Chapter 36. Transport in Vascular Plants

Similar documents
Chapter 36: Transport in Vascular Plants - Pathways for Survival

CHAPTER TRANSPORT

Transport in Vascular Plants

Resource Acquisition and Transport in Vascular Plants

Resource Acquisition and Transport in Vascular Plants

NOTES: CH 36 - Transport in Plants

Please sit next to a partner. you are an A or a B

Transport in Plants Notes AP Biology Mrs. Laux 3 levels of transport occur in plants: 1. Uptake of water and solutes by individual cells -for

Ch. 36 Transport in Vascular Plants

Compartments and Transport. Three Major Pathways of Transport. Absorp+on of Water and Minerals by Root Cells. Bulk flow

DNA or RNA metabolism (1%) Signal transduction (2%) Development (2%) Other cellular processes (17%)

AP Biology Chapter 36

Chapter 36~ Transport in Plants

2014 Pearson Education, Inc. 1

CHAPTER 32 TRANSPORT IN PLANTS OUTLINE OBJECTIVES

AP Biology. Transport in plants. Chapter 36. Transport in Plants. Transport in plants. Transport in plants. Transport in plants. Transport in plants

Transport in Plants (Ch. 23.5)


Transport in Plants AP Biology

Chapter 36 Transport in Vascular Plants Lecture Outline

2014 Pearson Education, Inc. 1. Light. Sugar O 2 H 2 O. and minerals CO Pearson Education, Inc.

Organs and leaf structure

Transport in Plants. Transport in plants. Transport across Membranes. Water potential 10/9/2016

OCR (A) Biology A-level

Introduction to Plant Transport

Transport of substances in plants

Introduction to Plant Transport

IB Bio: Plant Biology. Topic 9

Biology 1030 Winter 2009

Plant Transport and Nutrition

Resource acquisition and transport in vascular plants

Bio Factsheet. Transport in Plants. Number 342

Introduction to Plant Transport

Movement of water and solutes in plants Chapter 4 and 30

Chapter 35 Regulation and Transport in Plants

in angiosperms 10/29/08 Roots take up water via roots Large surface area is needed Roots branch and have root hairs Cortex structure also helps uptake

35 Transport in Plants

CBSE Quick Revision Notes (Class-11 Biology) CHAPTER-11 TRANSPORT IN PLANTS

Bio 102 Chapter 32 Transport in Plants

Recap. Waxy layer which protects the plant & conserves water. Contains chloroplasts: Specialized for light absorption.

of water unless it is moving via the symplast Water moves into the xylem for transport up the plant Water that does not cross the

3. Describe the role played by protein pumps during active transport in plants.

Plant Structure and Function

The three principal organs of seed plants are roots, stems, and leaves.

Homework for Monday: Correct potometer questions Complete transport in plants worksheet

PLANT SCIENCE. 9.2 Transport in Angiospermophytes

TRANSPORT OF MATERIALS IN PLANTS

Transport, Storage and Gas Exchange in Flowering Plants

Chapter C3: Multicellular Organisms Plants

Water Acquisition and Transport - Whole Plants. 3 possible pathways for water movement across the soil-plant-atmosphere continuum

CASE STUDY WATER ABSORPTION AND TRANSPORT IN PLANTS

Chapter 30: Plant Nutrition & Transport

Water and Food Transportation

Transport in Plant (IGCSE Biology Syllabus )

Plants. Plant Form and Function. Tissue Systems 6/4/2012. Chapter 17. Herbaceous (nonwoody) Woody. Flowering plants can be divided into two groups:

ABSORPTION OF WATER MODE OF WATER ABSORPTION ACTIVE AND PASSIVE ABSORPTION AND FACTORS AFFECTING ABSORPTION.

Bio 10 Lecture Notes 7: Plant Diversity, Structure and Function SRJC

Transport of Water and Solutes in Plants

Chapter 32 Plant Nutrition and Transport

Preview from Notesale.co.uk Page 20 of 34

Translocation 11/30/2010. Translocation is the transport of products of photosynthesis, mainly sugars, from mature leaves to areas of growth and

Stems and Transport in Vascular Plants. Herbaceous Stems. Herbaceous Dicot Stem 3/12/2012. Chapter 34. Basic Tissues in Herbaceous Stems.

