness; 6. appeal to tradition; 7. arguing beside the point; 8. appeal to authority. P. 199 II. 1. ad hominem (more circumstantial than abusive); 2. appeal to force; 3. equivocation on "war" (formally declared war as opposed to the commonsense understanding of war); 4. circumstantial ad hominem; 5. begging the question; 6. abusive ad hominem. P. 250 2. quantitative, classical; 3. quantitative; 4. quantitative, relative frequency; 5. quantitative (since this appears to be more precise than just a ballpark guess), relative frequency. Pp. 254-255 1. a..7; b..2 x.5 =.1; c..7 -.10 =.6 2. a. 1/6 (of the 36 possible combinations totaling 7: 6+1, 1+6, 3+4, 4+3, 5+2, 2+5) b.2/9 (in addition to the above six combinations, there are two more: 5+6 and 6+5, yielding a total of 8 out of 36) 3.a. 4/52 = 7.7%; b. 4/51 = 7.9%; c. 4/53 x 4/51 = 16/2652 =.6%; d. 1-4/52 = 48/52 = 9.2% 5.1/365. The first person has a 100% chance of having a birthday. The odds that the second person has the same birthdate are 1/365. (1 x 1/365 1/365). (Note that these people are chosen at random. This is not the same question as the one at issue when recruits in the military are suckered into betting that two recruits in a room of, say, fifty people, share a birthday. In that situation, one keeps looking until one finds a match. The odds increase dramatically because one does not simply stop with the first two people picked at random.) 6. a. 1/2 x 1/90 = 1/180; b. 1/4 x 1/180 = 1/720 Solution to #8, p. 255 On the one hand, it would seem that it would not matter, because one of the two remaining doors contains the prize anyway, so your chances of winning seem to be the same whether you switch or not. This would certainly be true if the host opened door number two before you announced your choice to the host. But does it make a difference that he opened the door after you made your choice? Another way of analyzing the situation is this: Ask what the chances are of being wrong before receiving any help from the host. The answer is that the

odds are two out of three. And then ask whether those odds could possibly be improved by a policy of switching. That is, given all the possible combinations (of doors with goats and a Ferrari behind them and of initial choices one might make before the host opens a door with a goat), would a policy of switching be more likely to open the door with the Ferrari than with the remaining goat? 18 P. 260 1. The principle does not hold for every assignment, but it does hold when p = 1 or when P = 0. However, the principle that we discussed in Chapters III and V held only for those assignments anyway, because we introduced contradiction in crisp logic. 2. Where S =.25 and J =.8, the value of J S is max 1 - J, S, or max.2,.25, or.25. 3. Two reasons for believing crisp logic is a special case of fuzzy logic are the results of the principle of contradiction and of the application of disjunction and conjunction. Since the law of contradiction holds for all of crisp logic but only for special cases in fuzzy logic, it would seem that crisp logic is a special case of fuzzy logic. Similarly, the rules for fuzzy disjunction and conjunction yield the correct result regardless of the fuzzy assignment, including the extreme cases that fall into crisp logic, but the crisp logic rules hold only for crisp logic. 4. It means: the value of fuzzy p and fuzzy q is the lesser of fuzzy p and fuzzy q. This is false. 5. The translation is P Q = min P, Q. This is correct.