ARIF ULLAH ITHS

Biology 2 Chapter 21 Review

Nutrition and Transport in Plants Chapter 26. Outline

Chapter 23 Notes Roots Stems Leaves

Chapter 21: Plant Structure & Function

BRAINSTORM ACTIVITY What do we depend on plants for?

Exchanging Materials in Plants

Two major categories. BIOLOGY 189 Fundamentals of Life Sciences. Spring 2004 Plant Structure and Function. Plant Structure and Function

Chapter 29. Table of Contents. Section 1 Plant Cells and Tissues. Section 2 Roots. Section 3 Stems. Section 4 Leaves. Plant Structure and Function

C MPETENC EN I C ES LECT EC UR U E R

Biology. Chapter 26. Plant Nutrition and Transport. Concepts and Applications 9e Starr Evers Starr. Cengage Learning 2015

Water Relations in Viticulture BRIANNA HOGE AND JIM KAMAS

Resource Acquisition and Transport in Vascular Plants

Earth Has a Rich Diversity of Plants. Plant Structure, Nutrition, and Transport. Angiosperms: Monocots and Dicots. Angiosperms: Dicots

Plant Structure and Growth

Chapter. Transport in. Structure of. 1- Epidermis: 2- Cortex: All plants 2- a specialized. In higher moving by. hydra and. with cuticles) 1-2-

Progetto cofinanziato dal programma LIFE+ Department of Agricultural Engineering and Agronomy - University of Naples Federico II

Transportation in Plants

Page 1. Gross Anatomy of a typical plant (Angiosperm = Flowering Plant): Gross Anatomy of a typical plant (Angiosperm = Flowering Plant):

Botany: Part III Plant Nutri0on

Plant Anatomy: roots, stems and leaves

Plant Anatomy: roots, stems and leaves

thebiotutor. AS Biology OCR. Unit F211: Cells, Exchange & Transport. Module 2.3 Transport in Plants. Answers.

MULTIPLE CHOICE QUESTIONS

Unit B: Cells and Systems

Name AP Biology - Lab 06

Photosynthesis. Water is one of the raw materials needed for photosynthesis When water is in short supply the rate of photosynthesis is limited

Save My Exams! The Home of Revision For more awesome GCSE and A level resources, visit us at Transport in plants

Plant Organs. Roots & Stems

Chapter 12 & 13 Transport, Soil and Mineral Nutrition

WATER. water in the biosphere. water in the landscape. water in the soil. water in the plant. (Atwell, Kriedemann & Turnbull 1999)

AP Biology Transpiration and Stomata

cytosol stroma Photorespiration: Ribulose bisphosphate carboxylase/oxygenase (Rubisco) Ribulose bisphosphate carboxylase/oxygenase (Rubisco)

Non Permanent Tissues - Meristematic Tissue

Transpiration. Interesting Fact:

Laboratory 9: Transpiration

13.2 The Vascular Plant Body (textbook p )

VOCABULARY LECTURE 5. NUTRIENT TRANSPORT: LONG- DISTANCE TRANSPORT 9/2/2015

Transcription:

Chapter 36 Transport in Vascular Plants

Overview: Pathways for Survival For vascular plants The evolutionary journey onto land involved the differentiation of the plant body into roots and shoots

Vascular tissue Transports nutrients throughout a plant; such transport may occur over long distances Figure 36.1

Concept 36.1: Physical forces drive the transport of materials in plants over a range of distances Transport in vascular plants occurs on three scales Transport of water and solutes by individual cells, such as root hairs Short-distance transport of substances from cell to cell at the levels of tissues and organs Long-distance transport within xylem and phloem at the level of the whole plant

A variety of physical processes Are involved in the different types of transport 4 Through stomata, leaves take in CO 2 and expel O 2. The CO 2 provides carbon for photosynthesis. Some O 2 produced by photosynthesis is used in cellular respiration. H 2 O CO 2 O 2 Sugar 5 Sugars are produced by photosynthesis in the leaves. Light 3 Transpiration, the loss of water from leaves (mostly through stomata), creates a force within leaves that pulls xylem sap upward. 6 Sugars are transported as phloem sap to roots and other parts of the plant. 2 Water and minerals are transported upward from roots to shoots as xylem sap. 1 Roots absorb water and dissolved minerals from the soil. Figure 36.2 H 2 O Minerals O 2 CO 2 7 Roots exchange gases with the air spaces of soil, taking in O 2 and discharging CO 2. In cellular respiration, O 2 supports the breakdown of sugars.

Membranes: A Review The selective permeability of a plant cell s plasma membrane Controls the movement of solutes into and out of the cell Specific transport proteins Enable plant cells to maintain an internal environment different from their surroundings

Proton pumps in plant cells Create a hydrogen ion gradient that is a form of potential energy that can be harnessed to do work Contribute to a voltage known as a membrane potential The Central Role of Proton Pumps Figure 36.3 CYTOPLASM ATP H + H + + H + + EXTRACELLULAR FLUID + + H + H + + H + H + H + Proton pump generates membrane potential and H + gradient.

Plant cells use energy stored in the proton gradient and membrane potential To drive the transport of many different solutes CYTOPLASM + EXTRACELLULAR FLUID K + K + + + K + Cations ( K +, for example) are driven into the cell by the membrane potential. K + K + K + + K + + Transport protein (a) Membrane potential and cation uptake Figure 36.4a

In the mechanism called cotransport A transport protein couples the passage of one solute to the passage of another H + H + H + H + + + + + + + H + H + H + H + H + H + H + H + Cell accumulates anions ( NO 3, for example) by coupling their transport to the inward diffusion of H + through a cotransporter. (b) Cotransport of anions Figure 36.4b

The coattail effect of cotransport Is also responsible for the uptake of the sugar sucrose by plant cells S H + H + H + H + H + H + S H + + (c) Contransport of a neutral solute Figure 36.4c + + + + + H + H + H + H + H + Plant cells can also accumulate a neutral solute, such as sucrose ( S ), by cotransporting down the H + steep proton gradient.

To survive Plants must balance water uptake and loss Osmosis Determines the net uptake or water loss by a cell Is affected by solute concentration and pressure Effects of Differences in Water Potential

Water potential Is a measurement that combines the effects of solute concentration and pressure Determines the direction of movement of water Water Flows from regions of high water potential to regions of low water potential

Both pressure and solute concentration Affect water potential How Solutes and Pressure Affect Water Potential

The solute potential of a solution Is proportional to the number of dissolved molecules Pressure potential Is the physical pressure on a solution

Water potential (ψ) = pressure potential (ψp) + solute potential (ψs)

The addition of solutes Reduces water potential (a) 0.1 M solution Quantitative Analysis of Water Potential Figure 36.5a Pure water ψ = 0 MPa H 2 O ψ P = 0 ψ S = 0.23 ψ = 0.23 MPa

Application of physical pressure Increases water potential (b) (c) H 2 O H 2 O Figure 36.5b, c ψ = 0 MPa ψ P = 0.23 ψ S = 0.23 ψ = 0 MPa ψ = 0 MPa ψ P = 0.30 ψ S = 0.23 ψ = 0.07 MPa

Negative pressure Decreases water potential (d) H 2 O ψ P = 0.30 ψ S = 0 ψ = 0.30 MPa ψ P = 0 ψ S = 0.23 ψ = 0.23 MPa Figure 36.5d

Water potential Affects uptake and loss of water by plant cells If a flaccid cell is placed in an environment with a higher solute concentration The cell will lose water and become plasmolyzed 0.4 M sucrose solution: ψ P = 0 ψ S = 0.9 Initial flaccid cell: ψ P = 0 ψ S = 0.7 ψ = 0.7 MPa Plasmolyzed cell at osmotic equilibrium with its surroundings ψ = 0.9 MPa Figure 36.6a ψ P = 0 ψ S = 0.9 ψ = 0.9 MPa

If the same flaccid cell is placed in a solution with a lower solute concentration The cell will gain water and become turgid Initial flaccid cell: ψ P = 0 ψ S = 0.7 ψ = 0.7 MPa Distilled water: ψ P = 0 ψ S = 0 ψ = 0 MPa Turgid cell at osmotic equilibrium with its surroundings ψ P = 0.7 ψ S = 0.7 ψ = 0 MPa Figure 36.6b

Turgor loss in plants causes wilting Which can be reversed when the plant is watered Figure 36.7

Aquaporins Are transport proteins in the cell membrane that allow the passage of water Do not affect water potential Aquaporin Proteins and Water Transport

Three Major Compartments of Vacuolated Plant Cells Transport is also regulated By the compartmental structure of plant cells

The plasma membrane Directly controls the traffic of molecules into and out of the protoplast (living matter of cell) Is a barrier between two major compartments, the cell wall and the cytosol

The third major compartment in most mature plant cells Is the vacuole, a large organelle that can occupy as much as 90% of more of the protoplast s volume The vacuolar membrane Regulates transport between the cytosol and the vacuole Transport proteins in the plasma membrane regulate traffic of molecules between the cytosol and the cell wall. Cell wall Cytosol Vacuole Transport proteins in the vacuolar membrane regulate traffic of molecules between the cytosol and the vacuole. Figure 36.8a Plasmodesma Plasma membrane Vacuolar membrane (tonoplast) (a) Cell compartments. The cell wall, cytosol, and vacuole are the three main compartments of most mature plant cells.

In most plant tissues The cell walls and cytosol are continuous from cell to cell The cytoplasmic continuum Is called the symplast The apoplast Is the continuum of cell walls plus extracellular spaces

Key Symplast Transmembrane route Apoplast The symplast is the continuum of cytosol connected by plasmodesmata. Apoplast Symplast The apoplast is the continuum of cell walls and extracellular spaces. Symplastic route Apoplastic route (b) Transport routes between cells. At the tissue level, there are three passages: the transmembrane, symplastic, and apoplastic routes. Substances may transfer from one route to another. Figure 36.8b

Functions of the Symplast and Apoplast in Transport Water and minerals can travel through a plant by one of three routes Out of one cell, across a cell wall, and into another cell Via the symplast Along the apoplast

In bulk flow Movement of fluid in the xylem and phloem is driven by pressure differences at opposite ends of the xylem vessels and sieve tubes Bulk Flow in Long-Distance Transport

Concept 36.2: Roots absorb water and minerals from the soil Water and mineral salts from the soil Enter the plant through the epidermis of roots and ultimately flow to the shoot system

Lateral transport of minerals and water in roots Figure 36.9 1 2 3 Uptake of soil solution by the hydrophilic walls of root hairs provides access to the apoplast. Water and minerals can then soak into the cortex along this matrix of walls. Minerals and water that cross the plasma membranes of root hairs enter the symplast. As soil solution moves along the apoplast, some water and minerals are transported into the protoplasts of cells of the epidermis and cortex and then move inward via the symplast. 4 Within the transverse and radial walls of each endodermal cell is the 5 Casparian strip, a belt of waxy material (purple band) that blocks the passage of water and dissolved minerals. Only minerals already in the symplast or entering that pathway by crossing the plasma membrane of an endodermal cell can detour around the Casparian strip and pass into the vascular cylinder. 2 1 Symplastic route Plasma membrane Apoplastic route Root hair Epidermis Casparian strip Endodermal cell Pathway along apoplast Pathway through symplast Casparian strip Vessels (xylem) Cortex Endodermis Vascular cylinder Endodermal cells and also parenchyma cells within the vascular cylinder discharge water and minerals into their walls (apoplast). The xylem vessels transport the water and minerals upward into the shoot system.

The Roles of Root Hairs, Mycorrhizae, and Cortical Cells Much of the absorption of water and minerals occurs near root tips, where the epidermis is permeable to water and where root hairs are located Root hairs account for much of the surface area of roots

Most plants form mutually beneficial relationships with fungi, which facilitate the absorption of water and minerals from the soil Roots and fungi form mycorrhizae, symbiotic structures consisting of plant roots united with fungal hyphae 2.5 mm Figure 36.10

Once soil solution enters the roots The extensive surface area of cortical cell (leaf cells for storage) membranes enhances uptake of water and selected minerals

The endodermis Is the innermost layer of cells in the root cortex Surrounds the vascular cylinder and functions as the last checkpoint for the selective passage of minerals from the cortex into the vascular tissue The Endodermis: A Selective Sentry

Water can cross the cortex Via the symplast or apoplast The waxy Casparian strip (belt made of waxy protein) of the endodermal wall Blocks apoplastic transfer of minerals from the cortex to the vascular cylinder

Concept 36.3: Water and minerals ascend from roots to shoots through the xylem Plants lose an enormous amount of water through transpiration, the loss of water vapor from leaves and other aerial parts of the plant The transpired water must be replaced by water transported up from the roots

Xylem sap Rises to heights of more than 100 m in the tallest plants Factors Affecting the Ascent of Xylem Sap

At night, when transpiration is very low Root cells continue pumping mineral ions into the xylem of the vascular cylinder, lowering the water potential Water flows in from the root cortex Generating root pressure Pushing Xylem Sap: Root Pressure

Root pressure sometimes results in guttation, the exudation of water droplets on tips of grass blades or the leaf margins of some small, herbaceous eudicots Figure 36.11

Pulling Xylem Sap: The Transpiration-Cohesion- Tension Mechanism Water is pulled upward by negative pressure in the xylem Copyright 2005 Pearson Education, Inc. publishing as Benjamin Cummings

Water vapor in the airspaces of a leaf Diffuses down its water potential gradient and exits the leaf via stomata Transpirational Pull

Transpiration produces negative pressure (tension) in the leaf Which exerts a pulling force on water in the xylem, pulling water into the leaf 3 Evaporation causes the air-water interface to retreat farther into the cell wall and become more curved as the rate of transpiration increases. As the interface becomes more curved, the water film s pressure becomes more negative. This negative pressure, or tension, pulls water from the xylem, where the pressure is greater. Cuticle Upper epidermis Mesophyll Lower epidermis Cuticle Airspace Evaporation Low rate of transpiration Evaporation Water film CO 2 O 2 Xylem CO 2 O 2 Stoma Water vapor Water vapor Ψ = 0.15 MPa Ψ = 10.00 MPa Cell wall Air-water Airspace interface Airspace High rate of transpiration Cytoplasm Cell wall Vacuole Figure 36.12 1 In transpiration, water vapor (shown as 2 At first, the water vapor lost by blue dots) diffuses from the moist air spaces of the leaf to the drier air outside via stomata. transpiration is replaced by evaporation from the water film that coats mesophyll cells.

The transpirational pull on xylem sap Is transmitted all the way from the leaves to the root tips and even into the soil solution Is facilitated by cohesion and adhesion Cohesion and Adhesion in the Ascent of Xylem Sap

Ascent of xylem sap Outside air Ψ = 100.0 MPa Leaf Ψ (air spaces) = 7.0 MPa Leaf Ψ (cell walls) = 1.0 MPa Trunk xylem Ψ = 0.8 MPa Water potential gradient Transpiration Xylem sap Mesophyll cells Stoma Water molecule Atmosphere Xylem cells Adhesion Cell wall Cohesion and adhesion in the xylem Cohesion, by hydrogen bonding Root xylem Ψ = 0.6 MPa Soil Ψ = 0.3 MPa Figure 36.13 Water uptake from soil Water molecule Root hair Soil particle Water

The movement of xylem sap against gravity Is maintained by the transpiration-cohesiontension mechanism Xylem Sap Ascent by Bulk Flow: A Review

Concept 36.4: Stomata help regulate the rate of transpiration Leaves generally have broad surface areas And high surface-to-volume ratios

Both of these characteristics Increase photosynthesis Increase water loss through stomata 20 µm Figure 36.14

Temperature Plants lose a large amount of water by transpiration If the lost water is not replaced by absorption through the roots The plant will lose water and wilt

Transpiration also results in evaporative cooling Which can lower the temperature of a leaf and prevent the denaturation of various enzymes involved in photosynthesis and other metabolic processes

About 90% of the water a plant loses Escapes through stomata Stomata: Major Pathways for Water Loss

Each stoma is flanked by guard cells Which control the diameter of the stoma by changing shape (a) Changes in guard cell shape and stomatal opening and closing (surface view). Guard cells of a typical angiosperm are illustrated in their turgid (stoma open) and flaccid (stoma closed) states. The pair of guard cells buckle outward when turgid. Cellulose microfibrils in the walls resist stretching and compression in the direction parallel to the microfibrils. Thus, the radial orientation of the microfibrils causes the cells to increase in length more than width when turgor increases. The two guard cells are attached at their tips, so the increase in length causes buckling. Figure 36.15a Cells turgid/stoma open Cell wall Vacuole Radially oriented cellulose microfibrils Guard cell Cells flaccid/stoma closed

Changes in turgor pressure that open and close stomata Result primarily from the reversible uptake and loss of potassium ions by the guard cells (b) Role of potassium in stomatal opening and closing. The transport of K + (potassium ions, symbolized here as red dots) across the plasma membrane and vacuolar membrane causes the turgor changes of guard cells. K + H 2 O H 2 O H 2 O H 2 O H 2 O H 2 O Figure 36.15b H 2 O H 2 O H 2 O H 2 O

Xerophyte Adaptations That Reduce Transpiration Xerophytes Are plants adapted to arid climates Have various leaf modifications that reduce the rate of transpiration

The stomata of xerophytes Are concentrated on the lower leaf surface Are often located in depressions that shelter the pores from the dry wind Cuticle Upper epidermal tissue Figure 36.16 Lower epidermal tissue Trichomes ( hairs ) Stomata 100 µm

Concept 36.5: Organic nutrients are translocated through the phloem Translocation Is the transport of organic nutrients in the plant

Phloem sap Is an aqueous solution that is mostly sucrose Travels from a sugar source to a sugar sink Movement from Sugar Sources to Sugar Sinks

A sugar source Is a plant organ that is a net producer of sugar, such as mature leaves A sugar sink Is an organ that is a net consumer or storer of sugar, such as a tuber or bulb

Sugar must be loaded into sieve-tube members before being exposed to sinks In many plant species, sugar moves by symplastic and apoplastic pathways Mesophyll cell Cell walls (apoplast) Plasma membrane Plasmodesmata Companion (transfer) cell Sieve-tube member Figure 36.17a (a) Sucrose manufactured in mesophyll cells can travel via the symplast (blue arrows) to sieve-tube members. In some species, sucrose exits the symplast (red arrow) near sieve tubes and is actively accumulated from the apoplast by sieve-tube members and their companion cells. Mesophyll cell Bundlesheath cell Phloem parenchyma cell

In many plants Phloem loading requires active transport Proton pumping and cotransport of sucrose and H + Enable the cells to accumulate sucrose High H + concentration Proton pump H + Cotransporter S Figure 36.17b (b) A chemiosmotic mechanism is responsible for the active transport of sucrose into companion cells and sieve-tube members. Proton pumps generate an H + gradient, which drives sucrose accumulation with the help of a cotransport protein that couples sucrose transport to the diffusion of H + back into the cell. ATP H + H + Low H + concentration S Sucrose Key Apoplast Symplast

Pressure Flow: The Mechanism of Translocation in Angiosperms In studying angiosperms Researchers have concluded that sap moves through a sieve tube by bulk flow driven by Vessel Sieve tube Source cell 1 positive pressure (xylem) (phloem) (leaf) H 2 O 1 Sucrose H 2 O Loading of sugar (green dots) into the sieve tube at the source reduces water potential inside the sieve-tube members. This causes the tube to take up water by osmosis. 2 2 This uptake of water generates a positive pressure that forces the sap to flow along the tube. Transpiration stream Pressure flow Sink cell (storage root) 3 The pressure is relieved by the unloading of sugar and the consequent loss of water from the tube at the sink. 4 In the case of leaf-to-root translocation, xylem recycles water from sink to source. 4 H 2 O 3 Sucrose Figure 36.18 Copyright 2005 Pearson Education, Inc. publishing as Benjamin Cummings

The pressure flow hypothesis explains why phloem sap always flows from source to sink Experiments have built a strong case for pressure flow as the mechanism of translocation in angiosperms EXPERIMENT To test the pressure flow hypothesis,researchers used aphids that feed on phloem sap. An aphid probes with a hypodermiclike mouthpart called a stylet that penetrates a sieve-tube member. As sieve-tube pressure force-feeds aphids, they can be severed from their stylets, which serve as taps exuding sap for hours. Researchers measured the flow and sugar concentration of sap from stylets at different points between a source and sink. 25 µm Sievetube member Sieve- Tube member Figure 36.19 Aphid feeding RESULTS CONCLUSION Sap droplet Stylet Stylet in sieve-tube member Sap droplet Severed stylet exuding sap The closer the stylet was to a sugar source, the faster the sap flowed and the higher was its sugar concentration. The results of such experiments support the pressure flow hypothesis.